D. Amadori and W. Shen, AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW, Journal of Hyperbolic Differential Equations, vol.09, issue.01, pp.105-131, 2012.
DOI : 10.1142/S0219891612500038

L. Ambrosio, F. Bouchut, and C. Lellis, Well-Posedness for a Class of Hyperbolic Systems of Conservation Laws in Several Space Dimensions, Communications in Partial Differential Equations, vol.160, issue.9-10, pp.29-1635, 2004.
DOI : 10.1081/PDE-200040210

P. Amorim, R. M. Colombo, and A. Teixeira, On the Numerical Integration of Scalar Nonlocal Conservation Laws, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.1, 2013.
DOI : 10.1051/m2an/2014023

F. Betancourt, R. Bürger, K. H. Karlsen, and E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, vol.24, issue.3, pp.24-855, 2011.
DOI : 10.1088/0951-7715/24/3/008

S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, vol.4, issue.5, 2014.
DOI : 10.1007/s00211-015-0717-6

URL : https://hal.archives-ouvertes.fr/hal-00954527

C. Chainais-hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.1, pp.129-156, 1999.
DOI : 10.1051/m2an:1999109

R. M. Colombo, M. Garavello, and M. Lécureux-mercier, A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC, Mathematical Models and Methods in Applied Sciences, vol.22, issue.04, pp.1150023-1150057, 2012.
DOI : 10.1142/S0218202511500230

URL : https://hal.archives-ouvertes.fr/hal-00586008

R. M. Colombo, M. Herty, and M. Mercier, Control of the continuity equation with a non local flow, ESAIM: Control, Optimisation and Calculus of Variations, vol.17, issue.2, pp.353-379, 2011.
DOI : 10.1051/cocv/2010007

URL : https://hal.archives-ouvertes.fr/hal-00361393

R. M. Colombo and L. Mercier, Nonlocal Crowd Dynamics Models for Several Populations, Acta Mathematica Scientia, vol.32, issue.1, pp.177-196, 2011.
DOI : 10.1016/S0252-9602(12)60011-3

URL : https://hal.archives-ouvertes.fr/hal-00632755

M. Crandall and A. Majda, The method of fractional steps for conservation laws, Numerische Mathematik, vol.10, issue.3, pp.285-314, 1980.
DOI : 10.1007/BF01396704

G. Michael, A. Crandall, and . Majda, Monotone difference approximations for scalar conservation laws, Math. Comp, vol.34, pp.1-21, 1980.

S. Göttlich, S. Hoher, and P. Schindler, Veronika Schleper, and Alexander Verl, Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Modell, p.29, 2013.

K. Hvistendahl-karlsen and N. H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.2, pp.239-269, 2001.
DOI : 10.1051/m2an:2001114

L. Barbara, H. C. Keyfitz, and . Kranzer, A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal, vol.7280, pp.219-241, 1979.

U. Koley and N. H. Risebro, Finite difference schemes for the symmetric Keyfitz???Kranzer system, Zeitschrift für angewandte Mathematik und Physik, pp.1057-1085, 2013.
DOI : 10.1007/s00033-012-0292-y

K. Stanislav-nikolaevich, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), issue.123, pp.81-228, 1970.

R. J. Leveque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, 2002.
DOI : 10.1017/CBO9780511791253

R. Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, Mathematics of Computation, vol.40, issue.161, pp.91-106, 1983.
DOI : 10.1090/S0025-5718-1983-0679435-6