S. Afantenos, N. Asher, F. Benamara, M. Bras, C. Fabre et al., An empirical resource for discovering cognitive principles of discourse organisation: the ANNODIS corpus (regular paper), Language Resources and Evaluation Conference (LREC) European Language Resources Association (ELRA), p.page (on line, 2012.

N. Asher and A. Lascarides, Logics of Conversation, 2003.

S. Blair-goldensohn, K. R. Mckeown, and O. C. Rambow, Building and refining rhetorical-semantic relation models, Proceedings of NAACL HLT, pp.428-435, 2007.

M. Candito, J. Nivre, P. Denis, and E. H. Anguiano, Benchmarking of statistical dependency parsers for french, Proceedings of the 23rd ICCL posters, pp.108-116, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00514815

L. Carlson, D. Marcu, and M. E. Okurowski, Building a discourse-tagged corpus in the framework of rhetorical structure theory, Proceedings of the Second SIGdial Workshop on Discourse and Dialogue, pp.1-10, 2001.

H. Daumé and I. , Frustratingly easy domain adaptation, Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 2007.

H. Daumé, I. , and D. Marcu, Domain adaptation for statistical classifiers, Journal of Artificial Intelligence Research, vol.26, issue.1, pp.101-126, 2006.

J. C. De and . Winter, Using the student's t-test with extremely small sample sizes. Practical Assessment, Research & Evaluation, issue.10, p.18, 2013.

P. Denis and B. Sagot, Coupling an annotated corpus and a morphosyntactic lexicon for state-of-the-art POS tagging with less human effort, Proceedings of PACLIC, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00514366

A. Gastel, S. Schulze, Y. Versley, and E. Hinrichs, Annotation of implicit discourse relations in the tüba-d/z treebank, 2011.

D. J. Hand, Classifier Technology and the Illusion of Progress, Statistical Science, vol.21, issue.1, 2006.
DOI : 10.1214/088342306000000060

H. Hernault, H. Prendinger, D. A. , and M. Ishizuka, HILDA: A Discourse Parser Using Support Vector Machine Classification, Dialogue & Discourse, vol.1, issue.3, pp.1-33, 2010.
DOI : 10.5087/dad.2010.003

J. Jiang, A Literature Survey on Domain Adaptation of Statistical Classifiers Available from, 2008.

R. Shafiq, G. Joty, R. T. Carenini, Y. Ng, and . Mehdad, Combining intra-and multisentential rhetorical parsing for document-level discourse analysis The Association for Computational Linguis- tics, Proceedings of the 51th Annual Meeting of the Association of Computational Linguistics, pp.486-496, 2013.

Z. Lin, M. Kan, and H. Ng, Recognizing implicit discourse relations in the Penn Discourse Treebank, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing Volume 1, EMNLP '09, pp.343-351, 2009.
DOI : 10.3115/1699510.1699555

Z. Lin, H. T. Ng, and M. Y. Kan, A PDTB-styled end-to-end discourse parser, Natural Language Engineering, vol.12, issue.02, 2010.
DOI : 10.1207/s15516709cog2805_6

Y. Mansour, M. Mohri, and A. Rostamizadeh, Domain adaptation: Learning bounds and algorithms, Proceedings of the Conference on Learning Theory, 2009.

D. Marcu and A. Echihabi, An unsupervised approach to recognizing discourse relations, Proceedings of the 40th Annual Meeting on Association for Computational Linguistics , ACL '02, pp.368-375, 2002.
DOI : 10.3115/1073083.1073145

R. Mcdonald and F. Pereira, Online learning of approximate dependency parsing algorithms, 2006.

G. Jose, T. Moreno-torres, R. Raeder, N. V. Alaiz-rodríguez, F. Chawla et al., A unifying view on dataset shift in classification, Pattern Recognition, vol.45, issue.1, pp.521-530, 2012.

J. Park and C. Cardie, Improving implicit discourse relation recognition through feature set optimization, SIGDIAL Conference, pp.108-112, 2012.

E. Pitler and A. Nenkova, Using syntax to disambiguate explicit discourse connectives in text, Proceedings of the ACL-IJCNLP 2009 Conference Short Papers on, ACL-IJCNLP '09, 2009.
DOI : 10.3115/1667583.1667589

E. Pitler, A. Louis, and A. Nenkova, Automatic sense prediction for implicit discourse relations in text, Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2, ACL-IJCNLP '09, pp.683-691, 2009.
DOI : 10.3115/1690219.1690241

R. Prasad, N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo et al., The penn discourse treebank 2.0, Proceedings of LREC, p.2961, 2008.

C. Roze, Base lexicale des connecteurs discursifs du français, 2009.

K. Sagae, Analysis of discourse structure with syntactic dependencies and data-driven shift-reduce parsing. Proceedings of IWPT, 2009.

T. Scheffer, Error Estimation and Model Selection, 1999.

A. Sogaard, Semi-Supervised Learning and Domain Adaptation in Natural Language Processing, Synthesis Lectures on Human Language Technologies, vol.6, issue.2, 2013.
DOI : 10.2200/S00497ED1V01Y201304HLT021

C. Sporleder and A. Lascarides, Using automatically labelled examples to classify rhetorical relations: an assessment, Natural Language Engineering, vol.5, issue.03, pp.369-416, 2008.
DOI : 10.1017/S1351324901002728

C. Sporleder, Lexical models to identify unmarked discourse relations: Does wordnet help? Lexical- Semantic Resources in Automated Discourse Analysis, pp.20-33, 2008.

S. Varma and R. Simon, Bias in error estimation when using cross-validation for model selection, BMC Bioinformatics, vol.7, issue.1, p.91, 2006.
DOI : 10.1186/1471-2105-7-91

Y. Versley, Subgraph-based classification of explicit and implicit discourse relations, Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) ? Long Papers, pp.264-275, 2013.

W. Wang, J. Su, and C. Tan, Kernel based discourse relation recognition with temporal ordering information, Proceedings of the 48th Annual Meeting of the Association of Computational Linguistics The Association for Computer Linguistics, pp.710-719, 2010.

X. Wang, S. Li, J. Li, and W. Li, Implicit discourse relation recognition by selecting typical training examples, Proceedings of COLING 2012: Technical Papers, pp.2757-2772, 2012.

Z. Zhou, Y. Xu, Z. Niu, M. Lan, J. Su et al., Predicting discourse connectives for implicit discourse relation recognition, Proceedings of the 23rd International Conference on Computational Linguistics: Posters, COLING '10, pp.1507-1514, 2010.