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Abstract

The area of surface reconstruction has seen substantial progress in the past two decades. The traditional problem
addressed by surface reconstruction is to recover the digital representation of a physical shape that has been
scanned, where the scanned data contains a wide variety of defects. While much of the earlier work has been
focused on reconstructing a piece-wise smooth representation of the original shape, recent work has taken on more
specialized priors to address signi cantly challenging data imperfections, where the reconstruction can take on
different representations — not necessarily the explicit geometry. This state-of-the-art report surveys the eld of
surface reconstruction, providing a categorization with respect to priors, data imperfections, and reconstruction
output. By considering a holistic view of surface reconstruction, this report provides a detailed characterization of
the eld, highlights similarities between diverse reconstruction techniques, and provides directions for future work
in surface reconstruction.

1. Introduction icant challenges for surface reconstruction methods. These
properties, in conjunction with the nature of the scanned
shape, effectively distinguish the class of reconstruction meth-
ods that exist today. This diverse set of techniques ranges
from methods that assume a well-sampled point cloud, gen-
eralize to arbitrary shapes, and produce a watertight surface
mesh, to methods that make very loose assumptions on the
quality of the point cloud, operate on specic classes of
shapes, and output a non-mesh based shape representation.

The modeling, recognition, and analysis of the world around
us is a longstanding goal in the eld of Computer Graphics.
Central to these objectives is a means of obtaining a digital
representation of objects in the real world. Surface reconstruc-
tion is concerned with recovering such information, where
the basic problem is to capture a 3D point cloud that sam-
ples the real world, and reconstruct as much information as
possible concerning the scanned objects.

Surface reconstruction came to importance primarily as It is with this rich space of algorithms in mind that we sur-
a result of the ability to acquire 3D point clouds and hence Ve the eld of surface reconstruction and provide a detailed
there are very close ties between how the data is acquired andt@xonomy of existing methods. This categorization is timely,
the method used to reconstruct it. Early on, these techniques @S We see the eld of surface reconstruction diverging from
ranged from active methods such as optical laser-based rangeits more traditional class of methods in an effort to handle
scanners, structured light scanners, and LIDAR scanners,More challenging data imperfections.
as well as passive methods such as multi-view stereo. A
recent trend has seen the massive proliferation of point clouds

from commodity real-time scanners such as the Microsoft . ) . h . .
Y rithms in order to combat imperfections in the point cloud

Kinect. As the diversity, ease of use, and popularity of 3D nd recover as much information about the shape as possible.

acquisition methods continues to increase, so does the nee(ﬁv. ; . . o
. : ithout prior assumptions, the reconstruction problem is ill-
for the development of new surface reconstruction techniques. AN
posed; an in nite number of surfaces pass through or near the

Acquisition methods tend to produce point clouds contain- data points. Assumptions are usually imposed on the point
ing a variety of properties and imperfections that pose signif- cloud itself, such as sampling density, level of noise, and mis-

Our survey presents surface reconstruction algorithms
from the perspective gfriors: assumptions made by algo-
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understanding how to process future types of acquired point
clouds.

Organization. Our STAR is organized as follows. In Sec-
\\ tion 2 we characterize the problem of surface reconstruc-
: tion by examining common input and output characteristics,

\\ namely:

Point Cloud Artifacts: the imperfections of the point
cloud that the method is able to effectively handle.

Input Requirements: the types of inputs associated with
a point cloud required by the algorithm.

Shape Classthe class of shapes that the method is capable
of reconstructing.

Reconstruction Output: the representation and level of
detail of the reconstruction output.

We use these factors as a way of examining surface recon-
struction methods by prior, starting with traditional surface
smoothness priors in Secti@and delving into specialized
priors in Sectiong-9. In Tablel.1we provide a summary

of surface reconstruction methods by prior, characterizing
their input and output, as well as their level of robustness to
various artifacts. We discuss methods for evaluating surface

Figure 1. Surface reconstruction has grown in diversity  reconstruction in Sectioh0, and conclude in Sectiohl with

in recent years, with a wide variety of techniques taking 3 giscussion on future trends in surface reconstruction.
on specialized priorsROSA[TZCO09, shown on the left,

uses volumetric smoothness to aid in reconstruction. Non-
local consolidation ZSW 10], shown in the middle, uses ~ 1.1. Survey Scope and Related Works

global regularity in the form of structural repetition. Part  There are many facets to surface reconstruction. This survey

composition FCH13, shown on the right, uses data-driven  focuses on those relating to the reconstruction from point

techniques to perform reconstruction. clouds ofstaticobjects and scenes acquired thro@ghscan-
ners wherein the point cloud contains a considerable level of
imperfection Furthermore, we concentrate on methods that
approximatethe input point cloud.

alignment. But just as importantly they are also imposed on . . .

the scanned shape, such as local surface smoothness, volume{’eran reconsruction. Our survey covers a wide variety of

ric smoothness, absence of boundaries, symmetries, ShapéTcogstructlon ?;]eth()(\j;’ Wmt'b?r? arﬂecc;nsiructlorfrom potl)nt
primitives, global regularity, and data-driven assumptions. In clouds among them. e note WA 13] surveys urban

. . reconstruction more broadly: 3D reconstruction from im
some instances, requirements are made on knowledge of the! ¢° struction more broadly: 3D reconstruction fro ages,

S o image-based facade reconstruction, as well as reconstruction
acquisition, such as scanner head position, as well as RGB g ’

images of the object. In other cases, the user is involved in got\n/:/SDnFt)r?lm C:OUdS' Althougr:tt:ere ;X'frtls jor_‘rr]]e Oc;{l?frl?pnt
prescribing high-level cues for reconstruction. All of these etween the surveys, we cover tnese methods in a differe

factors permit the regularization of the otherwise ill-posed context, namely the priors that underly the r§c0n§tructlon

problem of surface reconstruction, particularly when process- methods af‘d how they address challenges in point cloud

ing a point cloud containing severe imperfections. Figure reconstruction.

depicts several different priors used to reconstruct surfaces Surface completion.Given a surface with boundaries, there

from challenging point clouds. exists many methods for inpainting and surface completion

Historically, priors have evolved according to the types for handling missing da'Fa. Though one may use such ap-
proaches for reconstruction by rst reconstructing a surface

of point clouds being processed. For instance, local surface " . : . .
. L with boundary from a point cloud, this can be quite challeng-
smoothness priors were developed primarily to handle small . ; : . 8
. . . : ing given other imperfections in the data. These methods are
objects acquired from desktop scanners. Mobile, real-time

. . not covered in this survey and we refer the reader to the recent
scanners have enabled the dynamic acquisition of more gen- .
) . . survey of ACK13] on surface completion.
eral scenes, rather than single objects, prompting more spe-
cialized structural and data-driven priors. Since priors tend Interpolatory reconstruction. An important eld of surface
to be coupled with the type of acquisition, we argue that reconstruction methods are those thderpolatea point

this perspective of surface reconstruction is bene cial for cloud without any additional information, such as normals

¢ Author version



Berger et al. / State of the Art in Surface Reconstruction from Point Clouds

Method Point Cloud Artifacts Input Requirements Shape Class Reconstruction Output
c o]
£ E S |38 § 2
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§E 4 = £ 2 |g5 g5 §8 o
cn < IS} £ £ S c S c » £ o
Surface Smoothness
Tangent Planes{DD 92] # # general implicit eld
RBF [CBC 01] # # general implicit eld
MLS [ABCO 03] # # 3 general point set
MPU [OBA 034 # # # 3 general implicit eld
Poisson KBHOg] # # # # 3 general implicit eld
Graph Cut HKO06] # # # # # general volumetric segmentation
Unoriented IndicatorACSTDO07 # # # # 3 general implicit eld
LOP [LCOLTEO7 # # general point set
Visibility
VRIP [CL96] # # 3 general implicit eld
TVL1-VRIP [ZPBO07 # # # # 3 general implicit eld
Signing the UnsignedIDGD  10] # # 3 general implicit eld
Cone Carving$SZCO10 # # 3 3 general implicit eld
Multi-Scale Scan MergeHG11] # 3 general implicit eld
Volumetric smoothness
ROSA [TZCO09 # # 3 organic skeleton curve
Arterial Snakesl[LZM10] # # 3 man-made skeleton curve
VASE [TOZ 11] # # 3 general implicit eld
1, Skeleton HWCO 13] # # organic skeleton curve
Geometric Primitives
Primitive Completion §DK0Y # # # 3 CAD volumetric segmentation|
Volume Primitives KF12] # # # 3 indoor environment interior volume
Point Restructuringl/A13] # # # # # 3 3 general volumetric segmentation|
CCDT [vKvLV13] # # # # 3 3 urban environment | volumetric segmentation
Global Regularity
Symmetry PMW 08] # # 3 architectural point set
Nonlocal ConsolidationfSW 10] #oo# 3 architectural point set
2D-3D Facaded[ZS 11] # # 3 3 architectural point set
Globt[LWC 11] # # 3 man-made primitive relations
Data-driven
Completion by ExampleHMG 05] # # 3 general point set
Semantic Modeling$XZ 12] # # 3 3 indoor scene objects| deformed model
Shape Variability KMYG12] # # 3 indoor scene objects| deformed model
Part Composition$FCH13 # # 3 3 man-made deformed model parts
Interactive
Topological Scribble$LS 07] # # 3 general implicit eld
SmartboxesNISZ 10] # # 3 architectural primitive shapes
O-Snap ASF 13 # # # 3 architectural primitive shapes

Table 1: A categorization of surface reconstruction in terms of the type of priors used, the ability to handle point cloud artifacts,
input requirements, shape class, and the form of the reconstruction output#Hirdicates that the method is moderately
robust to a particular artifact and indicates that the method is very robudindicates an input requirement argdndicates
optional input.

or scanner information. Delaunay-based methods are quite input associated with the point cloud, contain restrictions
common in this area. The basic idea behind these methodson the class of shapes that they can reconstruct, and may
is that the reconstructed triangulated surface is formed by a produce reconstructions of different forms. Here we summa-
subcomplex of the Delaunay triangulation. A comprehensive rize each of these properties in order to provide a detailed
survey of these methods is presentedd®&pq, as well as characterization of surface reconstruction.

the monograph offfey07. A very attractive aspect of such
methods is that they come with provable guarantees in the
geometric and sometimes topological quality of the recon-
struction if a suf ciently dense sampling of the input surface  The properties of the input point cloud are an important fac-
is provided. These methods place rather strong requirementstor in understanding the behavior of reconstruction methods.
on the point cloud and are impractical for scanned real-world Here we provide a characterization of point clouds according
scenes containing signi cant imperfections. Hence we do to properties that have the most impact on reconstruction
not cover these methods, since we focus on reconstruction a@lgorithms:sampling densitynoiseg outliers, misalignment

techniques capable of dealing with challenging artifacts. andmissing dataSee Figure for a 2D illustration of these
artifacts.

2.1. Point Cloud Artifacts

Sampling density. The distribution of the points sampling

the surface is referred to as sampling density. 3D scans typi-
Surface reconstruction methods typically have to handle var- cally produce anonuniformsampling on the surface, which
ious types of imperfections, make certain requirements on can be due to the distance from the shape to the scanner posi-

2. Characterizing Surface Reconstruction
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ther explicitly through detectior L [COLTEOQ7], or implicitly
/\/\ /\/\ through robust method$4DGD 10].

Misalignment. The imperfect registration of range scans

(a) Original shape (b) Nonuniform sampling results in misalignment. Misalignment tends to occur for
a registration algorithm when the initial con guration of
a set of range scans is far from the optimal alignment —
see YKZHCOL11]] for a survey on registration techniques.
Misalignment is a signi cant challenge for surface recon-
struction, as it introduces structured noise via scans that are
slightly offset from the surface; see Figus@). For instance,
it may be inappropriate to simply nd the surface that passes
near the scans since this may result in sharp discontinuities
between different scans. Figu2ée)illustrates such a case,
(e) Misaligned scans (f) Missing data where there can exist discontinuities when the red and orange
samples stop overlapping.

Figure 2: Different forms of point cloud artifacts, shown

here in the case of a curve in 2D. Missing data. A motivating factor behind many reconstruc-

tion methods is dealing with missing data. Missing data is due
to such factors as limited sensor range, high light absorption,
and occlusions in the scanning process where large portions
tion, the scanner orientation, as well as the shape's geometric of the shape are not sampled. Although some of these arti-
features. See Figur&(b) for an illustration of nonuniform facts may be reduced as scanning technology advances with
sampling on a curve. Many surface reconstruction algorithms higher precision, denser sampling, and lower noise levels,
must be able to estimate a notion of sampling density at every occlusion remains a persistent problem due to the physical
point, see e.g.LUICOL06, WSS09, and hence the level of  constraints of the device. We note that missing data differs
nonuniformity in the sampling can have a great impact on from nonuniform sampling, as the sampling density is zero
estimation accuracy. in such regions — see Figuggf).

Noise.Points that are randomly distributed near the surface ~ Many methods deal with missing data by assuming that the
are traditionally considered to be noise — see Fi@og The scanned shape vgatertight{ CBC 01,Kaz05KBHO06, HKO6,

speci c distribution is commonly a function of scanning arti- ACSTDO07. Within this setting, the goal of some methods is
facts such as sensor noise, depth quantization, and distancdo handle the aforementioned challenges where data exists,
or orientation of the surface in relation to the scanner. For and infer geometry in parts of the surface that have not been
some popular scanners, noise is introduced along the line sampled. Other methods are focused on handling missing
of sight, and can be impacted by surface properties, includ- data by trying to infer topological structures in the original
ing scattering characteristics of materials. In the presence surface at the possible expense of retaining geometric delity,
of such noise, the typical goal of surface reconstruction al- for instance, nding a surface that is homeomorphic to the
gorithms is to produce a surface that passes near the pointsoriginal shape$LS 07].

without over tting to the noise. Robust algorithms that im-
pose smoothness on the outpkiBHO6], as well as methods
that employ robust statisticO©GG09, are common ways of
handling noise. We note that spatially varying noise poses a
signi cant challenge GCSA13, where for many scanners,
the noise level is correlated with the depth measurement —
see KE12] for such an error study done on the Kinect.

If the level of missing data is signi cant, for instance a
single scan, then trying to infer the entire shape can be too
ambiguous. Some methods focus on performing reconstruc-
tion only on the available information, effectively preserving
the boundaries from the scaDGQ 12]. Other approaches
make prior knowledge and assumptions on the missing region,
permitting the reconstruction of higher-level information.
Outliers. Points that are far from the true surface are clas- This can range from inferring a skeletoh4C0O09, shape
si ed as outliers. Outliers are commonly due to structural primitives [SDK09, symmetry relationshipsMW 08], and
artifacts in the acquisition process. In some instances, out-canonical regularitied WC 11].
liers are randomly distributed in the volume, where their
density is smaller than the density of the points that sample
the surface. Outliers can also be more structured, however,
where high density clusters of points may exist far from the Reconstruction methods have different types of input require-
surface, see Figur&d). This can occur imulti-view stereo ments associated with a point cloud. The bare minimum
acquition, where view-dependent specularities can result in requirement of all algorithms is a set of 3D points that sample
false correspondences; see Figli@eUnlike noise, outliers the surface. Working with the points alone, however, may
are points that should not be used to infer the surface, ei- fail to suf ciently regularize the problem of reconstruction

2.2. Point Cloud Input
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for certain types of point clouds. Other types of input can be scale of the neighborhood should be proportional to the sam-
extremely bene cial in reconstruction from challenging point  pling density at the point, where estimation of sampling den-
clouds. We consider the following basic forms of inputs com- sity is itself a challenging problem, particularly when faced
monly associated with point clouds: surface normals, scanner with nonuniform sampling; se& COL06, WSS09. Further-
information, and RGB imagery. more, noise and misalignment may necessitate larger neigh-
borhood sizes in order to combat such imperfections, yet
the size should not be so large as to no longer re ect the
point's tangent spac&gG07. All of these dif culties often
Surface normals are an extremely useful input for recon- result in imperfect normal estimation and surface reconstruc-
struction methods. For smooth surfaces the normal, uniquely tion algorithms must be robust to inaccuracies in unoriented
de ned at every point, is the direction perpendicular to the normals.

point's tangent space. The tangent space intuitively represents

a localized surface approximation at a given point. Surface Oriented normals. Normals that have consistent directions,
normals may beriented where each normal is consistently ~ €ither pointing in the inside or the outside of the surface are
pointing inside or outside of the surface, or may lack such a réferred to as being oriented. Knowledge of the exterior and
direction. Normals that are oriented provide extremely useful interior of the surface has proven extremely useful in surface
cues for reconstruction algorithms. However, we note that "€construction. It can be used to construct a signed distance

if certain information associated with the point cloud is not ~ €ld over the ambient space, where up to asign, the eld takes
present, obtaining an orientation can be challenging. on positive values in the exterior and negative values in the

) o interior. The surface is then represented by the zero crossing
Unoriented normals. Normals that do not possess direction  of the signed distance eld. Other methods generalize this to
— the input normal at every point can be expected to be point- jmplicit elds and indicator functions, but the basic idea of

ing either in the inside or the outside of the surface — are trying to construct the exterior and interior remains the same,
considered to be unoriented normals. This information can gee CBC 01,0BA 03aKBHO06] to name a few.

be used in a number of ways: determining planar regions

in a point cloud BWKO07,, the projection of a point onto an There are numerous ways to compute oriented normals. If
approximation of the surfac&BCO 03], the constructionof ~ the original 2D range scans are known, then the 2D lattice
an unsigned distance eldyK04], or computing covariance  Structure provides a way of performing consistent orientation
matrices ACSTDO7. Unoriented normals are typically com- ~ since one always knows how to turn clockwise around a given
puted directly from the point cloud. This is because additional vertex. For instance, if we denote the point in a range scan at
scanner-speci ¢ information can be used to provide a means Pixel (x;y) aspxy, then one can take the normalgt, simply

to infer normal orientation. A popular and simple method for ~ as the cross product betwe@k« 1,y  Pxy) and(pPxy+1
computing the normal at a given poimis to perform prin-  Pxy)- If the point cloud is noisy, then this method can produce
cipal component analysis (PCA) in a local neighborhood of rather noisy normals, since it does not use nearby points in
p, see e.g.HIDD 92]. More speci cally, if we denote a local overlapping scans. If the view direction is known, then one
neighborhood op by Np, then the basic way to apply PCA  can rst estimate unoriented normals as previously discussed
is to compute the spectral decomposition of the covariance to better handle noise and then use the view direction to

2.2.1. Surface Normals

matrix: determine the orientation. This can be done by choosing the
o | orientation that results in the normal vector having the largest
Cp= ZaN (P a)p a @) angle with the view direction.
gz Np

If scanner information is absent altogether, then one must
orient the points exclusively from the unoriented normals.
A very common method for achieving this is to start from a
single point containing an initial orientation and propagate
the orientation to nearby points whose unoriented normals
are facing a similar directiorHHDD 92]. While there exist
multiple extensions to this methoti[Z 09, LW10], they
face dif culty in the presence of nonuniform sampling, noise,

PCA de nes a least-squares estimation of a tangent plane and misalignment and as a result can leave some normals
and there are many other methods for computing unori- unoriented or pointing in the wrong direction — see FigBire

The eigenvector ofp associated with the smallest eigenvalue
de nes the unoriented normal — assuming eigenvalues have
a multiplicity of 1, the eigenvectors are unique up to a sign.
Note that if the smallest eigenvaluedsthen the region de-
ned by p andNp is planar, since the eigenvectors associated
with the 2 largest eigenvalues capture all of the variance in
the data.

ented normals: using a weighted covariance maRM{G04, The impact on surface reconstruction largely depends on the
higher-order approximations via osculating jet$[4g, or ro- distribution of incorrect orientations: if randomly distributed,
bust methods that empldy norm minimization ASGCO14. then methods may treat this as spurious noise, but if incorrect

Common to all methods is the need to de ne a local neigh- orientations are clustered together over large regions, then
borhood of points, where the neighborhood should be small this form of structured noise can be dif cult to handle — see
enough to accurately represent a point's tangent space. TheFigure3 for an illustration.
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complete data — for instance, line of sight can be used to infer
that there exists a large concavity in the shapeZ 11].

2.2.3. RGB Imagery

Different acquisition modalities that complement depth ac-
quisition can be of great assistance. RGB image acquisition is
a very common modality that accompanies numerous sensors,
such as the Microsoft Kinect. In the case of the Kinect, the
RGB camera is co-located with the IR camera, hence assum-
ing the two are calibrated, it is straightforward to identify
where red splats indicate incorrect orientation. The results corresponding depth and RGB values at a pixel level. RGB
of running Poisson surface reconstructidkBHO6 on this images are most useful for reconstruction when they are able
point cloud are shown in mid-left, where we indicate un- to complement depth information that was not measured by
wanted surface components due to the clustered normal the data. By fusing features present in the depth scan with
ips. Similarly, on the right we show the orientation results  image-based features, one can then employ this for inferring
of [LW1(, and the corresponding results akBHOg]. depth from imagesl[ZS 11]. Contours in an image can also

be used by considering their corresponding unsigned distance

eld, and how it relates to the point cloud's unsigned distance

eld [ SFCH12.

Figure 3: The impact of incorrect normal orientation. On the
left we show the result of normal orientation vidDD 92],

2.2.2. Scanner Information

The scanner from which the point cloud was acquired can 2.3. Shape Class
provide useful information for surface reconstruction. As

discussed, the 2D lattice structure of a scan can be used to
determine normal orientation. It can also be used to estimate

the sampling density for a given scan and as a result it can be of shapesHfiDD 92, CL96], by restricting to a shape class,

e pos, ghecilzed ssumpions can be made on whal e reco
. \eighbor 11arg . structed surface should be. These shape speci ¢ assumptions
the sampling density are likely outliers. However, caution

N . greatly help regularize the problem especially in the pres-
must be taken in distinguishing outliers from sharp features. ence of point cloud artifacts. Quite often, a reconstruction

Surface reconstruction algorithms can be further distin-
guished by the class of shapes they support. Although earlier
reconstruction methods tended not to focus on speci ¢ types

Scanner information may also be used to de nec¢ba-
dence of a point, which is useful in handling noise. For
instance, the approach a£[96] demonstrates how to use

prior is in part driven by a shape class, so understanding the
characteristics of a shape class is an essential component to
gaining insight into surface reconstruction. Here we cover

con dence measures to suppress noise when integrating rangethe following predominant shape class€&D modelsman-
scans into a reconstructed surface. Certain scanners (e.g. Limade shape®rganic shapesarchitectural modelsurban
DAR) can provide con dence measures in the form of the environmentsandindoor environments

re ectivity measured at each point. CAD models. These models are typically composed of a

One can also derive con dence throulite of sightin- collection of simpler geometric primitives such as planes,
formation. Line of sight is de ned as a collection of line cylinders, and spheres. The detection of such instances in the
segments between each point in the point cloud and the scandoint cloud can be used for denoising and in the presence of
ner head position from which that point was acquired. In Missing data the assembly of all detected primitives can be
particular, we can use the grazing angle formed by line of used to infer missing regions by extending and intersecting
sight at each point to derive a notion of con dence. The graz- Primitives [SDKO09 — see Figure.2.
ing angle is the incident angle between the point's surface Man-made (synthetic) shapesThese shapes often contain
normal and its line of sight. In active scanning systems such certain canonical geometric properties such as coplanar faces,
as optical laser-based scanners, the cause of inaccuracy stemgrthogonal faces, as well as faces that form equal angles that
from the large area formed by the projection (i.e., the laser often repeatedly appear and relate different parts of the shape.
stripe) onto the surface at a large grazing angle. Hence we canThis form of global regularity is often due to aesthetic con-
assign a con dence measure as being inversely proportional siderations and a variety of practical constraints, such as cost
to the grazing angle. considerations, functional requirements, and fabrication con-

Note that line of sight also de nes a region of space that straints. For man-made shapes, this derived form of regularity
can greatly help the problerh\VC 11] — see Figurel4.

may be marked as lying outside of the shape. Combining line
of sight from multiple scans re nes the bounding volume in  Organic shapes. These shapes tend to contain a more free-

which the surface lies — this volume is known as visial
hull. This information is particularly useful when handling in-

form structure and are often composed of curvilinear ele-
ments. For instance, tredsyfO 10] possess a strong skeletal
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structure, where imposing certain 1D priofiZ[CO09 on
the reconstruction can be used to handle signi cant missing
data in the scanning process — see Fidlire

Architectural models. A subset of man-made shapes, these
shapes contain similar global regularities in addition to many
other constraints such as upright orientation and various

gles is desired, then Delaunay re nement techniques may be
used BOO05.

Some techniques may not produce a surface represen-
tation, but rather a resampled point set that addresses im-
perfections present in the original point cloldHCO 03,
FCOSO5hLCOLTEO7, HLZ 09]. For severe levels of im-

functional constraints. By assuming that the shape is an ar-perfections, some reconstruction methods may be unable to

chitectural model, the problem can be greatly regularized
by making assumptions on facade structurdSW 10|,
manhattan-world geometrypAB12], and structural regu-
larity [PMW 08] — see Figurel6.

provide such detailed representations, but still recover an
informative representation such as a collection of shape prim-
itives [JKS0§ SDK09 RKMP13, a curve skeletonZCO09
CTO 10,LLZM10,HWCO 13], a deformed model that best

matches the point cloudSKXZ 12, NXS12 KMYG12], or

Urban environments. Often composed of a limited number segmented parts from multiple modeBACH13.

of object types, urban environments are well-suited for data-
driven methods for reconstruction. For instance one can make
assumptions on the presence of ground, buildings, vegetation,3. Surface Smoothness Priors

and other urban objects to aid in reconstructitWA 13]. ) ]
Early surface reconstruction techniques were developed to

Indoor environments. The types of shapes within this envi-  handle broad assumptions on the type of shape being recon-
ronment tend to be a mixture of man-made and organic. A dis- structed. These methods were developed to handle sampling
tinguishing factor behind indoor environments is that similar - and noise artifacts, while also supporting small amounts of
to urban environments, there exist a small number of object missing data. A commonality shared across all of these tech-
types. For instance, in a typical of ce setting there exists a niques is the use of surface smoothnegsior to constrain
variety of chairs, desks, and tables. Furthermore, each type of the output surface, while also ensuring that the reconstructed
object can often be de ned through a low-dimensional shape surface remains close to the input data. Methods in this cate-
space, permitting data-driven methotisqS17 and methods  gory vary based on the smoothness constraints and how they
that utilize a deformable model for each objeéMYG12] - are prescribed in practice. More speci cally, this category
see Figurel5. of methods can roughly be divided inkocal smoothness
global smoothnessndpiecewise smoothness

Methods that prescriblecal smoothnessnsure that the
output surface is smooth where the input point cloud ex-
It is desirable for a reconstruction algorithm to produce a ists JABCO 03, OBA 034. In regions away from the point
faithful and detailed representation of the scanned shape's cloud, however, these methods can behave poorly, failing
surface. For challenging point clouds containing signi cant to reconstruct the correct global geometry and topology. In
imperfections, it may be unrealistic to expect such highly de- contrastglobal smoothnessiethods prescribe that the en-
tailed information as the output. However for certain methods tirety of the output surface is smoot@BC 01, KBHO6].
it is still possible to obtain a less informative yet valuable Hence, these methods are better suited for handling miss-
shape representation. ing data, as they are all targeted at producing a watertight
surface. These methods are further distinguished by often
solving an optimization problem that leads to the use of a
global solver of some kind — typically a linear system, an
eigenvalue problem, or a graph cut optimizatiBiecewise
smoothmethods are focused on explicitly recovering sharp
features or boundary components, while ensuring smooth-
ness away from these features, where smoothness may be
prescribed locallyDHOSO07 or globally [ASGCO1Q.

2.4. Reconstruction Output

Methods targeting detailed reconstruction generally pro-
duce as output either a discrete surface or an implicit function.
The implicit function can either be in the form ofsigned
distance eld[HDD 92] or anindicator function[Kaz09g.
Implicit functions are usually sampled on an underlying grid,
where the reconstructed surface is found via isocontouring for
an appropriate isovalue. For a regular grid, the well-known
Marching Cubesl{C87] is commonly used to extract the
surface HDD 92,CL96,CBC 01, Kaz03. Other methods
use grids such as octredsgH06, MPS0§ or adaptive 3D
triangulations ACSTD07, MDGD 10] to adapt grid reso-
lution to the point sampling density. Contouring an octree
presents several dif culties in ensuring watertight, manifold also require normals associated with the point cloud, where
surface meshes — sed W02 KKDHO07, MS1( for sev- we de ne thenormal eld N as a set of normal vectors such
eral approaches. Contouring a triangulation can be done via that for eactp; 2 P there is an accompanying normml2 N.
marching tetrahedra, but if a mesh with a lower number of The distinction between oriented and unoriented normals is
triangles and well-conditioned (i.e. good aspect ratio) trian- made explicit for each method.

Notation. We rst x the notation for this section and all
subsequent sections. We assume that we are given a point
cloudP which is a sampling of a shaj® Individual points
in P are indexed ap; 2 P for thei'th point. Many methods
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cloud, producing a so callggbint set surface- the surface is
\ implicitly de ned as the xed point of the projection operator.
N However, it is nontrivial to explicitly construct a continuous
\ representation, for instance an implicit function or a triangle
\ mesh, when the user wants to know the precise geometry and
NS \ topology of the MLS surface for geometry processing tasks
| ‘ \ that require a continuous surface representation. Advancing
S o front methods $FS05SSFSOBproduce a triangle mesh by
(ORN incrementally laying out triangles to compdsents, where
vertex positions are determined through the MLS de nition.

Figure 4: When sampling density is insuf cient to resolve  care must be taken, however, when fronts merge and split.
local curvature (a), the plane tting operation employed by

moving least squareABCO 03] becomes highly unstable If normals are oriented, then one can simplify the MLS def-
(b). APSS GG07 addresses this problem by locally tting  inition to arrive at an implicit function representation for the
spheres instead of planes. Employing spheres tackles thesurface. Namely, the method &fA04] constructs an implicit
aforementioned problem while remaining computationally function at a point as the signed distance to a weighted aver-
inexpensive. age of nearby tangent planes. The methods@$04 uses a
weighted average of distances to nearby tangent planes. Both
methods assume that it is possible to construct a well-de ned
tangent plane at each evaluation point, which may not exist

(?) “(b) N

3.1. Local Surface Smoothness Priors for sparsely sampled data. In this case, a higher-order approx-
The pioneering method oHDD 92] was hugely in uential imation such as algebraic point set surfac@&p7, which

on the class of methods that impose local smoothness priors.USes an MLS de nition with spheres for shape approximation,
This method approximates a signed distance &lR3! R can be more robust — see Figure

by assigning, for each point in the ambient smeeR3, its
signed projection onto the tangent plane of its closest point
to P, denotedy;:

A key property of MLS is the use of a weighting func-
tion, used to give larger in uence to points near the evalu-
ating point in both estimating the tangent space as well as
f@=(q p) ni ) constructing the polypomial. Thi§ can be gsed to cgmbat
moderate levels of noise by allowing the weight function to
i - ) ) . have alarger spatial in uence. For nonuniform sampling, it is
obtain an estimate of the signed distance eld. Thg surface is necessary to de ne a weight function whose spatial support
then de ned by the zero level set 6f Although straightfor- \3ieq a5 a function of the sampling density. This may be
ward to implement, this approach suffers from several issues. done via a user-de ned scale proportional to an estimation
The method is very sensitive to the estimated normals — noisy ¢ the density G017, as well as methods whose support
normals, or worse inverted normal orientations, can give rise is derived from a dat’a-dependent error bound on the MLS
to very inaccurate signed distance estimates. Furthermore’approximation [COLO6]. However, MLS methods are in
in the presence of nonunlform_sampllng., ch_oosmg the clos- general unable to provide a good surface approximation in
est tangent plane to de ne a signed projection can produce e nresence of missing data, since it is necessary to use a

a rather noisy output — see Figuemid-left. Subsequent  ,iher |arge spatial support size in such regions for which a
methods based on local surface smoothness have focused orﬂangent plane (or sphere) may provide a poor t.

addressing such issues.

Note that the normal eld\N must be oriented in order to

Multi-level partition of unity (MPU). For this set of tech-
nigues, the reconstruction problem is approached as a hierar-
chical tting problem [OBA 034. At a certain scale, a local
shape tis determined adequate if its error residual is suf-
ciently small, otherwise the occupied space is re ned and
the overall procedure is repeated. Once all shape ts have
been performed, an implicit function over the entire volume
is formed by smoothly blending nearby ts. Note that the
de nition of an implicit function requires the shape ts to be
signed ts, hence requiring oriented normals. Compared to
MLS methods, MPU is more robust to nonuniform sampling
since it does not require an estimate of the sampling den-
sity: a shape tis only accepted if it is below a certain error
residual. The level of smoothness and hence robustness to
Such a projection process allows for resampling the point noise can be adjusted by the error residual tolerance. Missing

Moving least squares (MLS).These methods approach re-
construction by approximating the surface as a spatially-
varying low-degree polynomial — se€\WL 08] for a survey

on MLS methods. More speci cally, in the traditional MLS
formulation [ABCO 03], points are rst locally parameter-
ized by their projection on the local tangent space. Then, in
this parameterized space, a weighted tting estimates a low-
degree bivariate polynomial approximating the input cloud.
MLS then de nes the evaluating poinsojectiononto the
reconstructed surface as the closest point to the bivariate poly-
nomial [ABCO 03]. We note that this projection process only
requires unoriented normals and can also be used to de ne
anunsigneddistance functionAK04].
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Figure 6: A point cloud sampling a sphere consisting of 150
points (a) is reconstructed byHDD 92] resulting in ac?
surface (b). A locally supported RBMfen9% reconstruct
a C! surface, while the global triharmonic RBB{f = 0,
f(x)= ><3) outperforms the previous methods, although in-

Figure 5: The scan on the left contains outliers and scan curring a high computational cost.
misalignment, particularly near its boundaries. The output

of [LCOLTEOT, shown on the right, is able to robustly deal

with such challenging data through the use of multivariate

median data tting, and a point attraction term in the output.  py nding an implicit function de ned via RBFs whose zero
level set represents the surface. More speci cally they use
globally-supported basis functions of the fofifx) = kxka.

data can be addressed by allowing for the extrapolation and The implicit functionf may then be expressed as:
subsequent blending of spatially adjacent shape ts. However, n

such an extrapolation may produce erroneous surface sheets, f(x)= px)+ a lif(x pi); ©))
depending on the form of missing data. To resolve such poor i=1

ts, a diffusion operator can be de ned on the collection of wherep denotes a low-degree polynomial and the basis func-
shape ts, in order to perform smoothing directly on the MPU  tjons are shifted by the evaluation point

representationNOS09.
o o ) The coef cientsl ; are found by prescribing, as interpo-
Parameterization-free projection. These methods project  |ation constraints. a function value 6ffor pi 2 P. Off-

the point cloud, without normals, onto the multivariate me- g, rface constraints are necessary to avoid the trivial solution
dian, where a point balancing term ensures samples are asgy¢ f(x) = 0for x 2 RS. Positively (resp. negative) valued
uniformly-as-possible distributed in the outpuOLTEO7). constraints are set for points displacegyaalongn; in the
This method is limited to outputting a resampled point cloud, positive (resp. negative) direction. The displaced points are
where the resampled points are restricted to where the input gojacted such that each one's closest poiftimp;. The coef-
data lies, retaining boundary components. However, by using jents | i are found via a dense linear systermjwhere by

a multivariate median, parameterization-free projection does exploiting the structure df, fast multipole methods are used

not need to estimate a local tangent plane or perform shape;q reduce the complexity fI’OI@(n3) to O(nlogn) [CBC 01].
tting as in MLS and MPU methods, respectively. Hence for

strong noise, outliers, and even misalignment, this type of  An advantage to using globally-supported basis functions
approach is quite robust — see Fig&r&his approach was ex-  for surface reconstruction is that the resulting implicit func-
tended by HLZ 09] to handle highly nonuniform sampling  tion is globally smooth; see Figu6gd) for triharmonic RBFs,

by incorporating an estimation of sampling density into the compared to compactly-supported basis functiatieri9g
balancing term. shown in Figures(c). Hence RBFs can be effective in pro-
ducing a watertight surface in the presence of nonuniform
sampling and missing data. However, when the input con-
tains moderate noise, determining the proper placement of
Global smoothness priors typically involve higher order off-surface points can become challenging.

smoothness, large-scale smoothness, or both. High order, . .
. . . .~ _"Indicator function. These methods approach surface recon-
smoothness relates to the variation of differential properties . S . T
. struction by estimating soft labelingthat discriminates the
of the surface: area, tangent plane, curvature, etc. Large-scale; . . . o
; . ; interior from the exterior of a solid shape. This is accom-
herein relates to the spatial scale where smoothness is en-_ . . o .
forced pllshed_ by nding an |mp||_C|t functiorc that best repres_ents
’ the indicator function, taking on the value @fn the interior
Radial basis functions (RBFs).RBFs are a well-known of the shape and otherwise. The key observation in this
method for scattered data interpolation. Given a set of points class of methods is that, assuming a point cloud with oriented
with prescribed function values, RBFs reproduce functions normals,c can be found by ensuring its gradient is as-close-
containing a high degree of smoothness through a linear com-as-possible to the normal el in a least-squares sense,
bination of radially symmetric basis functions. For surface re- viakr c Nk%. If we apply the divergence operator to this

construction, the method o€BC 01] constructs the surface  problem, then this amounts to solving the following Poisson

3.2. Global Surface Smoothness Priors
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equation:

rr c=Dc=r N:

4)

Once solved, the surface is found @avith a suitable iso-
value, typically the average or median valuecavaluated at
all of the input points.

The approach of{az09 solves this by transforming the
problem into the frequency domain, where the Fourier trans-
forms ofDcandr N result in a simple algebraic form for
obtaining the Fourier representationfBy operating in the
frequency domain, however, it is necessary to use a regular
grid in order to apply the FFT, hence limiting spatial reso-
lution in the output. In order to scale to larger resolutions,
the method of KBHO6] directly solves forc in the spatial
domain via a multi-grid approach, hierarchically solving for
C in a coarse-to- ne resolution manner.

Indicator function methods are an instancegeddient-
domaintechniques, which are known to be robust meth-

ods for such applications as high dynamic range compres-

sion [FLWO02] and image blendingHGBO03. For surface
reconstruction, such a gradient-domain formulation results in
robustness to nonuniform sampling, noise, outliers, and to a
certain extent missing data. The implicit function's gradient

being well-constrained at the data points enforces smooth-

ness and a quality t to the data and since the gradient is
assigned zero away from the point cloedis smooth and
well-behaved in such regions. Furthermore, for small scan
misalignment, normals tend to point in a consistent direc-
tion, which yields a well-de ned gradient t for the indicator
function. Several extensions have been made to this original
formulation, addressing limitations related to streaming re-
construction MPS04§, faithfulness to the input{H13], and
sensitivity to normalsACSTDO7.

The work of MPS0§ solves the Poisson equation in a sim-
ilar manner to Kaz03, but rather than using a Fourier basis,

Figure 7: From the point cloud on the left, we show a slice
of the implicit function produced irJCSTDOT on the right,
where only unoriented normals are necessary in producing a
signed eld. An isotropic surface mesh of the zero isosurface
of the signed eld is also depicted.

screened Poisson formulatiokHl13] is up to 2 orders of
magnitude faster tharC[T11], see KH13, Table 1].

All of the above approaches rely on oriented normals,
where although such methods can tolerate sparsely distributed
normal orientation ips, large continuous clusters of improper
normal orientation can signi cantly impact these methods.
To address this, the method & STDO07 uses covariance
matrices to represent unsigned orientations, rather than using
normals. A covariance matrix is formed at a given point by
taking a union of neighboring Voronoi cells around the point.
The anisotropy of the covariance acts as a notion of normal
con dence. The implicit function is found by maximizing its
gradient's alignment with the principal component of the co-

it uses wavelets in such a way that computing the wavelet variance matrix at each point, while ensuring smoothness and
transform ofc may be done in a local manner, where higher a proper signed function by enforcing the function's bihar-
resolution wavelet bases contain smaller spatial support. Com-monic energy to be small. This amounts to solving a sparse
pact support is particularly advantageous in streaming surface symmetric generalized eigenproblem — Figidrdepicts a
reconstruction, where the reconstruction is done on a subsetslice of the resulting eigenvector for the kitty point cloud.

of the data at a time. Volumetric segmentation. These methods perform recon-

struction via ahard labelingof a volumetric discretization,
where the goal is to label cells as being either interior or
exterior to the surface. The method 63004 constructs a
graph Laplacian from the Delaunay triangulatiorPofvhere

A known issue with the approach d{BHO06] is that t-
ting directly to the gradient of can result in over-smoothing
of the data KH13, Fig. 4(a)]. To address this, the method
of [KH13] directly uses the point cloud as positional con-
straints into the optimization, resulting irsareened Poisson  each node represents a tetrahedron of the triangulation and
problem Similarly, the method of CT11] incorporates po- each edge measures the likelihood of the surface passing
sitional, gradient, as well as Hessian constraints on the im- through the adjacent tetrahedra. The Laplacian eigenvector
plicit function, where the Hessian constraint can improve with smallest nonzero eigenvalue then smoothly segments
surface extrapolation in regions of missing datgH[L3, tetrahedra into interior and exterior, as this eigenvector simul-
Fig. 6(a)]. The main difference between the approaches is taneously seeks a smooth labeling and a partitioning with low
that [KH13] solves the problem via a nite-element formula- edge weights. This approach has shown to be robust to noise
tion, whereas€CT11] use nite-differences, due to the com-  and outliers without the use of normals, thanks to the robust-
plexity in discretizing the Hessian term. In particular, the ness of spectral partitioning. Since it produces an explicit
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volume segmentation, it also ensures a watertight surface.normals PBA 03l the algorithm ts as many quadrics
However, in regions of missing data, the discretization from as the number of clusters of normals. Improved robustness
the Delaunay triangulation may be too coarse, giving a poor is achieved in FCOS05b by segmenting neighborhoods
approximation to the surfac&B5004 Fig. 6]. through region growing. Lipman et aLCOLO7] enriches

the MLS projection framework with sharp edges driven by
the local error of the MLS approximation. However, the
locality of the feature detection can generate fragmented
sharp edges, much like general feature detection approaches
[GWMO01, PP0Y.

Methods based ograph cutsare also used in nding a
volumetric segmentation. The method Bf{06] rst de nes
a small crust on the exterior and interior through a dilation
operation on point-occupied voxels. A graph is imposed on
the crust where edges re ect the local surface con dence —
a function of a smoothed unsigned distance, while nodes on Globally-sharp features. To reduce crease fragmentation,
the boundaries of the interior and exterior crust are connected some approaches favor the extraction of long sharp features.
to a source and sink node, respectively. To impose global Pauly et al. PKG03 use a multi-scale approach to detect
smoothness, non-terminal edges also include a small regu-feature points and construct a minimum-spanning tree to infer
larization constant, which encourages minimal surface area.a feature graph. Daniels et aDHHOS07 uses a robust projec-
This method does not use normals, as it only needs to com-tion operator onto sharp creases and grow a set of polylines
pute an unsigned distance in order to de ne edge weights in through projected points. Jenke et dWS08 extract feature
the graph cut solve. This results in robustness to nonuniform lines by robustly tting local surface patches and computing
sampling, noise, and misalignment. Furthermore, the minimal the intersection of close patches with dissimilar normals.
surface area regularization allows for the method to handle
missing data, where we note that such a regularization is ab-
sent in the spectral segmentation approachK&®04. How-
ever, computing the crust such that the interior and exterior
are identi able can be challenging in certain con gurations.

Sharp and robust.Only few approaches tackle the combined
issue of robustness to defect-laden point clouds and feature-
preserving reconstructiofrCOS05aASGCO1QHWG 13].
The method of FCOS05%uses a least median of squares
regression scheme in its region growing approach to handle
outliers in the data. The approach 8f§GCO1(Q rst esti-
3.3. Piecewise Surface Smoothness Priors mates normals that preserve sharp features in the shape via
I1 sparse reconstruction, i.e. the vector of all neighboring
Moving from the smooth, closed case to fliecewise smooth  normal differences should be sparse, where large nonzero dif-
case(possibly with boundaries) is substantially harder as the ferences re ect sharp features. The positions are then found
ill-posed nature of the problem applies to each sub-feature of a5 offsets from the recovered sharp normals. The method
the inferred shape. The features of a piecewise smooth surfaceof [HWG 13] allows for the preservation of sharp features
range from boundary components, sharp creases, cornersin a resampled point cloud by rst resampling away from
and more speci ¢ features such as tips, darts, and cusps.detected edges in order to reliably compute normals and then
In addition, the inferred surface may be either a strati ed upsamp"ng in a manner that preserves Sharp features, deter-
manifold or a general surface with non-manifold features. mined by the normals. This method employs a similar energy

Another dif culty stems from the fact that a feature is a  to [LCOLTEO7] away from sharp features, hence they are
notion that exists at speci ¢ scales, such that reconstruction gple to handle similar types of defects in the point cloud.
and feature approximation cannot be decoupled.

Semi-.sharp features.One step toward piecewise smooth-_ 4. Visibility Priors
ness is a class of feature-preserving methods based on im-
plicit representations. Sharp features can be captured throughAlthough methods based on surface smoothness priors can
locally adaptedhnisotropicbasis functionsPTS0J. Adam- support a large variety of inputs, such a rather general as-
son and AlexaAAO06] rely on an anisotropic moving least  sumption places restrictions on the extent to which they can
squares (MLS) approach, where the anisotropy is based onsupport substantial artifacts in the point cloud. To handle chal-
principal curvatures derived from the points' positions and lenging point clouds, it is useful to consider speci c priors
normals. Oztireli et al. PGGO09 extend the MLS through ker-  for reconstruction. In this section we considé&sibility as a

nel regression to allow for sharper features. However, none of prior and how it can help regularize certain reconstruction
these techniques reproduce truly sharp features: the featuregproblems.

in a reconstruction contain varying degrees of smoothing.
Moreover, the presence of sharpness in the geometry of a . L
point set is detgcted only Iocally,pwhich often I?aads to lyrag- The rst class of methods considers how to use the visibility

h f 10 Fig. provided b_y th(_a scanner_that _produce_d the poiqt cIoud_— this
g]ented creases when defects are prese8CG(CO10 Fig is used primarily to obtain théne of sightassociated with

each sample; see Sectidrl. The second class of methods
Locally-sharp features. Another way to detect local sharp- uses line of sight that is not provided from the scanner, but
ness consists in performing a local clustering of estimated rather approximated from the exterior space; see Sedtn

Visibility has generally been used in three different ways.
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The third class of methods uses visibility to approximate
parity — the number of times a ray intersects a surface — in
order to approximate the interior and exterior, as discussed
in Section4.3. These types of methods tend to make little as-
sumptions on the shape class, and usually produce an implicit
function or a surface mesh in output.

4.1. Scanner Visibility @ (b) ©

The most common method for using the visibility information

provided by a scanner is the merging of individual range Figure 8: The point cloud “hidden point removal” operator
scans. This is the approach taken BY.p6], where a signed ~ from [KTBO7 applied to an input (a) determines the subset
distance function is incrementally built up over each range ©f Visible points as viewed from a given viewpoint (b). Given
scan. More speci cally, each scan is rst triangulated via this labeling, a view-dependent on-the- y reconstruction (c)
its image lattice structure. Then for a given ray originating Ccan be obtained by retaining the topology of well shaped
at the scanner head position, the signed distance eld for triangles from the convex hull of the spherical inversion.
points along the ray are updated based on their distance to

the ray's intersection point with the scan. Furthermore, as

discussed in Sectiok.2.2 a con dence can be assigned 0 1o pe robust to structured outliers and scan misalignment;
each point in the range scan via line of sight information, gge ZPBO7, Fig. 4.

where [CL96] associates low con dence weights with high

grazing angles. This is particularly useful in combating noise ~ 1he method of fG11 considers the case when range
in the point cloud, since one can easily over smooth or under S¢@ns have widely varyingcales- the range scans have very
smooth if no con dence values are associated with points; different sampling densities. In such cases, merging multiple

see [CL96, Fig. 4]. scans of a coarse scale with a single scan at a ne scale can
overly smooth out the ne-grained detaiFG1]] extends
Furthermore, one can perforspace carvinghrough line [CL96] by constructing dierarchicalsigned distance eld.
of sight information, via marking regions of space observed This permits retaining the high resolution detail of ne-scale
by the scanner as empty. The approach@ifq6] uses this  scans, while capturing the more general scene present in

information to extract geometry between regions marked coarse-scale scans.

empty and regions that are unseen, where the assumption is S )

that unseen regions are the interior of the shape. This is very Scanner visibility was recently used id13] in the recon-
useful in resolving ambiguous topology in regions of missing struction ofthin objects, such as street signs. The method em-

data: seeTOZ 11, Fig.9]. ploys a point-based representation for reconstruction, where a
’ o particle system is used to satisfy a data- tting term, an energy
For other forms of missing data, the approach@f96] that encourages the vector formed by neighboring points to

will typically preserve the hole as it does not enforce any Jie on one another's tangent plane, and a term that penalizes
type of smoothness prior. It is possible to incorporate a mini- neighboring points if their normals are in different directions.
mal surface area regularization to encourage smoothness inEach input point's target output point is restricted to be along
regions of missing data, while using line-of-sight as a data- its line of sight, which helps to constrain point movement in
tting term. Existing approaches solve such a formulation via  the particle system and greatly simpli es the optimization.
level-set modelsWhi98] and graph cut optimizatiorLBO7].

The method of [PK09] seeks an interior and exterior label- . N

ing of tetrahedra from a Delaunay triangulation of the point 4.2. Exterior Visibility

cloud, similar to KSO04, but formulates it as a graph cut It is possible to exploit visibility even in the absence of ex-
problem using line of sight information. At each tetrahedron, plicit information from the scanner. Given a chosen camera
the method accumulates evidence for belonging to the exte-position,point set visibilityf KTB0O7] determines the portion
rior through line of sight of all range scans, hence assuming of the point cloud that is not self-occluded. First, a spherical
outliers are randomly distributed, this method is robust to inversion of the point cloud with respect to the given query
such defects; se¢PK09, Fig. 13]. point is computed. Then, visible points are simply identi ed
as those that lie on the convex hull of this set — see Fi§ure
While [MTSM10] extended this method to handle moder-
ate levels of noise, the input point cloud must respect strict
sampling assumptions to produce satisfactory results.

For scans that contain a high level of misalignment and
structured outliers, the method &fPB07 approaches range
scan merging by using tHe norm for the data term, and the
minimization of the signed distance gradient magnitude as the
regularization term. This type of regularization, commonly Occlusion culling. The method of CCLN1Q builds upon
known astotal variation denoising, allows the algorithm  these ideas and reconstructs a watertight surface by carving
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Figure 9: The approach OW'DGD 10) rst computes a Figure 10: The point cloud on the left was captured via

_robu_st un5|g_ned dls_tance _functlon (left), a’_‘d CONSUUCES an . i-view stereo — note the substantial structured outliers.

m_tenor/exterlor Iapellng (middle), and assouatgd con dc_ance The center image is a zoomed-in portion of the point cloud,

(right) of the labeling. Note that low con dence is associated centered on the object of interest. The methodXEFA13

with regions of missing data, such as the bottom of the scan. (right) is highly robust to outliers, while still preserving the
details of the object, due to the use of parity and an unsigned
distance function which adapts to the noise.

the spaceccludedby the point cloud when observed by a

suf ciently large and randomly sampled set of directions.

Similarly to [KTBO7], the input cloud has to satisfy certain

stringent sampling conditions, limiting its effectiveness with

undersampling and missing data. Conditions on sampling are

relaxed in CLCL11] where inconsistencies are detected by

observing that if one point’soronoi polefAB99] lies in the crust is used to determine intersections with the surface. A
exterior, the other Voronoi pole should be in the interior. If Point will very likely be exterior or interior if the parity es-
both are occluded or visible vi&[F'BO7], this indicates an timates are consistent over all directions. This uncertainty
inconsistency. Unfortunately, since the method uses Voronoi €stimate is used in constructing an implicit function, consist-

poles, which cannot always be robustly estimated in the pres-ng of & data- tting term and a smoothness term, such that
ence of missing data, its applicability remains limited. high smoothness constraints will be assigned to regions that

) ) have high uncertainty (i.e. high disagreement in parity). Fig-
Cone carving. The method of $SZCO10hypothesizes that  re9 shows the unsigned distance function for a challenging
each point in the cloud must have beslservedrom the point cloud, along with its sign estimate and con dence in
scanner head. It computes high-likelihood visibility cones sign. This approach is highly robust to noise and outliers
originating at each sample and takes the boundary of the gye to the use of a robust unsigned distance function, which
union of all cones as an approximation to the surface. This goes not require the estimation of normals. It is also robust to
methoq can be used to infe_r the geometry in large _regions missing data, and since its regularization is spatially-varying
of missing data for challenging scenarios, i.e. two thin, spa- according to the uncertainty in parity, it will not over smooth
tially close, and undersampled surface sheets — producingthe data where it exists. However, since smoothness is en-
topologically clean surfaces. The main disadvantage with the forced via a Laplacian regularization, this could still result
approach is its lack of scalability, since it takes linear time to poor behavior in regions of missing data, giving the in-
construct a cone at each point, resulting in a total quadratic ¢grrect topology. The method o8}17] addresses this by

running time. performing space carving, guided by a parity estimate, to only
carve out space where there does not exist highly con dent
4.3. Parity interior regions. This can better retain topological features

such as tunnels, where smoothness priors may erroneously
An alternative way of using visibility is to de ne a measure over smooth and Il these regions in.
of parity. Assuming a closed surface, the parity for a given
ray (point and direction) is de ned as the number of times The method of GCSA13 extends MDGD 10] by using
the ray intersects the surface — if an odd number of times, this a robust unsigned distance function that is adaptive to the
indicates the point lies in the interior, otherwise the pointis noise level in the point cloud. The method produces a sign
in the exterior. This general idea can be extended to a point estimate over a random collection of line segments in the
cloud, giving rise to a notion afincertaintyin whether or volume. To determine the parity for each line segment, rather
not a point belongs in the exterior or interior. The approach than using a crust as iMDGD 10], they look at all local
of [MDGD 10] constructs parity on the point cloud through  minima in the unsigned distance along the segment, ip the
the use of a robust unsigned distance function. Namely, they function according to the local minima, and of all possible
compute a crust, or an offset surface, around the point cloud ipped minima choose the one that is smoothest. Fidiire
via the unsigned distance and evaluate parity at a given point demonstrates the method's robustness to strong, structured
by randomly shooting rays in different directions, where the outliers.
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model image input point cloud reconstructed surface user-edited reconstruction

Figure 11: The high-level geometric regularizer provided by “arterial snakesLEM1( is effective in reconstructing the

delicate geometry of the scanned tubular model affected by noise, outliers, reduced sampling density and missing data. The
sparsity of the model does not only allow the correction of these data imperfections, but also enables intuitive data/user-driven
reconstruction.

5. Volumetric smoothness tiple surface fronts, guided by a signed distance eld, from
within the interior volume out to the point cloud. The method
takes care to split and merge fronts in order to progressively
reconstruct the surface in growing levels of details. Noise and
missing data are handled by enforcing a smoothness term on
all fronts as they evolve. This conservative approach leads
to a better control and interpretation of the reconstructed
topology and can be extended to reconstruct a skeletal curve
directly from the point cloud$LSKO07.

In order to handle challenging forms of missing data, a com-
mon way to regularize surface reconstruction is to enforce
that thelocal shape thicknessf a surface (i.e. a measure-
ment of its local volume) varies smoothly. For watertight
shapes, local thickness is measured by the radii of maximally
inscribed spheres of iteedial axis transformHowever, as
the medial axis is an alternative full representation of the
shape, determining the medial axis over which to perform

these measurements is an inherentl)_/ dif cult problem —as T handle higher amounts of missing data, the approach
dif cult as the reconstruction problem itself. of [LLZM10] presents a deformable model for reconstructing

Skeletal regularizers.The “rosa” method fromTZCO09 skeletal curves afnan-madeshapes composed of a collection
addresses this issue by assuming that the medial axis of aOf tubular components such as metal rods and canes. The
shape can be approximated by curves instead of surfaces, tha@rterial snakesmodel geometry is obtained by sweeping a
is, by acurve-skeletorFor organic geometry, a reconstruction ~ Xed-topology cross section through the input point cloud
of the skeleton can be obtained even in the presence of miss-Starting from regions of high data delity. Their approach im-
ing data by exploiting the redundancieslotal rotational plicitly encodes volumetric regularization by constraining the
symmetry Given a skeletal structure the geometry can be solution to one exhibiting a smoothly varying cross-section,
reconstructed in regions of missing data by a three-step pro_while also allowing high-level geometric constraints like pla-
cess: rst, the distance from the cloud to the curve-skeleton is Narity, contact tangency, and symmetry to further regularize
cylindrically parameterized on the curve-skeleton; then, an in- the reconstruction.
painting of the distance function is performed on this domain;
nally, the inpainted point cloud can be processed by one of
the algorithms in Sectio&. It is important to note that a cylin-
drical parameterization prior constrains the class of shapes
for which a reconstruction is possible to one having a star-
shaped cross section. While the skeleton extraction method : - . . S
in [TpZCOOQ suffered the limitation of requiring oriented nor- 332(42%3?‘2?6232“22%5i(sji;?):rcnarl)l‘;ri?)g“s:;lIthlf)eeISnI:It;O-
rsnkael;sétzl:]k;s;?g;?; ;(rec?rialzzhsts; Eg‘{:ﬁ: dhg\é\/i;:tlilgis%%e tl%]EXtraCtresolved by the s_canning process and a subsftantial amount
of self-occlusion is caused by dense branching structures.

Sggws\ggelplixﬁagiroer?:?ﬁ;'? (];Olu(;[]l Izkfgit?e;::}t. ;torgr\;?)r\;- Therefore_, the focus pf the reconstruction is tree branches,
ing the necessity for an explicit cylindrical parameterization where their approach s o r_st reconstruct the sk_eleton of the_
d hile also allowing user-input to locally modify captured tree. The skeleton is assumed tobea dlr_ected a}cycllc
m?esr;na | &, W 9 P y graph rooted at the ground plane; limbs are typically piece-
gulanzer. wise smooth and their thickness almost everywhere smoothly
Deformable models Another way to take advantage of volu-  varying, where gipe-model[RFL 05] controlling thick-
metric smoothness is to grow a deformable model from within ness variations can be used at branching locations. While
the volume. The approach B[S 06] slowly grows mul- a pair of orthogonal images have been shown suf cient to

Organic skeletal geometry.Tubular components exhibiting
piecewise smooth radii variations are also suitable to model
organic anchatural geometry like treesRFL 05, NFDO?7,
LYO 10] or blood vesselsHQO04]. In tree reconstruction,
biological constraints are exploited to simplify the problem
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hallucinate the 3D information with the help of some user
interaction NFDO7], recent research has attempted to model
the tree structure directly from 3D point cloud¥D 10].

Generalized volumetric smoothnessSeveral methods exist
for imposing volumetric smoothness on the medial axis of

the shape, supporting a much broader class of shapes. The
method of BS19 approaches reconstruction by segmenting

the point cloud into volumetric regions and in each region tak- Figure 12: (left) CAD models are often obtained by con-
ing the union of balls to obtain a coarse surface representation.structive solid geometry as a composition of simple prim-
The union of these regions then serves as an initial surface for itives: planes, spheres, cones, etc. (middle) Randomized
the method of LS 06], to recover ne details. Key to their  search FWKO07 can be used to detect such primitives in the
segmentation is a distance measure de ned directly on the point cloud data even in the presence of noise, outliers and
point cloud that robustly measures the likelihood of a medial mijssing data. (right) The primitives can then be extrapolated

ball being generated by any pair of points. This method is ro- to obtain a watertight surface from incomplete dag&JK09.
bust to noise and missing data, particularly when there exists

nearby surface sheets, but can fail in regions where parts of

the surface corresponding to medial sheets are missing.

Among methods employing volumetric regularization
[TOZ 117] is the most general. The surface encoding the
solution is iteratively evolved by level-sets toward the data
considering both visibility and surface smoothness, similarly
to [Whi9g], while simultaneously enforcing a volumetric
prior based on the medial axis of the evolving interface. This

technique can prevent the formation of unnecessary holes

Primitive consolidation. The work of JKS09 takes a set

of detected plane primitives and performs reconstruction by
aligning and merging the boundaries of adjacent primitives.
More speci cally, the boundaries of the plane primitives are
extracted and an optimal con guration of boundaries is found
by imposing a data- tting term to the original boundary as
well as a term that favors the snapping of boundary points and

in thin surfaces due to under-sampling, as the formation of corner points of neighboring planes. Explicitly using corners

a topological feature would correspond to a quickly vanish-

ing medial radii. Furthermore, since the medial axis encodes

local re ectional symmetry, this allows for information to

be effectively propagated throughout the surface permitting

prevents the boundary from smoothing itself out. The advanc-
ing front method of §FS0%is used to extract a surface mesh.
This method can reconstruct CAD and architectural models
alike, producing a surface mesh that retains the detected prim-

the reconstruction of challenging data like the geometry of itive structures. However, the method requires that adjacent

the highly concave areas in a vase — seE@4 11, Fig.5].
While highly general, the instability of the medial axis to
surface-perturbations and the complexity of its computation
limit the applicability of the method.

6. Geometric Primitives

The detection of simpler geometric structures in a point cloud
has shown to be particularly bene cial for surface recon-

primitive boundaries should be geometrically close to each
other, which may not be satis ed if primitive detection is
noisy, or if missing data is present. The methodSiDK09
resolves this by explicitly extrapolating shape primitives (of
all kinds) and forming the resulting output as the intersection
of the extrapolated primitives. This extrapolation of primi-
tives is formulated as a graph cut problem, where in addition
to a standard minimal surface area term, a data tting term
is used that ensures the surface normal at a given point (the

struction. Knowledge of a surface that can be described as the edge in the graph) is aligned with all intersecting primitives

composition of geometric primitives can be extremely helpful
for denoising and lling in missing data. Not all shapes ad-
here to this prior, but typically CAD and architectural models
can be described in this manner.

Detecting primitives. The method of fWKO07] is an effec-
tive method for nding geometric primitives in shapes. It uses
RANSAC to robustly nd planes, spheres, cylinders, cones,
and torii, through an ef cient means of sampling points for
tting and evaluating scores, both based on locality sensitive
methods. Importantly, this method produces primitives that

at that point. This does not constrain the primitives in a local
manner: primitives whose boundaries are far away can even-
tually meet up and intersect with this method, as illustrated
in Figurel2.

Augmenting primitive information. Although the method

of [SDKQY can robustly handle missing data, it can be sensi-
tive to noisy primitives which may fail to de ne a coherent
model when extrapolated. The work @&¥lLP1( instead uses
line of sight information to help penalize poorly extrapo-
lated primitives. Namely, this work takes the set of primitives

partially match the point cloud — the collection of these shapes as well as an additional set of primitives formed near the
can then be used for reconstruction. We note that although boundaries of the input primitives and constructs a cell com-
this method can detect a small set of easily parameterizable plex re ecting the extrapolation of the primitives. An energy,
shapes, ef cient pose detection methods for arbitrary shapes similarly solved via graph cuts is then formed, where the
can also be usedUNI10]. data- tting term uses line of sight information to penalize
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facets in the complex lying in regions marked empty via space
carving. The method ofKMP13 uses the point cloud, line

of sight, and edge features in corresponding RGB images to
infer constraints for nding the boundary of each input shape
primitive, consequently producing the reconstructed surface.

Volumetric primitives. In the case of indoor scene recon-
struction, an alternative to surface primitives is to employ
volumetric primitivego model the interior space. IXF12]

the volume is modeled by tting simple cuboids to the empty
space de ned by the boundaries of the scan data. A set of 2D
constructive solid geometry (CSG) vertical slices are built by
incrementally adding and removing candidate rectangles that
best model the interior — a function of line of sight informa-
tion. A similar process is used to stack up these slices to build
a set of volumetric primitives, producing a 3D CSG model
that composes the interior. The method O1LA13] starts
from a volume decomposition of the space, and labels volu-
metric cells as interior and exterior through a parity-driven
cost function solved via graph cuts, where parity is measured
through ray intersections of extracted horizontal and vertical

structures. Such volumetric methods guarantee a watertight

output, and are highly robust to missing data, since only a par-
tial sampling of the volume boundary is needed for a quality
t.

Hybrid methods. A limitation of primitive-based methods

is that they do not degrade gracefully if certain portions of
the shape are poorly explained by a primitive. The method
of [LA13] resolves this by introducing hybrid approach

to reconstruction: shape primitives are used to resample the

point cloud and enforce structural constraints in the output,

such as sharp features between adjacent primitives and cor:

ners, while a visibility-driven prior is employed in regions
where a primitive tis not found. A similar approach was
proposed inyKvLV13], where planar polygons of suf cient
tting quality are extracted and a conforming, constrained
Delaunay triangulation is constructed on the polygons and
the remaining points so that the polygons are preserved in
the triangulation. A visibility-driven graph cut problem is
then solved, similarly tol[PKO09], such that the extracted

Figure 13: From the scan on the left, the method
of [PMW 08] is able to discover local similarity transforma-
tions which relate individual elements. This can be used to
resample the point cloud, as well as extrapolate the scan into
missing regions, shown on the right.

have also shown to be of great use in handling severe defects
in a point cloud.

7.1. Symmetry

Symmetry is a well-studied problem in shape analy-
sis MPWC13. Symmetry detection is focused on nding
either global or local transformations on the shape that maps
the entire shape, or a subset of the shape, onto itself. Find-
ing such transformations can be extremely useful for surface
reconstruction in handling noise and missing data.

Global similarity. The method ofl[A11] applies this to the
case of missing data for single-scan completion by nding
small surface patches of the scan that exhibit either bilateral,
rotational, or surface-of-revolution symmetry, and then apply-
ing the detected transformation to the rest of the scan to infer
the missing data. This can produce a complete model from
a single view and does not assume a speci c type of shape

class. However, it assumes that a shape can be well described
by the application of a single simple transformation, which
does not always hold.

Local similarity. Rather than imposing global relationships,
in [PMW 08] the authors focus on nding repeating elements
(small subsets of the point cloud) that can be mapped onto
one another bjocal similarity transformations. They show
that the repetition of elements in a point cloud manifests

polygon primitives are retained, while the rest of the points as a lattice structure in a suitable transformation space. In
rely on line of sight information for reconstruction. These particular, partial matches become prominent in this transfor-
types of methods greatly generalize the class of shapes inmation space, hence repeating elements of varying levels of
which primitive-based reconstruction may be performed. missing data can be robustly detected and used to reconstruct
incomplete regions, see Figut8. The method of [CDF1(

nds symmetries in incomplete point clouds by construct-
ing an af nity matrix that measurdsow symmetriall pairs
Certain classes of shapes, namely CAD, man-made, urbanof points are. The key insight made byGDF1( is that

and architectural shapes, possess a certain levglobfl this matrix should be block-diagonal for many types of sym-
regularity. Regularity in a shape can take many forms: a vase metries — i.e. rotational, bilateral, intrinsic. By considering
described by a surface of revolution, a building composed of powers of this matrix, the authors demonstrate how incom-
facade elements, or a mechanical part consisting of recurring plete matches become more pronounced, allowing for a wide
orientation relationships between sub-parts. All of these are range of detected symmetries in challenging point clouds
examples of the following more general propert@anmetry containing noise, outliers, and missing data. These simpler
repetition andcanonical relationshipsCommonly associ-  forms of symmetry can be generalized to a notioswispace
ated withhigh-level shape analys[$/Wz 13], these priors symmetrie§BWM 11], where a symmetry group is de ned

7. Global Regularities
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by a set of local transformations as well as a low-dimensional

ce Reconstruction from Point Clouds

shape space, in order to handle more general types of shapes.

7.2. Structural Repetition

In certain cases it is dif cult to nd repeating elements in a
point cloud through symmetry transformations. Instefid,
rectly seeking repeating elements in a transformation-free
manner can provide us with more exibility in the reconstruc-
tion process.

The method of ZSW 10] utilizes this observation for re-
construction of building facades in noisy terrestrial LIDAR
scans, where occlusions from vegetation or other objects re-
sult in signi cant missing data. For a given type of facade
element, each elements' planes are detectedSNaK07]
and the individual elements are registered at a per-plane level.
Once registered, denoising is performed across all elements
via the individually registered planes and the consolidated
facade element is projected back onto each instance for recon
struction. The mutual use of information across all elements
allows one to robustly remove noise and Il in missing data.

A drawback to the approach oZEW 10] is the strict
requirement of user interaction. This limitation was addressed
in the work of SHFH11 by adaptively partitioning facades.
The approach ofWS17 takes the consolidated point cloud
of [ZSW 10] and segments it into depth layers and uses a

input scan ransac globfit

Figure 14: From a set of misaligned scans shown on the
left, the primitives extracted viec§WKOT (middle) retain the
misalignment. Glob t [WC 11] (right) is able to correct
misalignment by enforcing consistent canonical relationships
across primitives.

and regularity in orientation. This often arises in CAD models
due to fabrication restrictions and budget considerations, as
well as urban environments due to functional constraints.

Manhattan constraints. Perhaps the simplest form of a
canonical relationship is thManhattan-world(MW) as-
sumption: all planar primitives in a scene belong to one
of three mutually orthogonal planes. This can simplify
facade reconstruction, as in the aforementioned methods
of [ZSW 10,SHFH11WS12LZS 11]. In [VAB12], MW

is used for building reconstruction by rst classifying points
by shape type — wall, edge, convex corner, or concave corner

grammar de nition to individually segment each depth layer — and clustering points of a similar type. After constructing

into facades via the optimal sequence of grammar derivations.

MW-aligned bounding boxes on all clusters, volume regions

Facades may be appropriately extruded at each depth layerare found via parity, analogous telpGD 10|, where inte-

to obtain a polygonal representation of the building, at the
possible expense of detail in the geometry due to the lack of
expression in the shape grammar.

The method of FS13 tackles occluded facade scans by
analyzing vertical scanlines consisting of columns of points
along major facade planes to detect periodic features. The
Discrete Fourier Transform is computed for each scanline
and used to extract the period of repetitive structures. Holes
are lled by extending the periodic features into occluded
regions.

Another means of detecting regularity in incomplete scans
is to nd regularity in associated RGB imagery, and prop-
agate this information back to the 3D scan to perform re-
construction. The approach df4S 11] achieves this by
decomposing the RGB image into depth layers via the 3D
scan, and upon detecting symmetries with respect to each
layer via WFP1Q, consolidates all element instances to ro-
bustly denoise and Il in missing data across the instances.

7.3. Canonical Relationships

Another useful prior on global regularities is the canonical

intra-relationship between parts of a scene, or parts of a shape
Such relationships can be parallel or coplanar parts, recurring
orthogonality between planes, concentric or co-axial parts,

¢ Author version

rior regions of consistent parity are considered to belong to

the building's volume. As edges and corners are detected via
relationships between walls, this method is robust to missing

data, but may be sensitive to noise for adjacent wall con gu-

rations.

Consolidating relationships.The method of [WC 11] re-
constructs CAD shapes consisting of a much richer variety of
canonical relationships compared to MW. Namely, starting
from an initial set of detected primitive SYWVK07, parallel,
orthogonal, angle-equality, and distance-equality relation-
ships are individually detected and carefully selected so as
to not cause any relationship con icts. By enforcing these
relationships, structured noise such as scan misalignment can
be effectively handled — see Figuté.

Canonical building relationships. The work of LWC 11]

was extended to the case of reconstruction of buildings from
2.5D scans inZN12). The basic observation in this approach
is that there exists three fundamental type of relationships in
buildings: roof-roof relationships that consist of orientation
and placement equalities, roof-roof boundary relationships
that consist of parallelism and orthogonality relationships,
and boundary-boundary relationships that consist of height
and position equality. Upon nding the relationships via clus-
tering (i.e., clustering similar angles, equality, etc..), they are
used to inform the primitive tting method so that the prim-
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Figure 15: From the incomplete and cluttered scan on the left, the approacNX8[L2 rst oversegments the point cloud
(mid-left), then iteratively merges segments which agree on class labels (mid-right), and nally deforms a set of detected models
to best resemble their segmented objects (right).

itives simultaneously t to the data and to the relationships. tically segmenting the point cloud and then nding a
Analogous to[WC 11], this allows for robust reconstruction =~ complete model to replace each segment. More speci cally,
from building scans containing strong structured noise. given a set of scans and RGB images, a conditional random
eld class labeling problem is formulated, balancing two
objectives: a data tting term based on a database of
class-labeled objects and a smoothness term favoring local
The previously discussed priors may not always be appropri- consistency in appearance and geometry. A training set
ate and in practice, certain shapes may simply fail to adhere of point clouds is built, where for each object scans are
to these priors. A more exible method of specifying a prior ~ constructed via a virtual camera over a range of orientations
is through adata-drivenmeans: using a collection of known and distances from the object. This allows the model to be
shapes to help perform reconstruction. This can allow for the robust with regard to missing data, as the input should map
reconstruction of individual objects and more generally, the to one of these poses. A random forest classi cation is built
reconstruction of scenes composed of a certain type of envi- over this training set allowing for the closest complete object
ronment and multiple types of objects. Fine-grained scene to an incomplete scan to be retrieved. Although retrieving
reconstruction is extremely challenging due to the large miss- & rigid template from a database can effectively handle
ing data often associated with scans, such as those derivedncomplete data, only rigid transformations with uniform
from the Microsoft Kinect. Hence, if reconstructing the ge- scaling are considered to best align each matched object.
ometry is infeasible, these methods instead seek the most

similar object in a database, and if necessary, its deformation

in order to t the input data. Reconstruction by non-rigid retrieval. A natural extension

of reconstruction by retrieval is to consider non-rigid trans-

D riven inpainting. An rlier meth f recon- . . .
ata .d ven inpa U 9 carie ethod of reco formations of the template geometry to the input data. This
structing individual objects from a database was proposed .

in [PMG 05], where an incomplete input point cloud is is addressed inNXS12 where upon nding a certain se-
" P put p rpantic class for a segmented object in the point cloud, every
matched against a database of complete shapes and the mos . . ; . _
: L ; . model is non-rigidly deformed via localized scale deforma:
relevant shape is then rigidly deformed into the point cloudto . o - .
Cn . . tions. The best match is identi ed as the model with the
recover missing data. This allows for a watertight reconstruc- . . ; ; i
. . . T smallest registration residual. This method approaches clas
tion, but for the algorithm to be effective, strong similarity ~." . . o - i )
between the input data and the best-matching obiect is nec->' cation differently by building a semantically-labeled seg
essary. This Iim?tation was addressed BgH 07?b stin mentation through incremental selection of oversegmented
y: . ) yusing surface patches. A patch is chosen if the resulting merged
local shape priors, where a collection of overlapping point . ; S L ) ¥
cloud patches are matched against a local shape prior databas object has high con dence in its label. This is particularly ef
P . . g pep ?ective in noisy, outlier-ridden highly cluttered environments
and the retrieved priors are used to reconstruct the surface.’ see Figurd5. The authors offMYG12] extend these ideas
A major drawback of these approaches is the assumption by noting thai inndoor environment# is common to have
that the point cloud is suf ciently dense, so that matching the same obiect in multiole poses. Their technidue iNcorno-
the cloud against a set of complete shapes is meaningful. ject pep i d corp
However, for the acquisition afcenesin particular indoor rates a deformation model directly into the segmentation and
. ' q . P - classi cation problem, rather than as a post-processing step.
environments, the scanned objects may be too incomplete to

I, . o . . . A deformation model is learned over multiple incomplete
permit this due to occlusion, limited observation directions, . - ) . . .
. . . scans for a given object, allowing the object to be identi ed
or the geometry is too ne-grained with respect to scanner

resolution. Furthermore, for these methods to be applicable .by incomplete observations of its parts. Given an input scan, it

) . o is rst over-segmented and then iteratively merged into parts,
to scene reconstruction, objects need to be individually seg- . .
mented. where parts are matched against learned local deformation

modes of a model. Part relationships are then used to verify
Reconstruction by rigid retrieval. The method the global quality of a match. Compared M{S12SXZ 12,
of [SXZ 12] approaches this problem by rst seman- such deformation models allow one to reconstruct a broader

8. Data-driven priors
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set of objects, and lessens the need for a potentially large
database for recognition.

Reconstruction by part composition.A disadvantage of the
above approaches is that the granularity of the reconstruction
is at the level of a whole model, that is, combining parts from
different models is not possible. The approachSFCH12
overcomes this by combining individual parts from different
objects to best compose the input scan. Namely, starting @ ®) ©
from a database of segmented models, 3D data is combined

with RGB imagery to nd candidate parts from the database Figure 16: Given an input point cloud, simple planar prim-

matching the input. In particular, the use of RGB data can jtives identi ed by RANSAC (a) may result in coarse and
help nd parts that are completely missing in the 3D scan. incomplete geometry (b). By exploiting the user's high-level
The best combination of candidates that closely match the knowledge while remaining faithful to the input data (b) a

geometry, while consisting of a small intersection with each  constrained optimization allows to recover a high-quality
other, composes the nal model. model (c).

Model-based SFM.The method of BCLS13 performs re-

construction at theategorylevel (i.e. car, fruit), by learning

a mean shape prior along with corresponding feature points

on the shape from a given set of object instances acquired and LIDAR scans by identifying corresponding 2D rectangle
throughstructure from motiofSFM). Then for a given point  regions in both data sources.

cloud and associa_ted imagery, its points are matched to theTopoIogy cuesThe method of LS 07] demonstrates how
learned feature points and used to deform the mean shape t0,ge jnformation can be more tightly integrated to guide re-
the given point cloud. Such an approach allows for the recon- ¢, nqtrction in an interactive fashion. Speci cally, the ap-
struction of coarse details via the learned mean shape, while 4 ohtains watertight and topologically correct recon-
preserving ne details present in the point cloud. Such details

; : ) structions through the automatic detection of topologically
are likely to be lost by the previously described approaches. ek regions in a given reconstruction. These low-con dence

regions are then presented to the user to be resolvescria
bleson a 2D tablet, which translate to interior and exterior
constraints, or potentially no constraints if the user deems
Incorporating the user in the process of surface reconstruction the region valid. The reconstruction is then updated, and the
has shown to be extremely bene cial in dealing with chal- process repeats through further user edits.

lenging point clouds. The key distinguishing factors between
user-driven methods are the level of intuition and ease of
use an interface provides and the extent at which the user

interaction is coupled with the underlying reconstruction . : . : .
technique. User-driven techniques were rstintroduced as a automqtlc reco_nstruct_lon can be tlghtly coupled In an inte-
means for generating required information as inputs to the grated mteractl_ve environment and is espemally_ useful for
: . the reconstruction darge-scaledata. These techniques are
reconstruction algorithm, where recent and more encompass-b t suited when th led obiect Hilgih it
ing approaches tightly integrate the user interaction with the estsuitedwhen Ine sampied objects ex tgh repeti lon
core reconstruction algorithm. Below we group user-driven a_nd can be adequat_ely_represented in terms of a collection of
techniques by the type of information that is solicited from simple geometrlc prlmltlves. INSZ 10 t_he authors present
the user. a technique to_rapldly reconstruct grchltectural models, s_uch
as those acquired from the scanning of large urban environ-
Feature classi cation cues.The methods of fCOSO05kh ments. The key idea of the approach is to enable the user to
and [GGO07 showcase how user input can be used to pro- de ne and manipulate simple geometric building blocks in
vide valuable information for reconstruction. In both methods the form of axis-aligned rectangular cuboids narsetart-
user input is used to augment the point cloud with tags classi- boxes The user sequentially places the smartboxes into the
fying different surface attributes such as regions of surface scene, where contextual regularities and symmetries between
smoothnessHCOS05hand sharp feature&§G07. A simple boxes are automatically captured and used to expedite the
brush tool that acts directly on the point cloud enables the tting process. The nal placement of the user manipulated
user to identify regions of interest. The tags are incorporated primitives is determined through an interactive optimization
with moving least square®\BCO 03] to better handle sharp  procedure that automatically adjusts the location, orientation,
feature regions that are dif cult to detect and reconstruct auto- and sizes of the box primitives by considering how the cuboid
matically. Another example of user interaction is the method ts the data and its relationship in context with previously
of [LZS 11], which requires the user to correlate 2D photos placed boxes. The method also allows for the grouping and

9. User-Driven Methods

Structural repetition cues. The ability to incorporate user
input in reconstruction allows one to forego traditional wa-
tertight and topological requirements. User interactivity and
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manipulation of multiple boxes for rapidly copying and tting  meaningful for the targeted applications. Such evaluation cri-
recurring structures. teria consist of the coherence of LODs across the scene, the
ability to incrementally re ne the geometry, and the level of

Primitive relationship cues. This class of methods ap- aabstraction provided by the LODs, analogoustz[. 09]

proaches the reconstruction of models that can be assemble
by simple polygonal primitives. The role of the user is to Topological Accuracy.Another important evaluation criteria
provide hints in how to improve the connectivity of the re- is the recovery of higher-level information of the shape and in
constructed model. The approach 6iG09g is focused on particular, its topology. Certain methods are concerned with
building reconstruction from incomplete scans. They rst reconstructing a shape with the correct ger8lsg 07], while
estimate planar polygons as well as their boundaries from other methods that focus on recovering a skeletal representa-
the scans. Acknowledging that this estimation will be im- tion of the shape are more concerned with the topology of the
perfect under missing data, the authors then allow for the underlying skeletal structure — recovering important branches
user to identify boundary lines that bound an absent polygon, and junctions in the skeleton. Such a topological structure
as well as specify multiple polygons that intersect to yield is of particular importance for structural shape editing ap-
absent edges or corners. This information is used to infer a plications LLZM10] and nonrigid registrationST 10].
watertight polygonal model of the building. To support more However, we note that most skeleton-based methods are of-

complicated polygonal relationships the methodASF 13 ten concerned with qualitative evaluation, hence it can be
reconstructs a closed polygonal modeldmappingeach poly- dif cult to compare different skeleton extraction methods.
gon into alignment with neighboring primitives by solving  gtycture Recovery. Beyond geometry and topology it is

a combined optimization problem involving bdteal and also sometimes desirable to recover the structure during re-
global spatial constraints — see Figuté. The interactive  construction. Beyond the simple notion of scene decomposi-

component provides the user a set of modeling operations jon, the term structure has a broad meaning, ranging from the
comprised of simple edits restricted to an automatically de- gimension of geometric entities (manifolds, strati ed man-

termined plane, hence xing the view for the userpélygon  ifo|ds, non-manifold con gurations) to adjacency relation-
edit modeallows the user to re ne existing polygons by edit-  ghips through canonical geometric relationships (parallelism,
ing their boundaries ano_l merging multiple dlsconnecteq poly- co-planarity, orthogonality, concentricity, co-axiality) and
gons. Apolygon sketching modgllows the user to provide  reqyjarities (repetitions, symmetries). In addition, controlling
new polygons for regions where automatic planar detection {he structure encompasses recovery, preservation, and rein-
failed due to insuf cient points or incorrect estimation due  forcement. Structure is especially relevant when dealing with
to noise or outliers in the data. For both modes, the user has 3rge-scale scenes, not just individual objects, where scenes
to only provide coarse edits, as the automatic snapping opti- 56 composed of a collection of objects which may have
mization is used to align polygon boundaries based on both gy ctyral interrelationships. Structure as well as global regu-
local and global relations between primitives. larities are also a means to improve robustness and resilience
to missing data and go beyond reconstruction to consolidation

10. Evaluation of Surface Reconstruction and abstraction.

Given the wide diversity in reconstruction methods, the man- Shape Recognition.For data-driven methods that deal
ner in which one reconstruction is evaluated compared to With substantial missing data, recovering precise geome-
another may differ. In this section we look at different evalua- {Y 1S often impractical. Instead, recognizing whole shape

tion criteria used in the surface reconstruction literature. classes$XZ 12] or parts of shapesSFCH13 from an in-
complete scan are common methods of evaluating reconstruc-

Geometric Accuracy.Perhaps the most common method of - tion quality. Similar types of recognition methods can be used
evaluation is to directly compare the geometry of the recon- jn evaluating the detection of geometric primitives.

struction output to thground truthsurface from which the E f UseAn i luati iterion is th f
scan was obtained. Hausdorff distance, mean distance, as well=35€ 0T US&An important eva uation crlterlon IS the ease o
use of a surface reconstruction algorithm. For methods that

as measuring error in normals are common geometric error N tic. thi tto h it thod
measures in this scenario. However, it is often challenging to are automatic, this can amount to how sensitive a metho
is to its set of parameters across a large range of inputs.

obtain the notion of a ground truth surface from a physical . . L
shape. Hence, computational representations of shapes aréfor user-driven methods, this translates to the practicality
of the user interface. This can be evaluated through user

typically used as the ground trutk§z05 MPS09, where di SF 13 th he time it tak
synthetic scanningf the digital representation can be used in studies p ] ¢ _at measure the time it ta es to reconstruct
a model. The studies perform these evaluations on both users

place of an actual scannéBI[N 13]. In some cases, a direct h tamil ith hi 4 3D modeli
comparison to ground truth data is insuf cient when targeting who are familiar wit computer graphics an modeling as
well as those that are novices.

reconstruction under an error tolerance or comprising several
levels of details (LODs). This suggests evaluating instead the Reproducibility An important consideration in evaluating

complexity-distortion tradeoff, or the capability to generate the quality of a reconstruction method is its level of repro-
LODs that are both controllable via intuitive parameters and ducibility. Perhaps the simplest means of determining repro-
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ducibility is whether or not certain methods are made publicly type. In this setting our survey should prove useful in the
available or have been implemented by a third party, as this development of novel priors that need to handle such new
can be an important indicator of implementation complexity acquisition methods.

and algorithm robustness. Some surface reconstruction imple
mentations are publicly available, which provides a sense of
methods that have a high level of reproducibility. For instance
Poisson surface reconstructidfgH06] is a widely used sur-
face reconstruction method as the code is highly stable and
reliable. The issue of reproducibility and provenance is well
studied in other areas, including visualization and scienti ¢
work ows [ SFCO7FKSS0§, and it has been shown to be use-
ful for studying 3D model constructioDKP11]. Given the
increasing complexity of reconstruction algorithms, the issue
of reproducibility is likely to be of increasing importance.

“Acquisition ubiquity. Beyond the increasing variety of sen-
sors, we are also witnessing a rapid evolution of the acqui-
' sition paradigms. The acquisition of our physical world can
now be complemented by exploiting the massive data sets
shared online, referred to asmmunity dataWe also predict

a future where geometric data are acquired through dissem-
inated sensors, yieldindisseminated datalhis evolution
translates into a paradox: despite expectations that technologi-
cal advances should improve quality, these data are hampered
with high variability and unprecedented amount and variety
of defects. In addition, we are observing a trend brought on by
the speed of technological progress: while many practitioners
11. Conclusions use high-end acquisition systems, an increasing number of

H f surf truction h ¢ thod them turn toconsumer-levehcquisition devices, willing to
€ area of surtace reconstruction has grown from methods replace an accurate albeit expensive acquisition by a series

gha;t f:agdle I'm'ied ?efeth’ n p(t)r']dek:ﬁdtsk‘]Nh'(;el progu;:m? Iof low-cost acquisitions — see recent work on 3D acquisi-
et_?let re((:jons (rjuc 'OQ.S’hCI) mel ofs athan etstlf S anola tion from mobile phonesi[KM 13]. These new acquisition
artiacts and produce nigh-level surlace representations. Lur paradigms translate into a lower control over the acquisition

ls.umey pr?wdefhlngggtll.nt(.)t t?'s W'(tjr? f;lrray of ?ethths., ht'ﬁh' process, which must be compensated by an increased robust-
Igld |ngs rengths and imita 'Orr:s Ida lcurren_ }['tix's in te ness of the algorithms and structural or physiggriori
€1d. I doing s, our survey shotlld aiso point the way to- knowledge. Recent works in hair reconstructibhiR13] and

watrdstfult ure worl; across all O.f thetdlfferenttpnors N m?kllng d foliage reconstructionrgNB13] demonstrate the challenges
potential connections across Input assumptions, point clou brought on by acquisition in uncontrolled environments.
properties, and shape classes that have not been previously

considered. Big data and online algorithms.Last, the scale of acquired

data is also quickly growing: we no longer deal exclusively
with individual shapes, but with entiszenespossibly at the
scale of entire cities with many objects de ned as structured
shapes. Recovering the structure of such large scale scenes is
' a stimulating scienti ¢ challenge. We also envision a future
where the common on-disk paradigm must be replaced by

\ - ) ! ] onlinealgorithms that perform reconstruction during acqui-
while unoriented normals require solving for a generalized ition. Recent works such as Kinect FusioiD]l 11] and

eigenvalue problemACSTDO7. Other hints such as gen-  eytensionsCBI13 NZIS13 demonstrate the practicality of
eralized parity requires two linear solves: a rst solve t0  pjiiging such online systems. There are applications such
consolidate the local hints as sign guesses, and a second solVeys aero-reconstruction for disaster management where tight
to recover a signed implicit functiofCSA13. timing restrictions make an online reconstruction approach

Innovations in acquisition. As 3D acquisition methods con-  indispensable. In particular, we foresee a need to extend the
tinue to increase in variety and popularity, surface reconstruc- surveyed priors into the on]me setting, in order to support
tion will continue to be an important component in acquiring  Such challenging problems in surface reconstruction.
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