Nonlocal systems of conservation laws in several space dimensions

Aekta Aggarwal 1 Rinaldo M. Colombo 2 Paola Goatin 3
1 OPALE - Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
3 Acumes - Analysis and Control of Unsteady Models for Engineering Sciences
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We present a Lax-Friedrichs type algorithm to numerically integrate a class of nonlocal and nonlinear systems of conservation laws in several space dimensions. The convergence of the approximate solutions is proved, also providing the existence of solution in a slightly more general setting than in other results in the current literature. An application to a crowd dynamics model is considered. This numerical algorithm is then used to test the conjecture that as the convolution kernels converge to a Dirac $\delta$, the nonlocal problem converges to its non-nonlocal analogue.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2015, 52 (2), pp.963-983
Liste complète des métadonnées


https://hal.inria.fr/hal-01016784
Contributeur : Paola Goatin <>
Soumis le : mardi 1 juillet 2014 - 10:49:14
Dernière modification le : mercredi 15 juin 2016 - 11:09:30
Document(s) archivé(s) le : mercredi 1 octobre 2014 - 12:00:18

Fichier

AggarwalColomboGoatin.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01016784, version 1

Collections

Citation

Aekta Aggarwal, Rinaldo M. Colombo, Paola Goatin. Nonlocal systems of conservation laws in several space dimensions. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2015, 52 (2), pp.963-983. <hal-01016784>

Partager

Métriques

Consultations de
la notice

800

Téléchargements du document

335