N

N

Analysis of Self-* and P2P Systems using Refinement
(Full Report)

Manamiary Bruno Andriamiarina, Dominique Méry, Neeraj Kumar Singh

» To cite this version:

Manamiary Bruno Andriamiarina, Dominique Méry, Neeraj Kumar Singh. Analysis of Self-* and P2P
Systems using Refinement (Full Report). [Research Report] 2014. hal-01018162

HAL Id: hal-01018162
https://inria.hal.science/hal-01018162
Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01018162
https://hal.archives-ouvertes.fr

Analysis of Self-x and P2P Systems using Refinement *

Manamiary Bruno Andriamiarina', Dominique Méry!, and Neeraj Kumar Singh?

Université de Lorraine, LORIA, BP 239, 54506 Vandceuvre-les-Nancy, France
{Manamiary.Andriamiarina, Dominique.Mery}@loria.fr
McMaster Centre for Software Certification, McMaster University, Hamilton, Ontario, Canada
singhnlO@mcmaster.ca, Neerajkumar.Singh@loria. fr

Abstract. Distributed systems and applications require efficient and effective
techniques (e.g. self-(re)configuration, self-healing, etc.) for ensuring safety, se-
curity and more generally dependability properties, as well as convergence. The
complexity of these systems is increased by features like dynamic (changing)
topology, interconnection of heterogeneous components or failures detection. This
paper presents a methodology for verifying protocols and satisfying safety and
convergence requirements of the distributed self-x systems. The self-x systems are
based on the idea of managing complex infrastructures, software, and distributed
systems, with or without minimal user interactions. Correct-by-construction and
service-as-event paradigms are used for formalizing the system requirements,
where the formalization process is based on incremental refinement in EVENT
B. Moreover, this paper describes a fully mechanized proof of correctness of
the self-x systems along with an interesting case study related to the P2P-based
self-healing protocol.

Keywords: Distributed systems, self-«, self-healing, self-stabilization, P2P, EVENT
B, liveness, service-as-event

1 Introduction

Nowadays, our daily lives are affected by various advanced technologies including
computers, chips, and smart-phones. These technologies are integrated into distributed
systems with different types of complexities like mobility, heterogeneity, security, fault-
tolerance, and dependability. Distributed systems are largely used in many applications
and provide required functionalities from the interactions between a large collection
of possibly heterogeneous and mobile components (nodes and/or agents). Within the
domain of distributed computing, there is an increasing interest in the self-stabilizing
systems, which are able to autonomically recover from occurring the faults [7]. The
autonomous property of the self-x systems tends to take a growing importance in the
analysis and development of distributed systems. It is an imperative that we need to get
a better understanding of the self-x systems (emergent behaviours, interactions between
agents, etc.), if we want to reason about their security, correctness and trustworthiness.

* The current report is the companion paper of the paper [4] accepted for publication in the
volume 8477 of the serie Lecture Notes in Computer Science. The Event-B models are available
at the link http://eb2all.loria.fr. Processed on July 3, 2014.

Fortunately, the formal methods community has been analysing a similar class of systems
for years, namely distributed algorithms.

In this study, we use the correct by construction approach [12] for modelling the
distributed self-x systems. Moreover, we also emphasize the use of the service-as-
event [3] paradigm, that identifies the phases of self-stabilization mechanism, which can

be simplify into more stable and simple coordinated steps.
We consider that a given system S (see in Fig.1) is char-

L . R
e;% fex acterized by a set of events (procedures modelling either
Legal e Tllegal phases or basic actions according to an abstraction level)
States States that modifies the state of the system. Legal states (correct

4 states) satisfying a safety property P are defined by a sub-
v?) ST |set CL of possible events of the system §. The events of
reCvV

C L represent the possible big or small computation steps

Reéovery ;)
States of the system § and introduce the notion of closure [5],
A where any computation starting from a legal state satis-
reST

fying the property P leads to another legal state that also
satisfies the property P. The occurrence of a fault f leads
the system .S into an illegal state (incorrect state), which

violates the property P. The fault f is defined as an
event f that belongs to a subset F of events. When considering the hypothesis of having

a self-x system, we assume that there are procedures (protocols or actions) which imple-
ment the identification of current illegal states and recovery for legal states. There is a
subset ST of events modelling recovery phases for demonstrating the stabilization pro-
cess. The system recovers using a finite number of stabilization steps (r). The process is
modelled as an event r of CV(C S7T) eventually leading to the legal states (convergence
property) from recovery states. During the recovery phase, a fault may occur (see dotted
transitions in Fig.1).

The system S can be represented by a set of events M = CLU ST U F, where the
model M contains a set (CL) of events for representing the computation steps of the
system §. When a fault occurs, a set (57) of events simulates the stabilization process
that is performed by .S. The formal representation expresses a closed model but we do
not know what is the complete set of events modelling faults/failures. We characterise
the fault model in a very abstract way and it may be possible to develop the fault model
according to the assumptions on the environment, but we do not consider this in the
current study. We restrict our study by making explicit the events of §7 modelling the
stabilization of the system from illegal/failed states. We ensure that the convergence is
always possible: a subset CV of ST eventually leads S into the legal states satisfying
the invariant P of the system. Whenever the system § is in a legal state, we consider
that the events of ST are either not operative or simply preserve the invariant P of the
system.

In the previous paragraph, we name procedures (protocols or actions) by the term
events. An event is modelling a process which is defined by its pre and post specifications
or a state transformation belonging to a larger process. It means that we need to play
with abstraction levels to develop a self-x system. For instance, one can state that an
event called stabilise is ensuring the functionality of getting a stable system (the what)
without giving details of the detailed process itself (the how). Hence, the notion of

Fig. 1: Diagram for a Self-
Stabilizing System S

event is identified to an abstraction level and can be either modelling a global process
(the what) or a local update of a variable (the how). We formalise the system .S using
the EVENT B modelling language [1], dealing with events and invariant properties
including convergence properties by using a temporal framework. The service-as-
event paradigm [3] helps to express this concretisation process: the procedures (1)
leading from the illegal states to the recovery states, and (2) leading from the recovery
states to the legal states are stated by (abstract) events, during the first stages of the
EVENT B development. The next step is to unfold each (abstract procedure) event, by
refinement, to a set of coordinated and concrete events, which form the body of the
procedure.

This paper is organised as follows. Section 2 presents related works. Section 3
introduces the EVENT B modelling framework including service-as-event paradigm and
a formal definition of self-x systems. Section 4 presents the formal verification approach
and illustrates the proposed methodology with the study of the self-healing P2P-based
protocol [14]. Section 5 discusses on approaches for studying temporal properties for
EVENT B models. Finally, Section 6 concludes the paper along with future work.

2 Related Works on Formal Modelling for Self-x Systems

Systems usually run in intricate environments, with frequent and unexpected changes.
This feature increases interest towards autonomous and self-x architectures, as they
are able to adapt themselves according to the changes that may occur in the systems
(faults, etc.) or in the environment. Applying formal methods to self-x systems originates
from the needs of understanding how these systems behave and how they meet their
specifications. A self-x system relies on emergent behaviours, resulting from interactions
between components of the system [21].

Traditionally, the correctness of self-x and autonomous systems is validated through
the simulation and testing [20, 22]. However, simulation and testing are not sufficient
to cover the whole set of possible states of a system [2]. Therefore, formal methods
appear as a promising land for validating self-x systems, as long as formal techniques can
assert the correctness of these systems and certify target properties, like trustworthiness,
security, efficiency, etc. under the rigorous mathematical reasoning [6, 8,24].

Smith et al. [21] have applied the stepwise refinement using Z to study a case of self-
reconfiguration, where a set of autonomous robotic agents is able to assemble and to reach
a global shape. They do not validate models using an adequate tool (e.g. proof checker,
proof assistant, etc.) and models are not localized. Calinescu et al. [6] have used Alloy to
demonstrate the correctness of the autonomic computing policies (ACP). However, Alloy
does not provide a mechanism for expressing the correct-by-construction paradigm.
Meéry et al. [2] have also investigated a self-reconfiguring system (Network-on-Chip:
adaptative XY routing) using the EVENT B framework and the correct-by-construction
approach.

State exploration approaches such as model-checking are also used to study self-x
systems. Model-checkers like SPIN, PRISM, SMV, UPPAAL are used for properties
specification and getting evidences that properties, such as flexibility, robustness of the
self-x systems hold [6, 8, 10, 24]. Moreover, these tools allow users to obtain the metrics

for the self-x systems, such as performance, and quantitative evaluations [6, 8, 10,24].
Model-checking and state-space evaluation can be used during the conception of self-x
systems, but they are especially used for runtime verification [10,24]. The limit of model
checking is clearly the size of models.

Other formal techniques like static analysis and design by contract are also applied
for the formal specification of self-x systems [23]. These techniques are mainly used
for runtime verification. Graphical approaches, such as Petri Nets, are used to model
the temporal aspects and communication flows between different components of a
self-* system, and helped to study the cases like self-reconfiguration (replacement of a
component, removal of a link between two components, etc.) [24].

Finally, graphical notations (e.g. UML) help to represent self-x systems with under-
standable figures [25]. Their general purpose is to provide users an insight of a self-x
system by describing its architecture, the relationships between agents of the system
(OperA methodology [17], ADELFE [20]) or by presenting the system as a composi-
tion of extendable/instantiable primitives (FORMS [25]). These notations are generally
graphical front-ends for the more complex representations of self-x systems, where the
source code [20], and formal models [25] can be generated from the notations.

Our proposed methodology integrates the EVENT B method and elements of tempo-
ral logics. Using the refinement technique, we gradually build models of self-x systems
in the EVENT B framework. Moreover, we use the service-as-event paradigm to describe
the stabilization and convergence from illegal states to legal ones. Self-x systems require
the expression of traces properties like liveness properties and we borrow a minimal set
of inference rules for deriving liveness properties. The concept of refinement diagrams
intends to capture the intuition of the designer for deriving progressively the target
self-*x system. The RODIN platform provides a laboratory for checking, animating and
validating the formal models.

3 Modelling Framework

3.1 EVENTB

We advocate the use of correct-by-construction paradigm for modelling the self-x
systems. The key concept is the incremental refinement (simulation) which provides link
between discrete models by preserving properties. The EVENT B modelling language
designed by Abrial [1] is based on set theory and the refinement of models: an abstract
model expressing the requirements of a given system can be verified and validated
easily; a concrete model corresponding to the actual system is constructed progressively
by refining the abstraction. EVENT B is supported by a complete toolset RODIN [19]
providing features like refinement, proof obligations generation, proof assistants and
model-checking.

Modelling Actions over States The EVENT B modelling language can express safety
properties, which are either invariants or theorems in a model corresponding to the
system. Two main structures are available in EVENT B : (1) Contexts express static

informations about the model (for instance, graph properties as connectivity); (2) Ma-
chines express dynamic informations about the model, safety properties, and events. An
EVENT B model is defined by a context and a machine. A machine organises events (or
actions) modifying state variables and uses static informations defined in a context. An
EVENT B model is characterised by a (finite) list x of state variables possibly modified
by a (finite) list of events. An invariant I(x) states properties that must always be satisfied
by the variables x and maintained by the activation of the events. The general form of an
event e is as follows: ANY 1+ WHERE G(t,x) THEN x: |P(z,x,x") END and corresponds
to the transformation of the state of the variable x, which is described by a before-after
predicate BA(e)(x,x’): the predicate is semantically equivalent to 3¢ - G(,x) A P(t,x,x") and
expresses the relationship linking the values of the state variables before (x) and just
after (x') the execution of the event e. Proof obligations are produced by RODIN, from
events: INV1 and INV2 state that an invariant condition /(x) is preserved; their general
form follows immediately from the definition of the before-after predicate BA(e)(x,x')
of each event ¢; FIS expresses the feasibility of an event ¢, with respect to the invariant
1. By proving feasibility, we achieve that BA(¢)(x,z) provides a next state whenever the

guard grd(e)(x) holds: the guard is the enabling condition of the event.
INVA INV2 FIS
Init (x) = 1(x)|1(x) ABA(e) (x,x) = I(x)[I(x) A grd(e)(x) = T z- BA(e) (x,2)

Model Refinement The refinement of models extends the structures described previ-
ously, and relates an abstract model and a concrete model. This feature allows us to
develop EVENT B models of the self-x approach gradually and validate each decision
step using the proof tool. The refinement relationship is expressed as follows: a model
AM is refined by a model CM, when CM simulates AM (i.e. when a concrete event ce
occurs in CM, there must be a corresponding enabling abstract event ae in AM). The final
concrete model is closer to the behaviour of a real system that observes events using real
source code. The relationships between contexts, machines and events are illustrated by
the following diagrams (Fig. 2) , which consider refinements of events and machines.

I(x) x 2 v I(x') 1(x) am S e Thi
REF INEST EXT [:'NDST
~ SEES
J(x,y) y ce y/ ./(x',y’) J(x,y) cM ——= cC This

Fig. 2: Machines and Contexts relationships

The refinement of a formal model allows us to enrich the model via a step-by-step
approach and is the foundation of our correct-by-construction approach [12]. Refinement
provides a way to strengthen invariants and to add details to a model. It is also used
to transform an abstract model to a more concrete version by modifying the state
description. This is done by extending the list of state variables (possibly suppressing
some of them), by refining each abstract event to a set of possible concrete versions,
and by adding new events. We suppose (see Fig. 2) that an abstract model AM with
variables x and an invariant /(x) is refined by a concrete model CM with variables y. The
abstract state variables, x, and the concrete ones, y, are linked together by means of a,
so-called, gluing invariant J(x,y). Event ae is in abstract model AM and event ce is in

concrete model CM. Event ce refines event ae. BA(ae)(x,x") and BA(ce)(y,y') are predicates
of events ae and ce respectively; we have to discharge the following proof obligation:
I(x) A J(x,y) A BA(ce)(y,y') = 3’ - (BA(ae)(x,x') A J(X,y))

Due to limitations on the number of pages, we have briefly introduced the EVENT B
modelling language and the structures proposed for organising the formal development.
However, more details are available in [1] and on the Internet'. In fact, the refinement-
based development of EVENT B requires a very careful derivation process, integrating
possible tough interactive proofs. For assisting the development of the self-x systems, we
use the service description and decomposition that is provided by the service-as-event [3]
paradigm (derived from the call-as-event approach [15]).

3.2 The Service-as-Event Paradigm

This section introduces the refinement diagrams [3,15] and presents the service-as-event
paradigm. A brief overview on the usage of these formalisms for modelling the self-x
systems is given.

Objectives The service-as-event paradigm [3, 15] is a semantical extension of EVENT
B and introduces a way to deal with liveness properties and traces, for modelling the
self-x systems.

A Definition of Self-x Mechanism We characterize a self-stabilizing system .S (more
generally a self-x system) by its ability to recover autonomously from an illegal (faulty)
state (violating the invariant P of the system) to a legal (correct) state statisfying the
invariant property P of system .S. Temporal logic [3, 11, 15, 18] can be used to describe
such mechanism, using the liveness properties: we represent the stabilization (especially
the convergence) property as a service where a system S, in an illegal state (characterized
by —P), reaches eventually a legal state (satisfying P). This service is expressed, with
the leads to (~~) operator, as follows: (—P) ~~ P. This leads to property (equivalently
((—P) = oP)) states that every illegal state (satisfying —P) will eventually (at some point
in the future) lead to a legal state (satisfying P).

We define a temporal framework for the EVENT B model M of the studied system
S by the following TLA specification: Spec(M): Init(y) AD[Next], AL, where Init(y) is
the predicate specifying initial states; Next = Je € E.BA(e)(y,y’) is an action formula
representing the next-state relation; and L is a conjunction of formulas WF;(e) : we
express a weak fairness assumption over each event e modelling a step of the recovery
process (we do not add any fairness on events leading to illegal states (faults)).

I'http://1fm.iti.kit.edu/download/EventB_Summary.pdf

Refinement Diagrams We express the self-x mechanism using EVENT B, together
with liveness properties under fairness assump-

F o tions. Refinement diagrams (see in Fig.3), intro-

% \ duced by Méry et al in [3, 15], allow to develop
EVENT B models and add control inside these

h e Ty models. They are also used for stating (proofs of)
Xl\\ / liveness properties (under fairness assumptions),

r and for supporting refinement. Therefore, these di-

P agrams are suitable for representing the models of

self-x systems. A refinement diagram D = PD(M)

Fig. 3: A Refinement Dlagra@ for amachine M is defined as follows:
PD(M) = (A,M,G,E), where A is a set of assertions, G a set of assertions for M called

conditions/guards of the form g(x), E is the set of events of M. The diagram PD(M) is a
labelled directed graph over A, with labels from G or E , satisfying the following rules:
(1) if an assertion R is related to another assertion S, by an unique non-dotted arrow
labelled e € E (where e does not model a fault), then the property R ~ S is satisfied; (2)
if R is related to Sy,...S,, then each arrow from R to S; is labelled by a guard g; € G.
The diagram D possesses proved properties:

If M satisfies P~ Q and Q ~ R, it satisfies P ~ R.

If M satisfies P ~~ Q and R ~» Q, it satisfies (PVR) ~> Q.

If 1 is invariant for M and if M satisfies PAI ~~ Q, then M satisfies P ~ Q.

If I is invariant for M and if M satisfies PAI = Q, then M satisfies P ~ Q.

If P - Q is a link of D for the machine M, then M satisfies P ~ Q.

If P and Q are two nodes of D such that there is a path in D from P to Q and any path
from P can be extended in a path containing Q, then M satisfies P ~ Q.

7. If 1, U, V, P, Q are assertions such that / is the invariant of M; PAI = U;V = Q; and
there is a path from U to V and each path from U leads to V; then M satisfies P ~ Q.

AR e e

These refinement diagrams are attached to EVENT B models and are used for deriv-
ing liveness properties. As an example, the diagram in Fig.3 represents a model of a
self-stabilizing system: the diagram relates a pair of assertions (—P, P), where —P is a
precondition stating that the studied system is in an illegal state (P does not hold); and
P is the post-condition, describing the desired legal state. We observe that the leads to
property (—P) ~~ P, demonstrating the stabilization and convergence, is satisfied by the
diagram and the model linked to it.

Applying the Service-as-Event Paradigm [3] We apply the service-as-event paradigm,
for formalizing the self-x systems.

1. Describing stabilization and convergence as a service. We express the stabiliza-
tion and convergence properties of a self-x system .S, where service is stated by the
following property: (—P) ~» P. An abstract event (e) is used for describing the ser-
vice/procedure represented by (—P) ~» P: (—P) < P; where (—P) is a pre-condition
for triggering event (e); and P is a post-condition defined by the actions of event (e),
which should be satisfied by the "execution” of event.

2. Decomposing stabilization and convergence into simple steps. We decompose
the abstract service stated by (—P) ~ P into simple sub-procedures/steps, using the

inference rules [11] related to the leads to properties:
" transy —_ transs
Ro ~ R1 Ri— P ;
—————— trans) transy
(=P}~ Ro Ro < P :

(=P)~P

transi

Fig. 4: Proof Tree - Usage of Inference Rules
This process is similar to refinement (see Fig.5), since we add, at each level of the
proof tree, a new state Ry (0 < k < n) leading from (—P) to P. The initial property
(—=P) ~» P is decomposed, until the identification of the stabilization steps is satis-
factory. The stabilization phase is expressed by the property

(:E,S)TRCE)“E" (=P) ~ Ry ARy ~ R A ... A

R,_1 ~» R, AR, ~~ P, which states

FIRST REFINEMENT the convergence leading to the de-

(=P) ~ Ro;Ro v+ P sired legal states. Each level of the
— REFINEMENT proof tree corresponds to a level of

(=P) ~ Ro;Ro ~ R1;R; ~ P refinement (see Fig.5) in the

formal development. Each leads to
Fig. 5: Decomposition and Refinement property demonstrates a service of
stabilization, which is defined by an event in the model.

4 Stepwise Design of the Self-Healing Approach

4.1 Introduction to the Self-Healing P2P-Based Approach

The development of self-healing P2P-based approach is proposed by Marquezan et
al. [14], where system reliability is the main concern. The self-healing process ensures
the maintenance of proper functioning of the system services. If a service fails then it
switches from a legal state to a faulty state. The self-healing/recovery procedure ensures
that the service switches back to the legal state. The services run in a distributed (P2P)
system composed of agents/peers executing instances of tasks. The services and peers
notions are introduced as: (1) Management Services: Tasks/Services are executed by
the peers; (2) Instances of Management Services: Peers executing a certain type of
management service; (3) Management Peer Group (MPG): Instances of the same
management service. The self-healing property can be described as follows: (1) Self-
identification triggers to detect the failure of service. This mechanism identifies running
or failed instances of a management service. (2) Self-activation is started, whenever
a management service will be detected fail by the self-identification. Self-activation
evaluates if the management service needs a recovery, based on the criticality of the
failure: if there are still enough instances for running the service, the recovery procedure
is not started; otherwise, the self-configuration mechanism is triggered for repairing the
service. (3) Self-configuration is activated if the failure of service is critical: the role of
this mechanism is to instantiate the failed management service, and to return the service
into a legal state.

4.2 The Formal Design

Figure 6 depicts the formal design of self-healing P2P-based approach. The model
MO abstracts the self-healing approach. The refinements M1, M2, M3 introduce step-by-
step the self-detection, self-activation and self-configuration phases, respectively. The
remaining refinements, from M4 to M20, are used for localisation of the system: each
step of the algorithm is made local to a node. The last refinement M21 presents a local

model that describes a set of procedures for recovering process of P2P system.
Abstracting the Self-Healing Approach (M0) This section

il presents an abstraction of the self-healing procedure for a
AREFINES failed service. Each service (s) is described by two states: RUN
e (legal/running state) and FAIL (illegal/faulty state). A variable
AREFINES serviceState is defined as s — st € serviceState, where s de-
e notes a service and st denotes a possible state. A property P
AREFINES expresses that a service (s) is in a legal running state that is

Sl cors o formalised as P = (s— RUN € serviceState). An event FAIL-
AREFINES URE models a faulty behaviour, where service (s) enters into

s a faulty state (FAIL), satisfying —P. The self-healing of man-
 om—— agement service (s) is expressed as (—P) ~» P. The recovery
o2 procedure is stated by an event HEAL ((—P) HEAL, P), where

service (s) recovers from an illegal faulty state (FAIL) to a le-
gal running state (RUN). The refinement diagram' (see Fig.7)

Fig. 6: Architecture ;
and events sum up the abstraction of a recovery procedure.

EVENT HEAL
EVENT FAILURE ANY
FAILURE ANY s
RUN FAIL s WHERE
v ~—— WHERE grdl :s € SERVICES
HEAL grdl :s € SERVICES grd2 : s FAIL € serviceState

THEN THEN

3 . : actl : serviceState := actl : serviceState :=

Fig.7: Abstraction ({s} g serviceState) U {s — FAIL} (serviceState\ {s — FAIL})
U{s — RUN}

This macro/abstract view of the self-healing is detailed by refinement?, using intermedi-
ate steps. A set of new variables is introduced to capture the system requirements. The
variables are denoted by NAME_{Refinement Level}.

Introducing the Self-Detection (M1) The variable serviceState is replaced, by refine-
ment, with a new variable serviceState_1, since new states are introduced. The states
RUN, FAIL are refined into RUN_1, FAIL_1, and a new state (FL_DT _1) is defined. A
service (s) can suspect and identify a failure state (FAIL_1) before triggering the recov-
ery (HEAL). We introduce a property Rg = (s+— FL_DT_1 € serviceState_1) and a new
event FAIL_DETECT in this self-detection mechanism. Let P and =P be redefined as fol-
lows: P = (s+— RUN_1 € serviceState_1) and -P = (s — FAIL_1 € serviceState_1).

! The assertions (s — st € serviceState), describing the state (st) of a service (s), are shorten into
(st), in the nodes of the refinement diagrams, for practical purposes.
2 ®: to add elements to a model, ©: to remove elements from a model

The intermediate steps of self-detection are introduced according to the refinement dia-
gram (see Fig.8) and proof tree.

FAILURE
RUN.1 T T RAILLI (=P)~Ro Ro ~ P trans
\ > (-P) =P
FAIL_DETECT
HEAL FL DT 1 The event FAIL_DETECT is introduced to express
- the self-detection: the failure state (FAIL_1) of a
Fig. 8: Self-Detection service (s) is detected (state FL_DT _1).

The property (—P) ~~ Rg is expressed by the event FAIL_DETECT, where the failure
(FAIL_1) of service (s) is identified (FL_DT_1). Ry ~~ P is defined by the event HEAL,
where the service (s) is restored to a legal running state (RUN_1) after failure detection.
The same method is applied to identify all the phases of self-healing algorithm. Due to
limited space, we focus on the interesting parts of models and liveness properties. The
complete formal development of models can be downloaded from web?.

EVENT FAILURE EVENT FAIL_DETECT EVENT HEAL REFINES HEAL

REFINES FAILURE ANY

T K WHERE

WHERE WHERE Sgrd2 ...

@ s+— RUN_I1 € serviceState_1 grdl s € SERVICES @ s+ FL_DT_1 € serviceState_1

THEN grd2 : s+ FAIL_] € serviceState_l THEN

Sactl @ ... THEN Sactl ...

@ serviceState_1 := actl : serviceState_1 := @ serviceState_1 :=

(serviceState_1\ {s — RUN_1}) (serviceState_1\ {s — FAIL_1}) (serviceState_1\{s+— FL_DT_1})
U{s— FAIL_1} U{s FL_DT_1} U{s— RUN_1}

Introducing the Self-Activation (M2) and Self-Configuration (M3) The self-activation
is introduced in this refinement M2 (see Fig. 9), where a failure of a service (s) is evaluated
in terms of critical or non-critical using a new state F'L_ACT_2 and an event FAIL_ACTIV.
The self-configuration step is introduced in the next refinement M3 (see Fig.10), which
expresses that if the failure of service (s) is critical, then the self-configuration procedure
for a service (s) will be triggered (state FL_CONF _3), otherwise, the failure will be
ignored (state FL_IGN_3).

FAILURE FAILURE
P .
RUN_2 FAIL_2 RUN_3 FAIL 3
\ lFAILiDETECT HEAL< \ lFAILiDETECT
IS_OK IS_OK
FL_DT_2 FL_CONF_3VFL_IGN_3 FL_DT_3
HEAL l,FAIL?ACTIV \N\ J/FAILACTW
FAIL_CF_IG
FL_ACT_2 FL_ACT_3
Fig. 9: Self-Activation Fig. 10: Self-Configuration

The Global Behaviour (M4) The developed models are refined and decomposed into
several steps (see Fig.11) [14]. These steps are: (1) Self-Detection, (2) Self-Activation,
and (3) Self-Configuration. Self-Detection phase is used to detect any failure in the au-
tonomous system using two events FAIL_DETECT and IS_OK. The event FAIL_DETECT
models the failure detection; and the event IS_OK states that if a detected failure of
a service (s) is a false alarm, then the service (s) returns to a legal state (RUN_4).
Self-Activation process is used to evaluate when actual failures are identified, using

3 http://eb2all.loria.fr/htnl_files/files/selfhealing/self-healing.zip

10

the following events: FAIL_ACTIV, FAIL_IGN, IGNORE, and FAIL_CONF. The events
FAIL_IGN and IGNORE are used to ignore the failure of service (s) when failure is not
in critical state (FL_IGN_4). The event FAIL_CONF is used to evaluate the failure of
service (s) when failure is critical (FL_CONF _4). The last phase Self-Configuration
presents the healing procedure of a failed service using an event REDEPLOY.

From model M5 to M20, we localise the events (we switch from a service point of

view to the instances/peers point of view) and detail the macro (global) steps by
FAILURE adding new events, variables,
RON4ZTTT T T rAIL4 and constraints. The refine-
\ FaiLDETecT ments M5, M6, M7 introduce the
IGNORE 150K FLDT 4 running (run_peers(s)),faulty
HEAL FAIL_ACTIV (fail_peers[{s}]), suspicious
e (susp_.peers(s)) and qeployed
RAILIGN peers/instances (dep_inst[{s}])
FAIL_CONF . .
for a service (s). A function
DPL_4 <——————— FL_CONF_4
REDEPLOY (min_inst) associates each service
(s) with the minimal number of

Fig. 11: Self-Healing steps instances that is required for

running service (s), and helps to detail the self-activation phase: if the number of running
instances of service (s) is below than minimum, then the failure is critical. The models
M8, M9, M10 detail the self-detection and self-configuration phases to introduce the
token owners for the services. Models from M11 to M20 localise gradually the events (to
switch from a service point of view to the instances/peers point of view). The detailed
formal development of various steps from M5 to M20 are given in the archive 3. Due to
limited space, in the following section, we present only the local model M21.

The Local Model (M21) This model details locally the self-healing procedure of a
service (s). The peers instantiating management service (s) are introduced, as well as
the notion of foken owner. The token owner is a peer instance of service (s) that is
marked as a foken owner for the Management Peer Group (MPG). It can perform the
self-healing procedure using self-detection, self-activation, and self-configuration steps.
(1) Self-Detection introduces an event SUSPECT _INST that states that the ftoken owner
for service (s) is able to suspect a set (susp) of unavailable peers instances of service (s).
Other events RECONTACT_INST_OK and RECONTACT_INST_KO are used to specify
the successful recontact, and failed recontact, respectively, of the unavailable instances
for ensuring the failed states. Moreover, the token owner is able to monitor the status of
service (s) using two events FAIL_DETECT, and IS_OK. If there are unavailable instances
after the recontacting procedure, the token owner informs the safe members of MPG of
failed instances using the event FAIL_DETECT, otherwise, the foken owner indicates that
service is running properly. (2) Self-Activation introduces an event FAIL_ACTIV that
states that if there are failed instances of service (s), then the token owner evaluates if the
failure is critical. Another event FAIL_IGNORE specifies that the failure is not critical.
An event IGNORE can ignore the failure if several instances (more than minimum)
are running correctly. If the number of instances for the running service (s) will be
less than the minimum required services, then the failure will be declared critical, and
the self-healing process will be triggered using an event FAIL_CONFIGURE. (3) Self-

11

Configuration introduces three events REDEPLOY_INSTC, REDEPLOY_INSTS and
REDEPLOQY that specify that if the failure of service (s) is critical, then new instances
of running service (s) can be deployed until to reach the minimal number of instances,
and after the event HEAL can be triggered corresponding to the convergence of the
self-healing process.

It is noticeable that the architectural decomposition of the self-healing process is
emphasized in this model, by the events related to the algorithm. There is also a set of
events describing actions related to the environment. MAKE_PEER_UNAVAIL: a set of

MACHINE 21 ...

EVENT SUSPECT INST peers (prs) becomes unavailable (can not be
A contacted); MAKE_PEER_AVAIL: a formerly
R € SERVICES unavailable instance (p) becomes available;

rd2 : susp C PEERS . . .
i’;} : \'u\'ﬁ:_run(,ir;s!(trlkml,n(W)ner(\'))>—>;\3) Nunav_peers UNFA”__PEER a failed instance re-enters a
i 1 suspc_inst(token_owner(s) — s) = .
GrdS st satelioken owner(s) s 5) — RUN_4 legal running state.
G susp 72 This model M21 describes locally the
EI\CII]L)” : suspe_inst(token_owner(s) ++ s) := susp Self'Heallng P2P'Based Approach, Where

EVENT FAILURE

EVENT RECONTAGT_INST_OK ... we have formulated hypotheses for ensuring

EVENT RECONTACT_INST_KO

EVENT FAIL_DETECT ... the correct functioning of the self-healing

EVENTIS_OK ...

EVENT FAIL_ACTIV ... process: (1) Event MAKE_PEER_AVAIL: If

EVENT FAIL_IGNORE

EVENT IGNORE ... the token owner of a service (s) becomes un-

EVENT FAIL_CONFIGURE

EVENT REDEPLOY_INSTC ... available,at least one peer, with the same

EVENT REDEPLOY_INSTS

EVENT REDEPLOY ... characteristics as the disabled token owner

EVENT HEAL

EVENT MAKE_PEER_UNAVAL ... (state, local informations about running,

EVENT UNFAIL_PEER

EVENT MAKE_PEER AVAIL ... failed peers, etc.) can become the new token

owner of service (s); (2) Event REDEPLOY_INSTC: There is always a sufficient number
of available peers that can be deployed to reach the legal running state of a service (s).
In a nutshell, we say that our methodology allows users to understand the self-x mech-
anisms and to gain insight into their architectures (components, coordination, etc.); and
gives evidences of the correctness of self-x systems under some assumptions/hypotheses.

5 Analysis of Temporal Properties for Event-B Models

Leuschel et al. [13] developed a tool ProB for animating, model-checking, and verifying
the consistency of Event-B models. ProB provides two ways for analysing Event-B
models : constraint-based checking and temporal model-checking. We focus on temporal
model-checking, since we are interested in liveness properties. Temporal model-checking
[13] allows ProB to detect problems with a model (invariants violation, deadlocks, etc.)
and to verify if the model satisfies LTL properties: ProB explores the state space of
the model and tries to find a counter-example (i.e. a sequence of events) leading to the
violation of invariants or LTL properties.

A difference with TLC (model-checker for TLA™) is that ProB does not support
fairness [9], allowing unfair traces to be analysed during model-checking. Therefore, the
TLA™ framework is more suited to our work, since we are verifying liveness properties,
in Event-B models, under fairness assumptions.

12

6 Discussion, Conclusion and Future Work

We present a methodology based on liveness properties and refinement diagrams for
modelling the self-x systems using EVENT B. We characterize the self-x systems by
three modes (abstract states): 1) legal (correct) state, 2) illegal (faulty) state, and 3)
recovery state. We have proposed a generic pattern for deriving correct self-x systems
(see Fig.1). The service-as-event and call-as-event paradigms provide a way to express
the relationships between modes for ensuring required properties as convergence. The
correct-by-construction principle gives us the possibility to refine procedures from events
and to link modes. The key idea is to identify the modes (considered as abstract states)
and the required abstract steps to allow the navigation between modes, and then to
gradually enrich abstract models, using refinement to introduce the concrete states and
events. We have illustrated our methodology by the self-healing approach [14].

The complexity of the development is measured by the number of proof obligations
(PO) which are automatically/manually discharged (see Table 1). It should be noted that
a large majority (~ 70%) of the 1177 manual proofs is solved by simply running the
provers. The actual summary of proof obligations is given by Table 2. The manually
discharged POs (327) require analysis and skills: searching and adding premises, simpli-
fying the complex predicates, and even transforming goals are needed to discharge these
POs. Examples of difficult POs are related to proving the finiteness of Management Peer

Groups (MPG), during the redeployment operation of the self-configuration phase.
[Total[Auto [Quasi-Auto] Manual |

Model Total Auto Interactive l 1434[257117'9%[8501 59.3% [327[22‘8%]
CONTEXTS 30 [26(86.67%| 4 [13.33% Table 2: Synthesis of POs
MO 3 [3[100% | 0 | 0%
M1 21 |15|714%| 6 |28.6%| Furthermore, our refinement-based formal-
ﬁg ‘6‘2 309 8‘(‘)‘2% 678 llf)g;h ization allows us to produce final local
0 0
M4 142 116 [11.27%] 126 |88.75% models close to the source code. Our fu-
M5 46 | 17139.95%) 29 163.05%| ture works include the development of tech-
OTHER MACHINES| 1065 |141|12.44%)| 924 |87.56% . P . licati f
N1 3101 0% 13 Tioo%| niques for generating applications from
TOTAL 1434[257[17.9% [1177]82.1%] the resulting model extending tools like

Table 1: Summary of Proof Obligations EB2ALL [16]. Moreover, further case stud-

ies will help us to discover new patterns;

these patterns will be added to a catalogue of patterns that could be implemented in

the Rodin platform. Finally, another point would be to take into account dependability
properties in our methodology.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press, 2010.

2. M. B. Andriamiarina, H. Daoud, M. Belarbi, D. Méry, and C. Tanougast. Formal Verification
of Fault Tolerant NoC-based Architecture. In First International Workshop on Mathematics
and Computer Science (IWMCS2012), Tiaret, Algérie, Dec. 2012.

3. M. B. Andriamiarina, D. Méry, and N. K. Singh. Integrating proved state-based models
for constructing correct distributed algorithms. In E. B. Johnsen and L. Petre, editors, IFM,
volume 7940 of Lecture Notes in Computer Science, pages 268-284. Springer, 2013.

13

4.

10.

12.

15.

16.

17.

18.

19.

20.

21.

M. B. Andriamiarina, D. Méry, and N. K. Singh. Analysis of self-* and p2p systems using
refinement. In Y. A. Ameur and K.-D. Schewe, editors, ABZ, volume 8477 of Lecture Notes
in Computer Science, pages 117-123. Springer, 2014.

. A. Berns and S. Ghosh. Dissecting self-* properties. In Proceedings of the 2009 Third IEEE

International Conference on Self-Adaptive and Self-Organizing Systems, SASO °09, pages
10-19, Washington, DC, USA, 2009. IEEE Computer Society.

. R. Calinescu, S. Kikuchi, and M. Kwiatkowska. Formal methods for the development and

verification of autonomic it systems. In Formal and Practical Aspects of Autonomic Computing
and Networking: Specification, Development and Verification, IGI Global, pages 90—-104.
Cong-Vinh, P. (ed.), 2011.

. S. Dolev. Self-Stabilization. MIT Press, 2000.
. M. Giidemann, F. Ortmeier, and W. Reif. Safety and dependability analysis of self-adaptive

systems. In Proceedings of the Second International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, ISOLA ’06, pages 177-184, Washington,
DC, USA, 2006. IEEE Computer Society.

. D. Hansen and M. Leuschel. Translating B to TLA+ for validation with TLC: There and back

again. Technical Report STUPS/2013/xx, Institut fiir Informatik, Heinrich-Heine-Universitit
Diisseldorf, 2013.

M. U. Iftikhar and D. Weyns. A case study on formal verification of self-adaptive behaviors
in a decentralized system. In FOCLASA’12, pages 45-62, 2012.

. L. Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872-923,

1994.

G. T. Leavens, J.-R. Abrial, D. S. Batory, M. J. Butler, A. Coglio, K. Fisler, E. C. R. Hehner,
C. B. Jones, D. Miller, S. L. P. Jones, M. Sitaraman, D. R. Smith, and A. Stump. Roadmap
for enhanced languages and methods to aid verification. In S. Jarzabek, D. C. Schmidt, and
T. L. Veldhuizen, editors, GPCE, pages 221-236. ACM, 2006.

. M. Leuschel and M. Butler. ProB: A model checker for B. In A. Keijiro, S. Gnesi, and

M. Dino, editors, FME, volume 2805 of Lecture Notes in Computer Science, pages 855-874.
Springer-Verlag, 2003.

. C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network Management - Design

Principles and Case Studies. Springer Briefs in Computer Science. Springer, 2012.

D. Méry. Refinement-based guidelines for algorithmic systems. International Journal of
Software and Informatics, 3(2-3):197-239, June/September 2009.

D. Méry and N. K. Singh. Automatic code generation from event-b models. In Proceedings
of the Second Symposium on Information and Communication Technology, SolCT ’11, pages
179-188, New York, NY, USA, 2011. ACM.

L. Penserini, H. Aldewereld, F. Dignum, and V. Dignum. Adaptivity within an organizational
development framework. In Proceedings of the 2008 Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, SASO ’08, pages 477-478, Washington, DC,
USA, 2008. IEEE Computer Society.

I. S. W. B. Prasetya and S. D. Swierstra. Formal design of self-stabilizing programs: Theory
and examples, 2000.

Project RODIN. Rigorous open development environment for complex systems.
http://www.eventb.org/, 2004-2010.

M. Puviani, G. D. M. Serugendo, R. Frei, and G. Cabri. A method fragments approach to
methodologies for engineering self-organizing systems. ACM Trans. Auton. Adapt. Syst.,
7(3):33:1-33:25, Oct. 2012.

G. Smith and J. W. Sanders. Formal development of self-organising systems. In Proceedings
of the 6th International Conference on Autonomic and Trusted Computing, ATC °09, pages
90-104, Berlin, Heidelberg, 2009. Springer-Verlag.

14

22. J. Sudeikat, J.-P. Steghofer, H. Seebach, W. Reif, W. Renz, T. Preisler, and P. Salchow.
Design and simulation of a wave-like self-organization strategy for resource-flow systems. In
MALLOW’10, pages —1-1, 2010.

23. D. Tosi. Research perspectives in self-healing systems. Technical report, DISE LTA, 2004.

24. D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad. A survey of formal methods in
self-adaptive systems. In Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering, C3S2E 12, pages 67-79, New York, NY, USA, 2012.
ACM.

25. D. Weyns, S. Malek, and J. Andersson. Forms: Unifying reference model for formal specifi-
cation of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst., 7(1):8:1-8:61,
May 2012.

15

A Appendix : EVENT-B models

16

Coo

CONTEXT
Ccoo
SETS
SERVICES
STATES
CONSTANTS
RUN
FAIL
InitState
AXIOMS
axml: SERVICES # @ not theorem
axm2: STATES = {RUN, FAIL} not theorem
axm3: RUN # FAIL not theorem
axmé: InitState € SERVICES <« STATES not theorem
axm5: Vs - s € SERVICES = s » RUN € InitState not theorem
axmoé: V s, stl, st2 + s € SERVICES A stl € STATES A st2 € STATES A s b
stl € InitState A s b st2 € InitState = stl = st2 not theorem
END

Page 1

col

CONTEXT
col
EXTENDS
Coo
SETS
STATES 1
CONSTANTS
RUN 1
FAIL 1
FAIL DETECT 1
InitState 1
AXIOMS
axml: partition(STATES 1, {RUN 1},{FAIL 1},{FAIL DETECT 1}) not
theorem
axm2: InitState 1 € SERVICES < STATES 1 not theorem
axm3: V s - s € SERVICES = s » RUN_ 1 € InitState 1 not theorem
axm4d: Vs, stl, st2 - s € SERVICES A stl € STATES 1 A st2 € STATES 1 A
s » stl € InitState 1 A s » st2 € InitState 1 = stl = st2 not theorem
END

Page 1

Co2

CONTEXT
Co2
EXTENDS
col
SETS
STATES 2
CONSTANTS
RUN_2
FAIL 2
FAIL DETECT 2
FAIL ACTIV 2
InitState 2
AXIOMS
axml: partition(STATES 2, {RUN 2},{FAIL 2},{FAIL DETECT 2},
{FAIL ACTIV 2}) not theorem
axm2: InitState 2 € SERVICES « STATES 2 not theorem
axm3: V s - s € SERVICES = s » RUN 2 € InitState 2 not theorem
axm4d: Vs, stl, st2 - s € SERVICES A stl € STATES 2 A st2 € STATES 2 A
s » stl € InitState 2 A s » st2 € InitState 2 = stl = st2 not theorem
END

Page 1

co3

CONTEXT
co3
EXTENDS
Co2
SETS
STATES 3
CONSTANTS
RUN_3
FAIL 3
FAIL DETECT 3
FAIL ACTIV 3
FAIL CONFIG 3
FAIL IGN 3
InitState 3
AXIOMS
axml: partition(STATES 3, {RUN 3},{FAIL 3},{FAIL DETECT 3},
{FAIL ACTIV 3},{FAIL CONFIG 3},{FAIL IGN 3}) not theorem
axm2: InitState 3 € SERVICES « STATES 3 not theorem
axm3: V s - s € SERVICES = s » RUN 3 € InitState 3 not theorem
axm4: Vs, stl, st2 - s € SERVICES A stl € STATES 3 A st2 € STATES 3 A
s b stl € InitState 3 A s » st2 € InitState 3 = stl = st2 not theorem
END

Page 1

co4

CONTEXT
co4
EXTENDS
co3
SETS
STATES 4
CONSTANTS
RUN 4
FAIL 4
FAIL DETECT 4
FAIL ACTIV 4
FAIL CONFIG 4
FAIL IGN 4
DPL 4
InitState 4
AXIOMS
axml: partition(STATES 4, {RUN 4},{FAIL 4},{FAIL DETECT 4},
{FAIL ACTIV 4},{FAIL CONFIG 4},{FAIL IGN 4},{DPL 4}) not theorem
axm2: InitState 4 € SERVICES « STATES 4 not theorem
axm3: V s - s € SERVICES = s » RUN 4 € InitState 4 not theorem
axm4: V s, stl, st2 - s € SERVICES A stl € STATES 4 A st2 € STATES 4 A
s b stl € InitState 4 A s » st2 € InitState 4 = stl = st2 not theorem
END

Page 1

CONTEXT

Co5

EXTENDS

Cco4

CONSTANTS

min inst
init ins

AXIOMS

END

axml:
axm2:
axm3:
axm4:
axm5:

t

min inst € SERVICES — N1 not theorem

Co5

init inst € SERVICES — N1 not theorem
s € SERVICES = min inst(s) = 2 not theorem

V s -
VYV s -
VYV s -

s € SERVICES = init inst(s)
s € SERVICES = init inst(s)

Page 1

=
=

min inst(s) not theorem
2 theorem

Coo

CONTEXT
Co6 >
EXTENDS
Co5
SETS
PEERS >Set of PEERS
CONSTANTS
InitSrvcPeers >Initial set of peers / instances per service
AXIOMS
axml: InitSrvcPeers € SERVICES — P1(PEERS) not theorem >each service
is provided by a non empty set of peers/instances
axm2: V s - s € SERVICES = finite(InitSrvcPeers(s)) not theorem >each
service is provided by a finite set of peers/instances
axm3: V s - s € SERVICES = card(InitSrvcPeers(s)) = init inst(s) not
theorem >each service s is provided by peers/instances, whose number is
init inst(s)
axmé4: VYV sl1, s2 + sl c¢c PEERS A s2 c PEERS A sl # @ A s2 # o A finite(sl)
A finite(s2) A sl € s2 = card(sl) = card(s2)-1 not theorem »
axm5: V sl - sl c PEERS A sl # @ A finite(sl) = card(sl) > 0 theorem »
axmé6: VY s1l, s2 + sl ¢ PEERS A s2 c PEERS A finite(sl) A finite(s2) A sl
€ s2 = card(s2) - card(sl) = card(s2\sl) not theorem >
END

Page 1

co7

CONTEXT
co7
EXTENDS
Co6
CONSTANTS
deplo inst
AXIOMS
axml: V set, sl, s2 - set ¢ SERVICESxPEERS A sl € SERVICES A s2 €
SERVICES A sl = s2 = ({sl} <« set)[{s2}] = @ theorem
axm2: V set, sl, s2 + set ¢ SERVICESxPEERS A sl € SERVICES A s2 €
SERVICES A sl # s2 = ({sl} <« set)[{s2}] set[{s2}] theorem
axm3: V set, sl, s2, p - set ¢ SERVICESxPEERS A sl € SERVICES A s2 €
SERVICES A p € PEERS A s1 = s2 = (set u {sl1 » p})[{s2}] = set[{s2}]u{p} theorem

N

axmé: V set, sl, s2, p - set SERVICESXPEERS A s1 € SERVICES A s2 €
SERVICES A p € PEERS A sl # s2 = (set u {sl » p})[{s2}] = set[{s2}] theorem
axm5: deplo inst € SERVICES — N1 not theorem
END

Page 1

co8

CONTEXT
Cco8
EXTENDS
co7
CONSTANTS
init tok
InitStatus
InitSuspPeers
InitFail
AXIOMS
axml: init tok € SERVICES — PEERS not theorem
axm2: V s - s € SERVICES = init tok(s) € InitSrvcPeers(s) not theorem

axm3: V al, a2 - al € PEERS < (SERVICESxPEERS) A a2 € PEERS «
(SERVICESxXPEERS) A finite(al) A a2 c al = finite(a2) not theorem

axmé: InitStatus € (PEERS x SERVICES) -~ STATES 4 not theorem

axm5: Vs, p- s eSERVICES A p € PEERS A p = init tok(s) = (p » s) »
RUN 4 € InitStatus not theorem

axmé : Vs, p, stt + s € SERVICES A p € PEERS A stt € STATES 4 A (p »
s) » stt € InitStatus = p = init tok(s) A stt = RUN_4 not theorem

axm7: InitSuspPeers € (PEERSxSERVICES) -+~ P(PEERS) not theorem

axm8: Vp, s, sp-p € PEERS A s € SERVICES A sp ¢ PEERS A (p » s) b
sp € InitSuspPeers = p = init tok(s) A sp = @ not theorem

axm9: V p, s - pe€PEERS A s € SERVICES A p = init tok(s) = (p» s) »
o € InitSuspPeers not theorem

axmlO: InitFail € SERVICES — P(PEERS) not theorem

axmll: V s - s € SERVICES = InitFail(s) = & not theorem

END

Page 1

Co9

CONTEXT
Cco9
EXTENDS
Co8
CONSTANTS
InitStateSrv
InitSuspPrs
InitRunPeers
AXIOMS
axml: InitStateSrv € PEERS x SERVICES -+ STATES 4 not theorem
axm2: Vs, p-pe€ PEERS A s € SERVICES A p € InitSrvcPeers(s) = (p »
s) » RUN 4 € InitStateSrv not theorem
axm3: Vs, p, stt - p € PEERS A s € SERVICES A (p » s) » stt €
InitStateSrv = p € InitSrvcPeers(s) A stt = RUN 4 not theorem
axmé: InitSuspPrs € PEERS x SERVICES -+ P(PEERS) not theorem
axm5: Vs, p-pe€PEERS A s € SERVICES A p € InitSrvcPeers(s) = (p »
s) » g € InitSuspPrs not theorem
axmo: Vs, p, stt -+ p e PEERS A s € SERVICES A (p » s) » stt €
InitSuspPrs = p € InitSrvcPeers(s) A stt = ¢ not theorem
axm7: InitRunPeers € PEERS x SERVICES -+ P(PEERS) not theorem
axm8: Vs, p-pe€PEERS A s € SERVICES A p € InitSrvcPeers(s) = (p »
s) » InitSrvcPeers(s) € InitRunPeers not theorem
axm9: V s, p, stt - p € PEERS A s € SERVICES A (
InitRunPeers = p € InitSrvcPeers(s) A stt = InitSrvcPeers
END

pprs)p stte
(s)

S not theorem

Page 1

MOO

MACHINE
MOO
SEES
Ccoo
VARIABLES
serviceState
INVARIANTS
invl: serviceState € SERVICES <« STATES not theorem
inv2: V s, stl, st2 - s € SERVICES A stl € STATES A st2 € STATES A s b
stl € serviceState A s b st2 € serviceState = stl = st2 not theorem

EVENTS
INITIALISATION: not extended ordinary
THEN
actl: serviceState = InitState
END
FAIL: not extended ordinary
ANY
s
WHERE
grdl: s € SERVICES not theorem
THEN
actl: serviceState = ({s} < serviceState) v {s » FAIL}
END
HEAL: not extended ordinary
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: s » FAIL € serviceState not theorem
THEN
actl: serviceState = (serviceState \ {s » FAIL}) u {s » RUN}
END
END

Page 1

MO1

MACHINE
MO1
REFINES
MO0
SEES
col
VARIABLES
serviceState 1
INVARIANTS
invl: serviceState 1 € SERVICES <« STATES 1 not theorem
gluing runl: V s - s € SERVICES A s » RUN € serviceState = s » RUN 1
€ serviceState 1 not theorem
gluing run2: V s - s € SERVICES A s » RUN 1 € serviceState 1 = s »
RUN € serviceState not theorem
gluing faill: V s + s € SERVICES A s » FAIL € serviceState = (s »
FAIL 1 € serviceState 1 v s » FAIL DETECT 1 € serviceState 1) not theorem
gluing fail2: V s, st - s € SERVICES A st € STATES 1 A st €
{FAIL 1,FAIL DETECT 1} A s » st € serviceState 1 = s » FAIL € serviceState not
theorem
gluing state3: V s, stl, st2 - s € SERVICES A stl € STATES 1 A st2 €
STATES 1 A s » stl € serviceState 1 A s » st2 € serviceState 1 = stl = st2 not
theorem

EVENTS
INITIALISATION: not extended ordinary
THEN
actl: serviceState 1 = InitState 1
END
FAIL: not extended ordinary
REFINES
FAIL
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: s » RUN 1 € serviceState 1 not theorem
THEN
actl: serviceState 1 = (serviceState 1\{s » RUN 1}) u {s »
FAIL 1}
END
FAIL DETECT: not extended ordinary
REFINES
FAIL
ANY
s
WHERE

grdl: s € SERVICES not theorem

Page 1

MO1

grd2: s » FAIL 1 € serviceState 1 not theorem
THEN
actl: serviceState 1 = (serviceState 1\{s » FAIL 1}) u {s »
FAIL DETECT 1}
END

HEAL: not extended ordinary
REFINES
HEAL
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: s » FAIL DETECT 1 € serviceState 1 not theorem
THEN
actl: serviceState 1 = (serviceState 1 \ {s » FAIL DETECT 1})
u {s » RUN 1}
END

END

Page 2

MO2

MACHINE
MO2
REFINES
MO1
SEES
€02
[RIABS
servigO000000
INJRIANTS
id000 00000000000002 OSEROCES (S TATESR (000000
000000000000 8 [Os [OSE ROCES A s ORONO [O8ervi0OOOOOO = s 00O
ROROOservi(O0OO0 2 000BCOOOOC

RO00OOOCOO - Os Os OSE ROLES A s [IROND 2 [servi[0000000 2 = s [
RONO8ervifd0d0 00OrRO00000

0000000000000 - B Os [OSER OCTES A s OFAIOD OBervi(0OOOOOO = s OO
FAIROOservil00 2 [O000CEOOOOOO

RO000000000 = Os Os OSER - OTES A s [OFAIOD 2 Oservi[0000000 2 = s [
FAI[O8ervi000O 00000ROOOC00

0000000000000 - B Os [OSER OCTES A s [OFAIOOD ETECTOOservif] 00000000
= (s JFAIJUAT R00servi{00000 2 v s ORAIBOO TECTR Oservif0 20 00000000
tioooo0

ROOOOO0O0OCO = OsOst Os O SEROTES A st [J STATESE A st [

JFAIQMAROFAI EMBATROA s [st OserviJOOOO 2 = sOOFAIQOOD ETECTOQO
servi[JJ0000000 OEOOOOOC
0000000000000 - B0stlfst2 (s OSERJIES A stl [JSTATESR A st2 []
STATESR A s [Ost 1 QOserviJOO0OOOOO 2 A s Ost2 Oser viPOBEROBED 1 = st2 000
000000
EENTS
INITIALISATION: OeEXtedO0O0 orfd0000
THEN
N a0 0O00000CO000002 0 I000O000O0O 2
a
FAILOD [Exte(d0O or{jiooo0
REFINES
FAI[]
AN[J
0
BRE

00000 OSEROTES 0E00000o0

THENEDD s [OROROOs ervi@000000 OEO0000C

all00 00000000000002 O(servi000000 200ROBO0 ad

FAIRO N
i

FAIL DETECT[0eXtedO00 orjooon
REFINES

0moo

MO2

FAIEMBCT
AN[]
0 >
[HRE
00000 OSERQOEES UE000000 >
THENQDD : s [JFAIROO serviPO000000 OBOO0CO0 >
a0 00000000000002 O(servifjO00000 200BAIROO uod

FATEMECTRO >
EN[

IS_0KO [OExteldOO or{iodOn »
REFINES

HEA[]
AN[]

i
[JBRE

00000 OSEROLES 0E000000 >

@00 = s [FAIHTE (TR Oservif00OO 2 0E00000o

v

THEN
ajl00 00000000000002 O(serviJOOOOOO 2 OOOFAMEOO TECTROO
O00ROR[>
EN[]
FAIL_ACTI[QO Uextedddd orfooogd -
AN[]
] >
[JHRE
00000 OSEROTES Of00o000 >
oo - s [FAIETE CT@ OservifOoOo 2 HB00C000 >
THEN
aldd0 00000000000002 O(servi(000O0O00 2 OOOFAEEOO TECTROO
O0O0FAI[CAT[] 20 >
EN[J
OEALQ OextedO0d orfioood »
REFINES
HEAQ]
AN[]
0 >
[JERE

00000 OSEROLES 0R000000 >

THENQDD s OFAIQOAT POdservif000O0 2 DEOCCOCO >

aJi00 00000000000002 O(servif0O0OOO0 2 OOOFALOGA TIR200

OOROR[

v

EN[

0eoo

MO2

EN[]

aoo

MO3

MACHINE
MO3
REFINES
Mor]
SEES
Cco3
ORIAER
serviBO000000
IN[JRIANTS
iJ000 00000000000003 OSEROCES [0S TATESR (000000
000000000000 8 Os [SE ROCES Os » RUNO QOservif000O0O0OOO0 Os » 0O
RUNB [Oservi[l000 3 O00BO0OOOOC
O0000000C00O0 8 Os [SE ROCES [Js » RUNO 3 [servif0d000o000 3 Os »
RUNOOservi{000 O00ROC0O000O
0000000000000 8 Os OSER OTES [O0s » FAIOOD ([OBervi(OOOOCOOO Os e O
FAIBOOservi(JOO0 3 [0000BCOOOOC
0000000000000 8 Os OSER OTES [O0s » FAIOOD 3 QOserviO0O000OOC 3 Os »
FAI[OBervi[O0O 000008000000
0000000000000 8 Os OSER OTES [O0s » FAIQO ETECT{Oservi[] Oo0ooooo
Os » FAIHMBC T8 OserviJ0000O0 3 0OEOO00OO
0000000000000 8 Os OSER OTES [O0s » FAIQO ETBECTB [servif 30000000
Os » FAIHMBC TOOservi0OoO0O00 OB00O00o0
000000000000 8 Os [SE ROCES Js » FAIQ OAI[O8ervif O0oo0ooo
[J(s » FAI[JOAI BOOserviooooo 3 v s HOFAIQOQ NF3[0servi[O0d 3 vEOAO
FAIJOXNBerv iB0000000 OE000000
Uo00000000onO Blst (s OSEROCES st [STATESB (st [

[JFAIQMABFAI CONFRORAIONI 300N0» st [serviBO000000 s b
FAI[OAI[Se rvi(00000000 DEO00000
0000000000000 BOst10stO Os OSEROLES [stl STATESB I st[O
STATESB [Js » st 1 [servi[0000000 3 Os » stOdser viBOOBEOOD 1 = st] 000
t000oo0
EENTS
INITIALISATION: 0e0000000 00000000
THEN
END aji00 0O000000OO00OOC3 00 Ifoooooooo 3
FAIL: Uedoiooooo Oo0ooooo
REFINES
FAI[]
AN[]
[JBRE

00000 OSEROTES 0E00000o0
THENDDDDD B RUNB (s erviBO000000 OEO0000C

FATR aJi00 0O00O0000000003 O(servif0ooOOO0 30BORUNBOO Nz
O

0moo

MO3

END

FAIL DETECT: Henooooan uodooooa -
REFINES
FAIBMBCT

AN
[>

[HRE
00000 OSERQOEES UE000000 >

THENDDDDD B FAIBOO serviBO000000 OBOOOCO0O >
alld0 00000000000003 O(servi{OO00O00 30BOFAIBOO

FATIEMECTE0O >
END

IS_OK: [ei0oiooo O0oooooo -
REFINES

1SO00
AN[]
[>
[JHRE
00000 OSEROTES OE000000 >
. 00000 B FAIETNE CTB OserviflOOOO 3 HE00C000
HEN

a000 (0O00000000COO03 O(serviOOOOCO 3 008 FAIBOO

008 RUNBO >
END

FAIL ACTI[: Hetooooon Uooooood -
REFINES
FAI(OAIQ
AN

>
[JBRE

00000 OSEROEES gmoooooo - >
THENDDDDD B FAIETE CTB OservifOOOO 3 0E00000o0
all00 00000000000003 O(servi(00OOOO0 3 OCH FAIBOO
HHE] FAIDQIIDEND 30 >

FAIL CONF I[JN: not extended ordinary >
ANY
S >
st >
WHERE
grdl: s € SERVICES not theorem >

grd3: st e {FAIL CONFIG 3,FAIL IGN 3} not theorem >

Page 2

Iz

>

TECTBOO

>

TECTBOO

MO3

grd2: s » FAIL ACTIV 3 € serviceState 3 not theorem
THEN
actl: serviceState 3 = (serviceState 3 \ {s » FAIL ACTIV 3}) u

{s b st}
END
HEAL: not extended ordinary
REFINES
HEAL
ANY
s
st
WHERE
grdl: s € SERVICES not theorem
grd3: st € {FAIL CONFIG 3,FAIL IGN 3} not theorem
grd2: s » st € serviceState 3 not theorem
THEN
actl: serviceState 3 = (serviceState 3 \ {s » st}) u {s »
RUN 3}
END
END

Page 3

MO4

MACHINE
MO4
REFINES
MO3
SEES
co4
VARIABLES
serviceState 4
INVARIANTS
invl: serviceState 4 [] SERICES <« S TATES 4 00 Q000000
000000000000 00000SEVICESRA s » RUN_3 [I O000000SOOOOO 3000
RONO4 O 00000COSO 000 000000
O0000000C00O0 00000 SE VICESRA s » RUN_4 [1 O0000COSODOOO 4 000
RONO3 O 00000COSO 000 0000080
0000000000000 O O O O O SERVICES A s » FAIL 3 [1 O0000OOSOOOOO 300
FAIOO4 O 0000000OS O0000000_O0O
0000000000000 O O O O O SERVICES A s » FAIL 4 [1 O000COOSOOOOO 400
FAIOO3 0 0000000S O0000000B00
0000000000000 DO O O O O SERVICES A s » FAIL_JEQE(3 O O0O00OO 0sooooos
0 0 O FACOOOEQE TO4 0 000000OOSOOO 000 000000a
0000000000000 DO O O O O SERVICES A s » FAIL_JEQE(4 O 00O00OOC Osooioon4
0 0 0 FATOODEQE TO3 0 000000OSOOO 000 DO0D00B
000000000000 00000 SE VICESRA s » FAIL_ACTIV_3 [000000 0sooooo3
00 0 FAIMVA _4 [0 00000oostooo - 000 0oooo0a
Uo00000000onO 00000 SE VICESRA s » FAIL ACTIV_4 [0 000000 OosOoooo4
00 0 FEIMMA _3 [0 00000o0soooo - 000 do0ooos
Uo00000000onO 00000 SE VICESRA s » FAIL IGN 3 [0 0O0O00O0DOOS ooooo3 0
0 0 FAIOOIONO4 0O O0o0000sSOo0b0a00000
000000000000 00000 SE VICESRA s » FAIL IGN 4 [J O00O0000OS ooooo4 o
0 0 FAIOOIONO3 0O O000000SOoOoO80o00n
0000000000000 O O O O O SERVICES A s » FAIL_CONFIG_3 [000000 osooooos
0 00 OCHEREQD I004 0 OO00O0O0OSoO 0004 00400 oooo4 000 OO0O0000C0oSo0o0
oooo0dodtooD 000 0o O O o VICES 8EBRt € STATES 4 [J (U [
OFACONFIO0A000 40 0000000 O000008ONBLNOA30 0 0 0 FAIQ
J000000SO00003 000 000000o
Uo0oo00odoooD - O 00 Dood 0oo VICESOA [J SER € STATES 4 1 (00O O
SOACESO4 0 0O 0O OO 0 0 00D00ODOSoOooO O000SROO00D400000 O 000 000 O O 00O
O00000o
EVENTS
INITIALISATION: not ell00000 O000COOO
THEN
ENE a000 OO000000SOoOoO 4 I000sOoooo 4
FAIL[000 00000000 0ooooooo
REFINES
FAI[]

aooo d

MO4

AN[]
0 >
(JHERE
O0oog 0 O BERES not theorem >
THENQFDDD 0 0 RONO4 O O 000o0oSO0o00a0oooa -

a0 000000OStOooO 4 [0000OCOOSOOooO 0 04000 O RC

FAIOD4D
EN[J

FAIL DETECTQ 000 00000000 00000dod - »
REFINES
FAI[OQEE
AN[]
D >
[JHERE
00000 0 00 YERES not theorem >
grido 0 O FAIOD4 O 0O 2
THEN
a(lfid 0onoooosoooon 4 [0 O0O00000OSOOO0 00 04000 O FA
FAI[JOQEN&Q] >
EN[]

IS_0KO {00 00000000 00oooooo »
REFINES
1000
AN[]
|:| >
[HERE
Oooao [0 [0 YERES not theorem >
THENQFDDD 0 0 FAIJOOEOECTO4 O O00COOOSOO 000 0ooooag >

a0 O00000CSooooo 4 [00000CO0SO000 CTh400 04 0 00 O

0 00 O RONO40O -
EN[]

FAIL_ACTIV[] 000 00000000 dooooood »
REFINES
FAI[JOAIV
AN
0 >
(OHERE
00000 O O BERES not theorem >

gri00 0O O FAIOOOECECTO4 O O000000SOO 000 0oooooea - -

THEN
aJi00 0000O000SOO00O 4 [DO00O0DOsoooo CTo400 D4 000 O
0 00 O ERIMOA _40 >
EN[

aooo d

MO4

FAIL_CONFIGURE[] 000 e(de0Ced 0OCOOOCOO -
REFINES

FAIL[CONFOI[N
AN[J
S >
(JHERE
Oooao s [] SERCES not theorem >
gridd s 0O FAILOACOIV_ 4 [0 se(d00esOCO 000 ededded -

OIOH

s sl 0 FAIL[C[INFI3 >0
[JHEN

00000 sed000eSOO0en 4 [Dsed000eSOO0e V440008 O FAILOAC

(s [0 FAILOCONFI[O > 4[]
EN[J
FAIL_IGNOREQ 000 elJelle] 00000000
REFINES
FAIL[JCONFOI[N

AN[]

S >
[JHERE

0ooog s [] SERCES not theorem »
grd0 s 0 FAILOACOIV_4 [se{OOdesSOOd Joo enedded -

OIH
s(00 sOOFAIBOIONO »
[JHEN
0oooo se(J000esSO00ed 4 [Osedd00esOO0e V440008 O FAIL[JAC
Os [0 FAILOQIOND4O »
EN[J
IGNORE: 00 00000000 O00OOOOOO »
REFINES
HEAL
AN[]
0 >
[JHERE
00000 [0 [0 YERES not theorem >
. HQFDDD 0 0 FAIOOIONO 4 [0J000O000SOOOOO0oOoOO 4
010
000 00 O FAIOOIONOS -
THEN
all00 O00000CSOOo0O 4 [000C00OOSOOo0 oo O 04 000 0O
00 O RONO4O >
ENJ
REDEPLOO0 ([0O0 OOOOOCCOO COOOCOOO -
AN[]

oooo 3

MO4

S >
(JHERE
Ooooo 0 00 YERES not theorem >
THENQFDDD 0 0 ERNAD I004 0 O00000OSCO 000 00000004 >
a000 O000000SOoooo 4 [00000COoe0000 NFIOO40004 O 00 O

0 00 O 000040 >
EN[

OEALQ 000 00000000 Oooooooc >
REFINES
HEAL

AN[]
D >
[JHERE
0ooao 0 00 BERES not theorem >
; HQFDDD 00 00004 00 OooooosOoooOeood -
01
ENDDD O0CEREDO >3

a0 0000000SO0o0Oo 4 [000CO0OOSO0o0 oo 040000

TH

RONO40 >
EN[

EN[J

oooo 4

MO5

MACHINE
MO5 >
REFINES
Mo4
SEES
Co5
VARIABLES
serviceState 4 >
num run >
num_susp >
INVARIANTS
invl: num run € SERVICES — N1 not theorem >
inv2: num susp € SERVICES — N not theorem >
inv3: Vs, st - s € SERVICES A st € STATES 4 A st e {FAIL 4,
FAIL DETECT 4} A s » st € serviceState 4 = num _susp(s) = 0 not theorem >
inv4: V s - s € SERVICES A s » RUN 4 € serviceState 4 = num susp(s) =
0 theorem >
inv5: V s - s € SERVICES A s » FAIL CONFIG 4 € serviceState 4 =
num_run(s) < min_inst(s) not theorem >
inve: ¥V s - s € SERVICES = num_susp(s) < num_run(s) not theorem >

EVENTS
INITIALISATION: extended ordinary >

THEN
actl: serviceState 4 = InitState 4 >
act2: num_run = init inst >
act3: num_susp = SERVICESx{0} >

END

FAIL: extended ordinary »
REFINES
FAIL

ANY
S >
nb_fail

WHERE
grdl: s € SERVICES not theorem >
grd2: s » RUN 4 € serviceState 4 not theorem >
grd3: nb fail € N1 not theorem >
grd4: nb fail < num_run(s) not theorem >

THEN
actl: serviceState 4 = (serviceState 4\{s » RUN 4}) u {s »

FAIL 4} >

act2: num susp(s) = nb fail >

END

FAIL DETECT: extended ordinary »
REFINES
FAIL DETECT

Page 1

MO5

ANY
S >
num_safe >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL 4 € serviceState 4 not theorem >
grd3: num safe € N not theorem >
grd4: num safe = num susp(s) not theorem >
THEN

actl: serviceState 4 = (serviceState 4\{s » FAIL 4}) u {s »
FAIL DETECT 4} >
act2: num susp(s) = num susp(s) — num safe >
END

IS OK: extended ordinary >
REFINES
IS OK
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd3: num_susp(s) = 0 not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
U {s » RUN 4} »

END
FAIL ACTIV: extended ordinary >
REFINES
FAIL ACTIV
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd3: num _susp(s) > 0 not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » FAIL ACTIV 4} »

act2: num_run(s) = num_run(s) — num_susp(s) >
act3: num_susp(s) = 0 >
END
FAIL CONFIGURE: extended ordinary »
REFINES
FAIL CONFIGURE
ANY

Page 2

MO5

S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem >
grd3: num run(s) < min inst(s) not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL CONFIG 4} »
END

FAIL IGNORE: extended ordinary »
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem »
grd3: num_run(s) = min_inst(s) not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL IGN 4} »
END

IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL IGN 4 € serviceState 4 not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL IGN 4}) v
{s » RUN 4} >
END

REDEPLO[]: extended ordinary >
REFINES
REDEPLOY

ANY
S >
new run >

WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL CONFIG 4 € serviceState 4 not theorem >
grd3: new run € N1 not theorem >
grd4: new run = min_inst(s) not theorem >

Page 3

MO5

THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL CONFIG 4})
u {s » DPL 4} >

act2: num_run(s) = new run >
END
JEAL: extended ordinary >
REFINES
HEAL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » DPL 4 € serviceState 4 not theorem »
THEN
actl: serviceState 4 = (serviceState 4 \ {s » DPL 4}) u {s »
RUN 4} >
END
END

Page 4

MO6

MACHINE
MO6 >
REFINES
MO5
SEES
Co6
VARIABLES
serviceState 4 >
run_peers >
susp_peers >
fail peers >
INVARIANTS

invl: run peers € SERVICES — P1(PEERS) not theorem >

inv2: susp peers € SERVICES -~ P(PEERS) not theorem >

inv3: fail peers € SERVICES « PEERS not theorem >

gluing runl: V s - s € SERVICES = finite(run _peers(s)) not theorem
>the number of instances providing a service s is finite

gluing run2: V s - s € SERVICES = num run(s) = card(run_peers(s))
not theorem >the number of instances providing a service s is num run peers(s)

gluing suspl: V s - s € SERVICES A s € dom(susp_peers) = finite
(susp _peers(s)) not theorem >the number of suspect instances of a service s is
finite

gluing susp2: V s - s € SERVICES A s € dom(susp_peers) = num_susp(s)
= card(susp peers(s)) not theorem >the number of suspect instances of a service
s is num _susp peers(s)

invé4: V s - s € SERVICES = run _peers(s) n fail peers[{s}] = & not
theorem >an instance of a service s is either failed or providing the service s

inv5: V s - s € SERVICES A s € dom(susp_peers) = susp _peers(s) ¢
run_peers(s) not theorem >suspicious instances of s are a subset of the
instances providing s

inv6: V s, st - s € SERVICES A st € STATES 4 A st € {FAIL 4,
FAIL DETECT 4} A s » st € serviceState 4 = s € dom(susp_peers) not theorem >

inv7: V s, st - s € SERVICES A st € STATES 4 A st € {FAIL 4,
FAIL DETECT 4} A s » st € serviceState 4 = susp peers(s) c run peers(s) not
theorem >

EVENTS
INITIALISATION: not extended ordinary »
THEN
actl: serviceState 4 = InitState 4 >
act2: run_peers = InitSrvcPeers >
act3: susp _peers = @ >
act4: fail peers = g >
END
FAIL: not extended ordinary »
REFINES
FAIL
ANY

Page 1

MO6

s
fp
WHERE
grdl: s € SERVICES not theorem
grd2: s » RUN 4 € serviceState 4 not theorem

grd5: fp ¢ PEERS not theorem
grd3: fp # @ not theorem
grd4: fp © run peers(s) not theorem
WITH
nb fail: nb fail=card(fp)
THEN
actl: serviceState 4 = (serviceState 4\{s » RUN 4}) u {s »
FAIL 4}
act2: susp peers(s) = fp
END

FAIL DETECT: not extended ordinary
REFINES
FAIL DETECT

ANY
s
sf
WHERE
grdl: s € SERVICES not theorem
grd2: s » FAIL 4 € serviceState 4 not theorem
grd5: susp_peers(s) # & not theorem
grd6: sf ¢ PEERS not theorem
grd7: sf ¢ susp peers(s) not theorem
WITH
num_safe: num_safe=card(sf)
THEN

actl: serviceState 4 = (serviceState 4\{s » FAIL 4}) u {s »
FAIL DETECT 4}
act2: susp_peers(s) = susp peers(s) \ sf
END

IS OK: not extended ordinary
REFINES
IS OK
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem
grd5: susp peers(s) = g not theorem
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » RUN 4}

Page 2

MO6

END
FAIL ACTIV: not extended ordinary
REFINES
FAIL ACTIV
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem
grd5: susp peers(s) # g not theorem
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})

u {s » FAIL ACTIV 4}

act2: run_peers(s) = run_peers(s) \ susp peers(s)
act3: susp_peers(s) = @
act4: fail peers = fail peers u ({s}xsusp peers(s))
END
FAIL CONFIGURE: not extended ordinary
REFINES
FAIL CONFIGURE
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem
grd3: card(run_peers(s)) < min _inst(s) not theorem
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u

{s » FAIL CONFIG 4}
END

FAIL IGNORE:

REFINES

not extended ordinary

FAIL IGNORE

ANY
S
WHERE

grdl:
grd2:
grd3:

THEN

actl:

{s » FAIL IGN 4}
END

s € SERVICES not theorem
s » FAIL ACTIV 4 € serviceState 4 not theorem
card(run_peers(s)) = min _inst(s) not theorem

serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) v

IGNORE: extended ordinary

Page 3

MO6

REFINES
IGNORE
ANY
S >
WHERE

grdl: s € SERVICES not theorem >
grd2: s » FAIL IGN 4 € serviceState 4 not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL IGN 4}) v
{s » RUN 4} >

END
REDEPLO[]: not extended ordinary »
REFINES
REDEPLOQY
ANY
S >
new inst >
WHERE

grdl: s € SERVICES not theorem >
grd2: s » FAIL CONFIG 4 € serviceState 4 not theorem >
grd3: new inst ¢ PEERS not theorem >

grd5: new inst # o not theorem >

grdo: finite(new_inst) not theorem >

grd7: run_peers(s) n new inst = @ not theorem >

grd8: fail peers[{s}] n new inst = @ not theorem >

grd4: card(run_peers(s))+card(new _inst) = min _inst(s) not

theorem »

WITH

new_ run: new_run=card(run_peers(s))+card(new _inst) >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL CONFIG 4})
u {s » DPL 4} >

act2: run_peers(s) = run _peers(s) U new inst >

END
JEAL: extended ordinary »
REFINES
HEAL

ANY

S >
WHERE

grdl: s € SERVICES not theorem >

grd2: s » DPL 4 € serviceState 4 not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » DPL 4}) u {s »
RUN 4} >
END

Page 4

MO6

UNFAIL PEER: not extended ordinary »

ANY

S >

p >
WHERE

grdl: s € SERVICES not theorem >

grd2: p € PEERS not theorem »

grd3: s » p € fail peers not theorem >
THEN

actl: fail peers = fail peers\{s » p} >
END

END

Page 5

MO7

MACHINE
MO7 >
REFINES
MO6
SEES
co7
VARIABLES
serviceState 4 >
run_peers
susp_peers
fail peers
dep inst
INVARIANTS
invl: dep inst € SERVICES < PEERS not theorem >
inv2: V s - s € SERVICES = dep _inst[{s}] n fail peers[{s}] = & not
theorem >
inv3: V s, st - s € SERVICES A st € STATES 4 A s » st € serviceState 4
A st # FAIL CONFIG 4 = dep inst[{s}] = & not theorem >
inv4: V s - s € SERVICES = finite(dep inst[{s}]) not theorem >
inv5: V s - s € SERVICES = dep _inst[{s}] n run peers(s) = & not
theorem >

>
>
>
>

EVENTS
INITIALISATION: extended ordinary »

THEN
actl: serviceState 4 = InitState 4 >
act2: run_peers = InitSrvcPeers >
act3: susp_peers = @ >
act4: fail peers = o >
acth: dep inst = g >

END

FAIL: extended ordinary »
REFINES
FAIL

ANY
S >
fp >

WHERE
grdl: s € SERVICES not theorem >
grd2: s » RUN 4 € serviceState 4 not theorem >
grd5: fp ¢ PEERS not theorem >
grd3: fp # o not theorem >
grd4: fp © run peers(s) not theorem >

THEN
actl: serviceState 4 = (serviceState 4\{s » RUN 4}) u {s »

FAIL 4} >

act2: susp peers(s) = fp »
END

Page 1

MO7

FAIL DETECT: extended ordinary »
REFINES
FAIL DETECT

ANY
S >
sf >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL 4 € serviceState 4 not theorem >
grd5: susp peers(s) # o not theorem >
grdo: st ¢ PEERS not theorem >
grd7: sf ¢ susp peers(s) not theorem >
THEN

actl: serviceState 4 = (serviceState 4\{s » FAIL 4}) u {s »
FAIL DETECT 4} >
act2: susp_peers(s) = susp peers(s) \ sf >
END

IS 0OK: extended ordinary >
REFINES
IS 0K
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd5: susp peers(s) = o not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » RUN 4} >

END
FAIL ACTIV: extended ordinary >
REFINES
FAIL ACTIV
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd5: susp peers(s) # o not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » FAIL ACTIV 4} >

act2: run _peers(s) = run peers(s) \ susp peers(s) »
act3: susp peers(s) =@ >
act4: fail peers = fail peers u ({s}xsusp peers(s)) »

Page 2

MO7

END
FAIL CONFIGURE: extended ordinary »
REFINES
FAIL CONFIGURE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem »
grd3: card(run peers(s)) < min inst(s) not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL CONFIG 4} >
END

FAIL IGNORE: extended ordinary >
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem >
grd3: card(run_peers(s)) = min _inst(s) not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL IGN 4} >
END

IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL IGN 4 € serviceState 4 not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL IGN 4}) v
{s » RUN 4} >

END
REDEPLO[JINST : not extended ordinary >
ANY
S >
dep >
WHERE

Page 3

MO7

grdl: s € SERVICES not theorem >

grd2: dep ¢ PEERS not theorem »

grd3: finite(dep) not theorem >

grd4: dep n run peers(s) = ¢ not theorem »

grd5: dep n fail peers[{s}] = @ not theorem >

grd6: card(dep) = deplo inst(s) not theorem >

grd7: card(dep inst[{s}]) + card(run peers(s)) < min inst(s)

not theorem >

grds: s » FAIL CONFIG 4 € serviceState 4 not theorem >
THEN

actl: dep inst = dep inst u ({s}xdep) >
END

REDEPLO[]: not extended ordinary »
REFINES
REDEPLOY
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL CONFIG 4 € serviceState 4 not theorem >
grd6: dep inst[{s}] # & not theorem >
grd4: card(run_peers(s))+card(dep _inst[{s}]) = min _inst(s) not
theorem >
WITH
new inst: new inst=dep inst[{s}] >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL CONFIG 4})
u {s » DPL 4} >

act2: run_peers(s) = run_peers(s) u dep inst[{s}] >
act3: dep inst = {s} < dep inst >
END
OEAL: extended ordinary >
REFINES
HEAL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » DPL 4 € serviceState 4 not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » DPL 4}) u {s »
RUN 4} >
END

UNFAIL PEER: extended ordinary »
REFINES

Page 4

END

MO7

UNFAIL PEER

ANY
S

P
WHERE

grdl:
grd2:
grd3:

THEN

actl:

END

>

>

s € SERVICES not theorem >
p € PEERS not theorem »
s » p e fail peers not theorem >

fail peers = fail peers\{s » p} >

Page 5

MO8

MACHINE
MO8
REFINES
MO7
SEES
Cco8
VARIABLES
serviceState 4
run_peers
susp_peers
fail peers
dep inst
token owner
unav_peers
susp_inst
INVARIANTS
invl: token owner € SERVICES — PEERS not theorem
inv2: unav_peers ¢ PEERS not theorem
inv3: V s - s € SERVICES = token owner(s) € run peers(s)\unav_peers
not theorem
inv4: V s - s € SERVICES A s € dom(susp_peers) = token owner(s) ¢
susp_peers(s) not theorem
inv5: susp_inst € PEERS «» (SERVICESxPEERS) not theorem
inv6: V 1d, s - 1d € PEERS A s € SERVICES A s € dom(susp_inst[{ld}])
= 1ld = token owner(s) not theorem
inv7: V 1d, s - 1d € PEERS A s € SERVICES A s € dom(susp_inst[{ld}]) A

1ld = token owner(s) = 1d & susp inst[{ld}][{s}] not theorem

inv8: V 1d, s - 1d € PEERS A s € SERVICES A s € dom(susp_inst[{ld}]) A
1d = token owner(s) = susp _inst[{ld}][{s}] c run peers(s) not theorem

inv9: V 1d, s, stt - 1d € PEERS A s € SERVICES A stt € STATES 4 A s »
stt € serviceState 4 A 1d = token owner(s) A stt # RUN 4 = susp inst[{ld}][{s}]

= g not theorem
EVENTS
INITIALISATION: extended ordinary
THEN
actl:
act2:
act3:
act4:
acth:
act6: token owner = init tok
act7: unav_peers = g
act8: susp_inst = @
END

MAKE_PEER_UNAVAIL: not extended ordinary

ANY
prs

Page 1

MO8

E >new values for token owner per service if needed
WHERE

grdl: prs c PEERS not theorem >

grd2: prs ¢ unav_peers not theorem >

grd3: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed

grd4: V srv - srv € SERVICES A token owner(srv) & prs = E
(srv) = token owner(srv) not theorem >If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd5: V srv - srv € SERVICES A token owner(srv) € prs A srv ¢
dom(susp peers) = E(srv) € run peers(srv)\(unav _peers u prs u fail peers
[{srv}]) not theorem >if the owner of the token for a service becomes
unavailable and the service is not suspicious,

then a new token owner among available peers is chosen

grd6: V srv - srv € SERVICES A token owner(srv) € prs A srv €
dom(susp peers) = E(srv) € run peers(srv)\(unav_peers u prs u susp _peers(srv) u
fail peers[{srv}]) not theorem >if the owner of the token for a service becomes
unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

THEN
actl: unav_peers := unav_peers u prs >the peers in prs become
unavailable
act2: token_owner := token owner < E >new value for token owner
per service is given if needed
act3: susp_inst = prs < susp _inst >the peers in prs can not
suspect instances anymore
END
SUSPECT INST: not extended ordinary >
ANY
s >a service s
susp >suspicious instances
WHERE
grdl: s € SERVICES not theorem >
grd2: susp ¢ PEERS not theorem >
grd3: susp = run_peers(s) n unav_peers not theorem >instances
in susp are suspicious if the peers running them becomes unavailable
grd4: s & dom(susp inst[{token owner(s)}]) not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: s » RUN 4 € serviceState 4 not theorem >the state of s

is OK

Page 2

MO8

THEN
actl: susp inst = susp inst u ({token owner(s)} x ({s}xsusp))
>the members of susp become suspected instances for s by the token owner of s
END
FAIL: not extended ordinary »
REFINES
FAIL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » RUN 4 € serviceState 4 not theorem >
grd3: susp inst[{token owner(s)}][{s}] # @ not theorem >
WITH
fp: fp=susp_inst[{token owner(s)}I[{s}] >
THEN
actl: serviceState 4 = (serviceState 4\{s » RUN 4}) u {s »
FAIL 4} >
act2: susp_peers(s) = susp_inst[{token owner(s)}][{s}] >
act3: susp_inst = susp inst » ({s} < ran(susp inst)) -

END

FAIL DETECT: extended ordinary >
REFINES
FAIL DETECT

ANY
S >
st >
WHERE
grdl: s € SERVICES not theorem »
grd2: s » FAIL 4 € serviceState 4 not theorem >
grd5: susp peers(s) # o not theorem >
grdo: sf ¢ PEERS not theorem »
grd7: sf c susp peers(s) not theorem >
THEN

actl: serviceState 4 = (serviceState 4\{s » FAIL 4}) v {s »
FAIL DETECT 4} >

act2: susp_peers(s) = susp peers(s) \ sf »

END
IS OK: extended ordinary >

REFINES

IS OK
ANY

S >
WHERE

grdl: s € SERVICES not theorem >

Page 3

MO8

grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd5: susp peers(s) = o not theorem »
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » RUN_4} >

END
FAIL ACTIV: extended ordinary »
REFINES
FAIL ACTIV
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd5: susp peers(s) # o not theorem »
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » FAIL ACTIV 4} >

act2: run_peers(s) = run_peers(s) \ susp peers(s) >
act3: susp_peers(s) = o >
act4: fail peers = fail peers u ({s}xsusp peers(s)) >
END
FAIL CONFIGURE: extended ordinary >
REFINES
FAIL CONFIGURE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem >
grd3: card(run peers(s)) < min inst(s) not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL CONFIG 4} >
END

FAIL IGNORE: extended ordinary >
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem >
grd3: card(run peers(s)) = min inst(s) not theorem >
THEN

Page 4

MO8

actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL IGN 4} >
END

IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL IGN 4 € serviceState 4 not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL IGN 4}) u
{s » RUN 4} >
END

REDEPLOY INST: extended ordinary >
REFINES
REDEPLOY INST

ANY
S >
dep >
WHERE

grdl: s € SERVICES not theorem >

grd2: dep ¢ PEERS not theorem >

grd3: finite(dep) not theorem »

grd4: dep n run peers(s) = o not theorem >

grd5: dep n fail peers[{s}] = @ not theorem >

grd6: card(dep) = deplo inst(s) not theorem >

grd7: card(dep_inst[{s}]) + card(run peers(s)) < min_inst(s)

not theorem >

grd8: s » FAIL CONFIG 4 € serviceState 4 not theorem >
THEN

actl: dep inst = dep_inst u ({s}xdep) >
END

REDEPLOY: extended ordinary >

REFINES
REDEPLOY

ANY
S >

WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL CONFIG 4 € serviceState 4 not theorem >
grdé6: dep inst[{s}] # @ not theorem >
grd4: card(run peers(s))+card(dep inst[{s}]) = min inst(s) not

theorem >

Page 5

MO8

THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL CONFIG 4})
u {s » DPL 4} >
act2: run peers(s) = run peers(s) u dep inst[{s}] »
act3: dep inst = {s} < dep inst >

END
HEAL: extended ordinary >

REFINES

HEAL
ANY

S >
WHERE

grdl: s € SERVICES not theorem >

grd2: s » DPL 4 € serviceState 4 not theorem »
THEN

actl: serviceState 4 = (serviceState 4 \ {s » DPL 4}) u {s »
RUN 4} »
END

UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER

ANY

S >

p >
WHERE

grdl: s € SERVICES not theorem >

grd2: p € PEERS not theorem >

grd3: s » p € fail peers not theorem >
THEN

actl: fail peers = fail peers\{s » p} >
END

MAKE_PEER_AVAIL: not extended ordinary >

ANY

p >
WHERE

grdl: p € PEERS not theorem >

grd2: p € unav_peers not theorem >
THEN

actl: unav peers = unav peers \ {p} >
END

END

Page 6

MO9

MACHINE
M09 >
REFINES
MO8
SEES
Co8
VARIABLES
serviceState 4
run_peers >
susp_peers >
fail peers >
dep inst >
token owner
unav_peers >
susp_inst >
rec_inst >instances that are tried to be recontacted
rct inst >instances effectively recontacted after a try
INVARIANTS
invl: rec_inst € PEERS <« (SERVICESxPEERS) not theorem >
inv2: rct_inst € PEERS <« (SERVICESxXPEERS) not theorem >
inv3: V 1d, s - 1d € PEERS A s € SERVICES A rct inst[{ld}][{s}] # ¢ =
rec_inst[{ld}][{s}] # & not theorem >
invé4: V 1d, s - 1d € PEERS A s € SERVICES A rct inst[{ld}][{s}] # ¢ =
rct_inst[{ld}][{s}] c rec inst[{ld}][{s}] not theorem >
inv5: V 1d, s - 1d € PEERS A s € SERVICES A s € dom(rec_inst[{ld}]) =

1d = token owner(s) not theorem >

inv6: V 1d, s - 1d € PEERS A s € SERVICES A s € dom(rec_inst[{ld}]) A
1ld = token owner(s) = 1d € rec inst[{ld}]1[{s}] not theorem >

inv7: V 1d, s - 1d € PEERS A s € SERVICES A s € dom(rct inst[{ld}]) =
1d = token owner(s) not theorem >

inv8: V 1d, s - 1d € PEERS A s € SERVICES A s € dom(rct _inst[{ld}]) A
1d = token owner(s) = 1d € rct inst[{ld}][{s}] not theorem >

inv9: dom(rct inst) ¢ dom(rec_inst) not theorem >

invl0: V 1d - 1d € PEERS A 1d € dom(rct inst) = rct inst[{ld}] ¢
rec_inst[{ld}] theorem >

invll: V s - s € SERVICES A s € dom(susp peers) = token owner(s) €
susp _peers(s) not theorem >

EVENTS
INITIALISATION: extended ordinary >
THEN

actl: serviceState 4 = InitState 4 »
act2: run_peers := InitSrvcPeers >
act3: Susp_peers = g >
act4: fail peers = g >
act5: dep inst = @ >
acto: token owner = init tok >
act7: unav_peers = g >
act8: susp _inst = @ »

Page 1

M09

actlo: rec inst =@ >
actll: rct inst =@ >
END
MAKE PEER UNAVAIL: extended ordinary »
REFINES
MAKE PEER UNAVAIL
ANY
prs >
E >new values for token owner per service if needed
WHERE
grdl: prs ¢ PEERS not theorem >
grd2: prs ¢ unav peers not theorem >

grd3: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed

grd4: V srv + srv € SERVICES A token owner(srv) & prs = E
(srv) = token owner(srv) not theorem >If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd5: V srv - srv € SERVICES A token owner(srv) € prs A srv ¢
dom(susp peers) = E(srv) € run peers(srv)\(unav peers u prs u fail peers
[{srv}]) not theorem >if the owner of the token for a service becomes
unavailable and the service is not suspicious,

then a new token owner among available peers is chosen

grd6: V srv - srv € SERVICES A token owner(srv) € prs A srv €
dom(susp peers) = E(srv) € run_peers(srv)\(unav_peers u prs u susp peers(srv) u
fail peers[{srv}]) not theorem >if the owner of the token for a service becomes
unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers 1is chosen

THEN
actl: unav_peers := unav_peers u prs >the peers in prs become
unavailable
act2: token owner = token owner < E >new value for token owner
per service is given if needed
act3: susp inst = prs < susp inst >the peers in prs can not
suspect instances anymore
act4: rec inst = prs < rec _inst »
acth: rct inst = prs < rct inst >
END

SUSPECT INST: extended ordinary »
REFINES

Page 2

MO9

SUSPECT INST

ANY
s
susp
WHERE
grdl:
grd2:
grd3:

>a service s

>suspicious instances

s € SERVICES not theorem >
susp ¢ PEERS not theorem >
susp = run peers(s) n unav peers not theorem »>instances

in susp are suspicious if the peers running them becomes unavailable

grd4:

s & dom(susp inst[{token owner(s)}]) not theorem >the

member of susp have not yet been suspected for s by the token owner of s

grd5:
is OK
THEN
actl:

s » RUN 4 € serviceState 4 not theorem >the state of s

susp inst = susp inst u ({token owner(s)} x ({s}xsusp))

>the members of susp become suspected instances for s by the token owner of s

END

FAIL:
REFINES

FAIL

ANY
s
WHERE
grdl:
grd2:
grd3:
THEN
actl:
FAIL 4} »
act2:
act3:
END

RECONTACT INST OK:

ANY
s
i
WHERE
grdl:
grd2:
grd3:
is SUSPICIOUS
grd4:

peers for s is not empty

grd5:

extended ordinary »

s € SERVICES not theorem >

s » RUN 4 € serviceState 4 not theorem >
susp_inst[{token owner(s)}1[{s}] # & not theorem >
serviceState 4 = (serviceState 4\{s » RUN 4}) u {s »
susp _peers(s) = susp _inst[{token owner(s)}][{s}] >
susp _inst = susp _inst » ({s} < ran(susp _inst)) »

not extended ordinary »

>a service s
>an instance i

s € SERVICES not theorem >

i € PEERS not theorem >

s » FAIL 4 € serviceState 4 not theorem >the state of s
susp peers(s) # ¢ not theorem >the set of suspicious

i € susp peers(s)\unav_peers not theorem >i is a

suspicious instance of s and is available (can be contacted)

grdo:

token owner(s) » (s » i) & rec inst not theorem >the

Page 3

MO9

token owner of s has not yet tried to recontact i
grd7: rec_inst[{token owner(s)}1[{s}] c susp peers(s) not
theorem >the token owner of s has not yet tried to recontact all the suspecious
instances of s
THEN
actl: rec inst = rec _inst u {token owner(s) » (s » 1)} >the
token owner of s has tried to recontact i
act2: rct inst = rct inst u {token owner(s) » (s » i)} »i is
recontacted by the token owner of s successfully
END

RECONTACT INST KO: not extended ordinary »
ANY
S >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >

grd3: s » FAIL 4 € serviceState 4 not theorem >the state of s
is SUSPICIOUS

grd4: susp_peers(s) # o not theorem >the set of suspicious
peers for s is not empty

grd5: i € susp _peers(s)nunav_peers not theorem >i is a
suspicious instance of s and is unavailable (can not be contacted)

grdo: token _owner(s) » (s » i) € rec_inst not theorem >the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token owner(s)}]1[{s}] c susp peers(s) not

theorem >the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
actl: rec_inst = rec_inst u {token owner(s) » (s » 1)} >the
token owner of s has tried to recontact i
END

FAIL DETECT: not extended ordinary >
REFINES
FAIL DETECT

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL 4 € serviceState 4 not theorem >
grd5: susp peers(s) # ¢ not theorem >
grd8: rec inst[{token owner(s)}1[{s}] = susp peers(s) not
theorem »
WITH
sf: sf=rct inst[{token owner(s)}1[{s}] >
THEN

Page 4

MO9

actl: serviceState 4 = (serviceState 4\{s » FAIL 4}) u {s »

v

FAIL DETECT 4}

act2: susp peers(s) = susp peers(s) \ rct inst[{token owner
(s)}1[{s}] >
act3: rec inst = rec _inst » ({s} < ran(rec inst)) >
act4: rct inst = rct inst » ({s} < ran(rct inst)) >
END
IS OK: extended ordinary >
REFINES
IS 0K
ANY
S >
WHERE

grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd5: susp peers(s) = o not theorem »
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » RUN 4} >

END
FAIL ACTIV: extended ordinary >
REFINES
FAIL ACTIV
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd5: susp peers(s) # o not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » FAIL ACTIV 4} >

act2: run_peers(s) = run_peers(s) \ susp peers(s) »
act3: susp _peers(s) = o >
act4: fail peers = fail peers u ({s}xsusp peers(s)) »
END
FAIL CONFIGURE: extended ordinary »
REFINES
FAIL CONFIGURE
ANY
S >
WHERE

grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem >
grd3: card(run peers(s)) < min inst(s) not theorem >

Page 5

MO9

THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL CONFIG 4} »
END

FAIL IGNORE: extended ordinary »
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem »
grd3: card(run peers(s)) = min inst(s) not theorem »
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL IGN 4} >
END

IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL IGN 4 € serviceState 4 not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL IGN 4}) v
{s » RUN 4} >
END

REDEPLOY INST: extended ordinary >
REFINES
REDEPLOY_ INST

ANY
S >
dep »
WHERE

grdl: s € SERVICES not theorem >

grd2: dep ¢ PEERS not theorem >

grd3: finite(dep) not theorem >

grd4: dep n run peers(s) = o not theorem >

grd5: dep n fail peers[{s}] = o not theorem >

grdé6: card(dep) = deplo inst(s) not theorem >

grd7: card(dep inst[{s}]) + card(run peers(s)) < min inst(s)
not theorem »

grd8: s » FAIL CONFIG 4 € serviceState 4 not theorem »

Page 6

MO9

THEN
actl: dep inst = dep inst u ({s}xdep) >
END
REDEPLOY: extended ordinary >
REFINES
REDEPLOY
ANY
S >
WHERE

grdl: s € SERVICES not theorem >

grd2: s » FAIL CONFIG 4 € serviceState 4 not theorem »

grdo: dep inst[{s}] # @ not theorem >

grd4: card(run peers(s))+card(dep inst[{s}]) = min inst(s) not
theorem >

THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL CONFIG 4})

u {s » DPL 4} >

act2: run _peers(s) = run peers(s) u dep inst[{s}] »
act3: dep inst = {s} < dep _inst >
END
HEAL: extended ordinary »
REFINES
HEAL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » DPL 4 € serviceState 4 not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » DPL 4}) u {s »
RUN 4} >
END

UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER

ANY

S >

p >
WHERE

grdl: s € SERVICES not theorem >

grd2: p € PEERS not theorem >

grd3: s » p € fail peers not theorem >
THEN

actl: fail peers = fail peers\{s » p} >
END

Page 7

MO9

MAKE PEER AVAIL: extended ordinary »
REFINES
MAKE PEER AVAIL

ANY

p >
WHERE

grdl: p € PEERS not theorem »

grd2: p € unav peers not theorem >
THEN

actl: unav_peers = unav_peers \ {p} »
END

END

Page 8

M10

MACHINE
M10 >
REFINES
MO9
SEES
cos8
VARIABLES
serviceState 4
run_peers >
susp_peers >
fail peers >
dep inst >
token owner
unav_peers >
susp_inst >
rec_inst >instances that are tried to be recontacted
rct inst >instances effectively recontacted after a try
actv_inst >instances activated by token ownes
INVARIANTS
invl: actv_inst € PEERS < (SERVICESxPEERS) not theorem >
inv2: Vs, 1 - s e SERVICES A i € PEERS = finite(actv _inst[{i}]1[{s}])
not theorem >
inv3: V 1d, s - 1d € PEERS A s € SERVICES A s € dom(actv_inst[{ld}])
= 1d = token owner(s) not theorem >
inv4: Vs, i - s e SERVICES A i € PEERS = actv_inst[{i}][{s}] n
run_peers(s) = ¢ not theorem >

inv5: Vs, i - s e SERVICES A i € PEERS = actv_inst[{i}][{s}] n
dep inst[{s}] = @ not theorem >
inv6: Vs, i - s e SERVICES A i € PEERS = actv_inst[{i}][{s}] n

fail peers[{s}] @ not theorem >

inv7: V 1d, s, stt - 1d € PEERS A s € SERVICES A stt € STATES 4 A s »
stt € serviceState 4 A 1d = token owner(s) A stt # FAIL CONFIG 4 = actv_inst
[{ld}]1[{s}] = @ not theorem >

inv8: finite(actv_inst) not theorem >
EVENTS
INITIALISATION: extended ordinary >
THEN

actl: serviceState 4 = InitState 4 >
act2: run_peers := InitSrvcPeers >
act3: Susp_peers = g >
act4: fail peers = g >
act5: dep inst = @ >
act6: token owner = init tok >
act7: unav_peers = g >
act8: susp_inst = @ »

actlo: rec inst
actll: rct inst
actl2: actv inst = ¢ >

= g >
=g >

Page 1

M10

END
MAKE PEER UNAVAIL: extended ordinary »
REFINES
MAKE PEER UNAVAIL
ANY
prs >
E >new values for token owner per service if needed
WHERE
grdl: prs ¢ PEERS not theorem >
grd2: prs ¢ unav peers not theorem >

grd3: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed

grd4: V srv + srv € SERVICES A token owner(srv) & prs = E
(srv) = token owner(srv) not theorem >If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd5: V srv - srv € SERVICES A token owner(srv) € prs A srv ¢
dom(susp peers) = E(srv) € run peers(srv)\(unav _peers u prs u fail peers
[{srv}]) not theorem >if the owner of the token for a service becomes
unavailable and the service is not suspicious,

then a new token owner among available peers is chosen

grd6: V srv - srv € SERVICES A token owner(srv) € prs A srv €
dom(susp peers) = E(srv) € run peers(srv)\(unav_peers u prs u susp peers(srv) u
fail peers[{srv}]) not theorem >if the owner of the token for a service becomes
unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

THEN
actl: unav_peers = unav_peers u prs >the peers in prs become
unavailable
act2: token owner = token owner < E >new value for token owner
per service is given if needed
act3: susp inst = prs < susp inst >the peers in prs can not
suspect instances anymore
act4: rec inst = prs < rec _inst »
acth: rct inst = prs < rct inst »
acto: actv _inst = prs < actv _inst >
END

SUSPECT INST: extended ordinary »
REFINES
SUSPECT INST

Page 2

ANY
S

susp
WHERE

grdl:
grd2:
grd3:

M10

>a service s

>suspicious instances

s € SERVICES not theorem >
susp ¢ PEERS not theorem >
susp = run peers(s) n unav peers not theorem »>instances

in susp are suspicious if the peers running them becomes unavailable

grd4:

s & dom(susp inst[{token owner(s)}]) not theorem >the

member of susp have not yet been suspected for s by the token owner of s

grd5:

is OK
THEN

actl:

s » RUN 4 € serviceState 4 not theorem >the state of s

susp inst = susp inst u ({token owner(s)} x ({s}xsusp))

>the members of susp become suspected instances for s by the token owner of s

END

FAIL:
REFINES

FAIL

ANY
S
WHERE

grdl:
grd2:
grd3:

THEN

actl:

FAIL 4} >

act2:
act3:

END

RECONTACT INST OK:

extended ordinary »

s € SERVICES not theorem »

s » RUN 4 € serviceState 4 not theorem >
susp_inst[{token owner(s)}1[{s}] # & not theorem >
serviceState 4 = (serviceState 4\{s » RUN 4}) u {s »
susp _peers(s) = susp _inst[{token owner(s)}][{s}] >
susp _inst = susp_inst » ({s} < ran(susp _inst)) »

extended ordinary »

RECONTACT INST OK

REFINES
ANY
s
i
WHERE
grdl:
grd2:
grd3:
is SUSPICIOUS
grd4:
peers for s is not empty
grd5:

>a service s
>an instance 1

s € SERVICES not theorem >

i € PEERS not theorem »

s » FAIL 4 € serviceState 4 not theorem >the state of s
susp peers(s) # o not theorem >the set of suspicious

i € susp peers(s)\unav peers not theorem >i is a

suspicious instance of s and is available (can be contacted)

Page 3

M10

grdo: token owner(s) » (s » 1) € rec inst not theorem >the
token owner of s has not yet tried to recontact i
grd7: rec inst[{token owner(s)}]1[{s}] c susp peers(s) not

theorem >the token owner of s has not yet tried to recontact all the suspecious
instances of s
THEN
actl: rec inst = rec _inst u {token owner(s) » (s » 1)} >the
token owner of s has tried to recontact i
act2: rct inst = rct inst u {token owner(s) » (s » i)} »>i is
recontacted by the token owner of s successfully
END

RECONTACT INST KO: extended ordinary »
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >

grd3: s » FAIL 4 € serviceState 4 not theorem >the state of s
is SUSPICIOUS

grd4: susp _peers(s) # o not theorem >the set of suspicious
peers for s is not empty

grd5: i € susp peers(s)nunav_peers not theorem >i is a
suspicious instance of s and is unavailable (can not be contacted)

grdo: token owner(s) » (s » i) € rec inst not theorem >the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token owner(s)}]1[{s}] c susp peers(s) not

theorem >the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
actl: rec_inst = rec _inst u {token owner(s) » (s » 1)} >the
token owner of s has tried to recontact i
END

FAIL DETECT: extended ordinary >
REFINES
FAIL DETECT

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL 4 € serviceState 4 not theorem >
grd5: susp peers(s) # o not theorem >
grd8: rec inst[{token owner(s)}]1[{s}] = susp peers(s) not

theorem »

Page 4

M10

THEN
actl: serviceState 4 = (serviceState 4\{s » FAIL 4}) u {s »
FAIL DETECT 4} »
act2: susp peers(s) = susp peers(s) \ rct inst[{token owner
(s)}1[{s}] »

act3: rec inst rec inst » ({s} < ran(rec inst)) >

act4: rct inst rct inst » ({s} < ran(rct inst)) >

END
IS OK: extended ordinary >
REFINES
IS OK

ANY

S >
WHERE

grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd5: susp peers(s) = o not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » RUN 4} >

END
FAIL ACTIV: extended ordinary >
REFINES
FAIL ACTIV
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL DETECT 4 € serviceState 4 not theorem >
grd5: susp peers(s) # o not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL DETECT 4})
u {s » FAIL ACTIV 4} >

act2: run_peers(s) = run _peers(s) \ susp peers(s) »
act3: susp _peers(s) = o >
act4: fail peers = fail peers u ({s}xsusp peers(s)) >
END
FAIL CONFIGURE: extended ordinary >
REFINES
FAIL CONFIGURE
ANY
S >
WHERE

grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem >

Page 5

M10

grd3: card(run peers(s)) < min inst(s) not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL CONFIG 4} »
END

FAIL IGNORE: extended ordinary »
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL ACTIV 4 € serviceState 4 not theorem >
grd3: card(run peers(s)) = min inst(s) not theorem >
THEN

actl: serviceState 4 = (serviceState 4 \ {s » FAIL ACTIV 4}) u
{s » FAIL IGN 4} »
END

IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » FAIL IGN 4 € serviceState 4 not theorem >
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL IGN 4}) u
{s » RUN 4} »

END
REDEPLOY_ INSTC: not extended ordinary >
ANY
S >a service s
i >an instance i
WHERE

grdl: s € SERVICES not theorem >

grd2: i € PEERS not theorem >

grd3: i € run peers(s) u fail peers[{s}] u unav peers u
dep inst[{s}] not theorem >i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: token owner(s) » (s » 1) & actv inst not theorem >

grd5: s » FAIL CONFIG 4 € serviceState 4 not theorem >

grdo: card(actv_inst[{token owner(s)}1[{s}]) < deplo inst(s)
not theorem >

grd7: card(dep inst[{s}]) + card(run peers(s)) < min inst(s)

Page 6

not theorem

M10

THEN
actl: actv _inst = actv inst u {token owner(s) » (s » 1)}
END
REDEPLOY INSTS: not extended ordinary
REFINES
REDEPLOY INST
ANY
s
WHERE
grdl: s € SERVICES not theorem
grdé6: card(actv_inst[{token owner(s)}]1[{s}]) = deplo inst(s)
not theorem
grd7: card(dep_inst[{s}]) + card(run _peers(s)) < min _inst(s)
not theorem
grds8: s » FAIL CONFIG 4 € serviceState 4 not theorem
WITH
dep: dep=actv_inst[{token owner(s)}1[{s}]
THEN
actl: dep inst = dep inst u ({s}xactv_inst[{token owner(s)}]
[{s}])
act2: actv_inst = actv_inst » ({s} < ran(actv _inst))
END
REDEPLOY: not extended ordinary
REFINES
REDEPLOY
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: s » FAIL CONFIG 4 € serviceState 4 not theorem
grd7: actv_inst[{token owner(s)}]1[{s}]=2 not theorem
grdb6: dep _inst[{s}] # @ not theorem
grd4: card(run_peers(s))+card(dep inst[{s}]) = min inst(s) not
theorem
THEN
actl: serviceState 4 = (serviceState 4 \ {s » FAIL CONFIG 4})
u {s » DPL 4}
act2: run_peers(s) = run peers(s) u dep inst[{s}]
act3: dep inst = {s} < dep inst
END
HEAL: extended ordinary
REFINES
HEAL
ANY

Page 7

M10

S >
WHERE
grdl: s € SERVICES not theorem >
grd2: s » DPL 4 € serviceState 4 not theorem >

THEN
actl: serviceState 4 = (serviceState 4 \ {s » DPL 4}) u {s »
RUN 4} >
END

UNFAIL PEER: extended ordinary »
REFINES
UNFAIL PEER

ANY

S >

p >
WHERE

grdl: s € SERVICES not theorem >

grd2: p € PEERS not theorem >

grd3: s » p € fail peers not theorem >
THEN

actl: fail peers = fail peers\{s » p} >
END

MAKE PEER_AVAIL: extended ordinary >
REFINES
MAKE PEER AVAIL

ANY

p >
WHERE

grdl: p € PEERS not theorem >

grd2: p € unav peers not theorem >
THEN

actl: unav_peers = unav_peers \ {p} >
END

END

Page 8

MACHINE
M11

REFINES
M10

SEES
Cco8

VARIABLES
run_peers
susp_peers
fail peers
dep inst
token owner
unav_peers
susp _inst
rec_inst
rct inst
actv_inst
i state

INVARIANTS
invl:
inv2: Vs

theorem

gluing statel:

M1l

i state € (PEERS x SERVICES) -~ STATES 4
s € SERVICES = token owner(s) » s € dom(i state) not

V s, stt

instances that are tried to be recontacted
instances effectively recontacted after a try
instances activated by token ownes

not theorem

s € SERVICES A stt e STATES 4 A s b stt €

serviceState 4 = (token owner(s) » s) » stt € i state not theorem

gluing state2:

V s, stt

s € SERVICES A stt € STATES 4 A (token_owner

(s) » s) » stt € 1 state = s » stt € serviceState 4 not theorem
p € PEERS A s € SERVICES A (p » s) € dom(i state) = p
= token_owner(s) not theorem

inv3:

EVENTS

INITIALISATION:

THEN
act2:
act3:
act4:
act5s:
acto6:
act7:
act8:

actlo:
actll:
actl2:
actl3:

END

MAKE_PEER_UNAVAIL:

REFINES

Y p, s

not extended ordinary

run_peers := InitSrvcPeers
susp_peers = @

fail peers = @

dep inst =
token owner = init tok
unav_peers = @

susp _inst = g
rec_inst :
rct inst :
actv _inst = g

i state = InitStatus

Q i i

= g
= g

not extended ordinary

MAKE PEER UNAVAIL

ANY

Page 1

M11

prs >
E >new values for token owner per service if needed
is >
WHERE
grdl: prs c PEERS not theorem >
grd2: prs ¢ unav_peers not theorem >

grd3: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed

grd4: i s € (PEERSxSERVICES) -+ STATES 4 not theorem >

grd5: V srv - srv € SERVICES A token owner(srv) & prs = E
(srv) = token owner(srv) not theorem >If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd6: V srv - srv € SERVICES A token owner(srv) € prs A srv ¢
dom(susp peers) = E(srv) € run peers(srv)\(unav_peers u prs u fail peers
[{srv}]) not theorem >if the owner of the token for a service becomes
unavailable and the service is not suspicious,

then a new token owner among available peers is chosen

grd7: V srv - srv € SERVICES A token owner(srv) € prs A srv €
dom(susp peers) = E(srv) € run peers(srv)\(unav _peers u prs u fail peers[{srv}]
U susp peers(srv)) not theorem >if the owner of the token for a service becomes
unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers 1is chosen

grd8: Vp,s - pe€PEERS A s € SERVICES A p» s € dom(i s) =
p = E(s) not theorem >

grdo: V srv - srv € SERVICES = (E(srv) » srv) » i state
(token owner(srv) » srv) € i s not theorem >

THEN
actl: unav_peers := unav_peers u prs >the peers in prs become
unavailable
act2: token_owner := token owner < E >new value for token owner
per service is given if needed
act3: susp _inst = prs < susp inst >the peers in prs can not
suspect instances anymore
act4: rec inst = prs < rec inst >the peers in prs can not try
to recontact instances anymore
act5: rct inst = prs < rct inst >the peers in prs can not
recontact instances anymore
acto: actv _inst = prs < actv _inst >
act7: i state =1 s >
END

Page 2

SUSPECT INST:

REFINES

M11

not extended ordinary >

SUSPECT INST

ANY
S

susp
WHERE

grdl:
grd2:
grd3:

>a service s

>suspicious instances

s € SERVICES not theorem >
susp ¢ PEERS not theorem >
susp = run_peers(s) n unav_peers not theorem >instances

in susp are suspicious if the peers running them becomes unavailable
grd4: s & dom(susp_inst[{token owner(s)}]) not theorem >the
member of susp have not yet been suspected for s by the token owner of s

grd5: i state(token owner(s) » s) = RUN 4 not theorem >the
state of s is 0K
THEN
actl: susp_inst = susp _inst u ({token owner(s)} x ({s}xsusp))
>the members of susp become suspected instances for s by the token owner of s
END
FAIL: not extended ordinary »
REFINES
FAIL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = RUN 4 not theorem >
grd3: susp_inst[{token owner(s)}1[{s}] # & not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL 4 >
act2: susp_peers(s) = susp_inst[{token owner(s)}1[{s}] >
act3: susp _inst = susp _inst » ({s} < ran(susp inst)) >
END

RECONTACT INST OK:
REFINES
RECONTACT INST OK

not extended ordinary >

ANY
s >a service s
i >an instance 1
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i state(token owner(s) » s) = FAIL 4 not theorem »>the
state of s is SUSPICIOUS
grd4: susp peers(s) # ¢ not theorem >the set of suspicious

peers for s is not empty

Page 3

M11

grd5: i € susp peers(s)\unav _peers not theorem >i is a
suspicious instance of s and is available (can be contacted)

grd6: token owner(s) » (s » 1) € rec _inst not theorem »>the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token owner(s)}][{s}] c susp peers(s) not

theorem >the token owner of s has not yet tried to recontact all the suspecious
instances of s
THEN
actl: rec_inst = rec_inst u {token owner(s) » (s » i)} >the
token owner of s has tried to recontact i
act2: rct inst = rct inst u {token owner(s) » (s » 1)} »>1i is
recontacted by the token owner of s successfully
END

RECONTACT INST KO: not extended ordinary >
REFINES
RECONTACT INST KO
ANY
S >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: susp_peers(s) # o not theorem >the set of suspicious
peers for s is not empty

grd5: i € susp _peers(s)nunav_peers not theorem >i is a
suspicious instance of s and is unavailable (can not be contacted)

grdo6: token _owner(s) » (s » i) € rec_inst not theorem >the
token owner of s has not yet tried to recontact 1

grd7: rec_inst[{token owner(s)}]1[{s}] c susp peers(s) not

theorem >the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
actl: rec_inst = rec inst u {token owner(s) » (s » 1)} >the
token owner of s has tried to recontact i
END

FAIL DETECT: not extended ordinary >
REFINES
FAIL DETECT

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL 4 not theorem >
grd5: susp_peers(s) # ¢ not theorem >

Page 4

M1l

grd8: rec_inst[{token owner(s)}1[{s}] = susp peers(s) not
theorem
THEN
actl: i state(token owner(s) » s) = FAIL DETECT 4
act2: susp_peers(s) = susp _peers(s) \ rct inst[{token owner
(s)}1[{s}]
act3: rec inst = rec _inst » ({s} < ran(rec inst))
act4: rct inst = rct inst » ({s} < ran(rct inst))
END
IS OK: not extended ordinary
REFINES
IS 0K
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem
grd5: susp_peers(s) = @ not theorem
THEN
actl: i state(token owner(s) » s) = RUN 4
END
FAIL ACTIV: not extended ordinary
REFINES
FAIL ACTIV
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem
grd5: susp_peers(s) # @ not theorem
THEN
actl: i state(token owner(s) » s) = FAIL ACTIV 4
act2: run_peers(s) = run_peers(s) \ susp peers(s)
act3: susp _peers(s) = @
act4: fail peers = fail peers u ({s}xsusp peers(s))
END
FAIL CONFIGURE: not extended ordinary
REFINES
FAIL CONFIGURE
ANY
s
WHERE
grdl: s € SERVICES not theorem

Page 5

M1l

grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run _peers(s)) < min _inst(s) not theorem >

THEN
actl: i state(token owner(s) » s) = FAIL CONFIG 4 >

END

FAIL IGNORE: not extended ordinary »
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run_peers(s)) = min_inst(s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL IGN 4 >
END
IGNORE: not extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL IGN 4 not theorem >
THEN
actl: i state(token owner(s) » s) = RUN 4 >
END
REDEPLOY_ INSTC: not extended ordinary >
REFINES
REDEPLQOY_ INSTC
ANY
s >a service s
i >an instance 1
WHERE

grdl: s € SERVICES not theorem >

grd2: i € PEERS not theorem >

grd3: i € run peers(s) u fail peers[{s}] u unav peers u
dep inst[{s}] not theorem >i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: token owner(s) » (s » 1) & actv inst not theorem >

grd5: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem
>

grdo: card(actv_inst[{token owner(s)}1[{s}]) < deplo inst(s)
not theorem >

Page 6

grd7:

not theorem
THEN

actl:

END

REDEPLOY_ INSTS:

M1l

card(dep _inst[{s}]) + card(run peers(s)) < min inst(s)

actv inst = actv inst v {token owner(s) » (s » 1)}

not extended ordinary

REFINES
REDEPLOY INSTS
ANY
s
WHERE
grdl: s € SERVICES not theorem
grdé6: card(actv_inst[{token owner(s)}]1[{s}]) = deplo inst(s)
not theorem
grd7: card(dep_inst[{s}]) + card(run _peers(s)) < min _inst(s)
not theorem
grds: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem
THEN
actl: dep inst = dep inst u ({s}xactv_inst[{token owner(s)}]
[{s}])
act2: actv_inst = actv_inst » ({s} < ran(actv _inst))
END
REDEPLOY: not extended ordinary
REFINES
REDEPLOY
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem
grd7: actv_inst[{token owner(s)}][{s}]= not theorem
grdé6: dep _inst[{s}] # @ not theorem
grd4: card(run_peers(s))+card(dep inst[{s}]) = min inst(s) not
theorem
THEN
actl: i state(token owner(s) » s) = DPL 4
act2: run_peers(s) = run peers(s) u dep inst[{s}]
act3: dep inst = {s} < dep inst
END
HEAL: not extended ordinary
REFINES
HEAL
ANY

Page 7

M11

S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = DPL 4 not theorem >
THEN
actl: i state(token owner(s) » s) = RUN 4 >
END

UNFAIL PEER: extended ordinary »
REFINES
UNFAIL PEER

ANY

S >

p >
WHERE

grdl: s € SERVICES not theorem >

grd2: p € PEERS not theorem »

grd3: s » p € fail peers not theorem >
THEN

actl: fail peers = fail peers\{s » p} >
END

MAKE PEER_AVAIL: extended ordinary >
REFINES
MAKE PEER AVAIL

ANY

p >
WHERE

grdl: p € PEERS not theorem >

grd2: p € unav _peers not theorem >
THEN

actl: unav_peers = unav_peers \ {p} >
END

END

Page 8

M12

MACHINE
M12

REFINES
M11

SEES
Cco8

VARIABLES
run_peers
suspc_peers
fail peers
dep inst
token owner
unav_peers

susp _inst
rec_inst instances that are tried to be recontacted
rct inst instances effectively recontacted after a try
actv_inst instances activated by token ownes
i state

INVARIANTS

invl: suspc_peers € (PEERSxSERVICES) -~ P(PEERS) not theorem

inv2: V p, s - pe€PEERS A s € SERVICES A (p » s) € dom(suspc_peers)
= p = token owner(s) not theorem

inv3: V p, s - p € PEERS A s € SERVICES A p = token owner(s) = (p »
s) € dom(suspc_peers) not theorem

gluing tok ownl: V s - s € SERVICES A s € dom(susp_peers) =
susp_peers(s) = suspc_peers(token owner(s) » s) not theorem
EVENTS
INITIALISATION: not extended ordinary
THEN

act2: run_peers = InitSrvcPeers
act3: suspc_peers = InitSuspPeers
act4: fail peers = @
acth: dep inst = o
act6: token _owner := init tok
act7: unav_peers = @
act8: susp_inst = @

actl0: rec inst
actll: rct inst
actl2: actv inst = g

actl3: 1 state = InitStatus

(%]
(%]

END

MAKE PEER UNAVAIL: not extended ordinary
REFINES
MAKE PEER UNAVAIL
ANY
prs
E new values for token owner per service if needed

Page 1

M12

is >
p_s >
WHERE
grdl: prs c PEERS not theorem >
grd2: prs ¢ unav_peers not theorem >

grd3: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed

grd4: i s € (PEERSxSERVICES) -+ STATES 4 not theorem >

grd5: VY srv - srv € SERVICES A token owner(srv) & prs = E
(srv) = token owner(srv) not theorem >If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd6: Y srv - srv € SERVICES A token owner(srv) € prs A
token owner(srv) » srv € dom(suspc _peers) = E(srv) € run peers(srv)\(unav_peers
u prs u fail peers[{srv}]) not theorem >if the owner of the token for a service
becomes unavailable and the service is not suspicious,

then a new token owner among available peers is chosen
grd7: V srv - srv € SERVICES A token owner(srv) € prs A
token owner(srv) » srv € dom(suspc _peers) = E(srv) € run peers(srv)\(unav_peers
u prs u fail peers[{srv}] u suspc peers(token owner(srv) » srv)) not theorem
>1f the owner of the token for a service becomes unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

grd8: Vp,s - pe€PEERS A s € SERVICES A p » s € dom(i s) =
p = E(s) not theorem >

grdo: V srv - srv € SERVICES = (E(srv) » srv) » i state
(token owner(srv) » srv) € i s not theorem >

grdl0: p s € (PEERSxSERVICES) -+ P(PEERS) not theorem >

grdll: VY p, s - p € PEERS A s € SERVICES A p » s € dom(p_s) =
p = E(s) not theorem >

grdl2: V srv - srv € SERVICES = (E(srv) » srv) » suspc _peers
(token owner(srv) » srv) € p s not theorem >

THEN

actl: unav_peers = unav_peers u prs >the peers in prs become
unavailable

act2: token owner := token owner < E >new value for token owner
per service is given if needed

act3: susp inst = prs < susp inst >the peers in prs can not
suspect instances anymore

act4: rec inst = prs < rec inst >the peers in prs can not try
to recontact instances anymore

acth: rct inst = prs < rct inst >the peers in prs can not

recontact instances anymore

Page 2

M12

acto: actv _inst = prs < actv _inst >
act7: i state =1 s >
act8: suspc_peers = p_ S >

END

SUSPECT INST: extended ordinary »
REFINES
SUSPECT INST

ANY
S >a service s
susp >suspicious instances
WHERE
grdl: s € SERVICES not theorem >
grd2: susp ¢ PEERS not theorem >
grd3: susp = run _peers(s) n unav _peers not theorem »>instances
in susp are suspicious if the peers running them becomes unavailable
grd4: s & dom(susp inst[{token owner(s)}]) not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: i state(token owner(s) » s) = RUN 4 not theorem >the
state of s is 0K
THEN
actl: susp_inst = susp_inst u ({token owner(s)} x ({s}xsusp))
>the members of susp become suspected instances for s by the token owner of s
END
FAIL: not extended ordinary »
REFINES
FAIL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = RUN 4 not theorem >
grd3: susp_inst[{token owner(s)}1[{s}] # & not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL 4 >
act2: suspc_peers(token owner(s) » s) = susp inst[{token owner
(s)}1{{s}]
act3: susp _inst = susp inst » ({s} < ran(susp inst)) >
END
RECONTACT INST OK: not extended ordinary »
REFINES
RECONTACT INST OK
ANY
s >a service s
i >an instance 1
WHERE

Page 3

M12

grdl: s € SERVICES not theorem >

grd2: i € PEERS not theorem >

grd3: i state(token owner(s) » s) = FAIL 4 not theorem »>the
state of s is SUSPICIOUS

grd4: suspc _peers(token owner(s) » s) # @ not theorem >the set
of suspicious peers for s is not empty

grd5: i € suspc_peers(token owner(s) » s)\unav_peers not
theorem >i is a suspicious instance of s and is available (can be contacted)

grd6: token owner(s) » (s » 1) € rec _inst not theorem >the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token owner(s)}][{s}] c suspc peers

(token owner(s) » s) not theorem >the token owner of s has not yet tried to
recontact all the suspecious instances of s
THEN
actl: rec_inst = rec_inst u {token owner(s) » (s » 1)} >the
token owner of s has tried to recontact i
act2: rct inst = rct inst v {token owner(s) » (s » 1)} »>1i is
recontacted by the token owner of s successfully
END

RECONTACT _INST KO: not extended ordinary >
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspc_peers(token owner(s) » s) # g not theorem >the set
of suspicious peers for s is not empty
grd5: i € suspc_peers(token owner(s) » s)nunav_peers not

theorem >i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: token owner(s) » (s » 1) € rec_inst not theorem >the
token owner of s has not yet tried to recontact i
grd7: rec_inst[{token owner(s)}]1[{s}] c suspc peers

(token owner(s) » s) not theorem >the token owner of s has not yet tried to
recontact all the suspecious instances of s

THEN
actl: rec inst = rec_inst u {token owner(s) » (s » i)} »>the
token owner of s has tried to recontact i
END

FAIL DETECT: not extended ordinary »
REFINES

Page 4

M12

FAIL DETECT

ANY
S
WHERE

grdl:
grd2:
grd5:
grds:

(token owner(s) » s)
THEN

actl:
act2:

(token owner(s) » s)

s € SERVICES not theorem

i state(token owner(s) » s) = FAIL 4 not theorem

suspc _peers(token owner(s) » s) # g not theorem

rec inst[{token owner(s)}]1[{s}] = suspc peers
not theorem

i state(token owner(s) » s) = FAIL DETECT 4
suspc_peers(token owner(s) » s) = suspc_peers
\ rct inst[{token owner(s)}]1[{s}]

act3: rec inst = rec inst » ({s} < ran(rec inst))
act4: rct inst = rct inst » ({s} < ran(rct _inst))
END
IS 0OK: not extended ordinary
REFINES
IS OK
ANY
S
WHERE
grdl: s € SERVICES not theorem
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem
grd5: suspc_peers(token owner(s) » s) = g not theorem
THEN
actl: i state(token owner(s) » s) = RUN 4
END
FAIL ACTIV: not extended ordinary
REFINES
FAIL ACTIV
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem
grd5: suspc_peers(token owner(s) » s) # @ not theorem
THEN
actl: i state(token owner(s) » s) = FAIL ACTIV 4
act2: run_peers(s) = run_peers(s) \ suspc_peers(token owner(s)
b s)
act3: fail peers = fail peers u ({s}xsuspc peers(token owner
(s) » s))
act4: suspc_peers(token owner(s) » s) =g

Page 5

M12

END
FAIL CONFIGURE: extended ordinary »
REFINES
FAIL CONFIGURE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run peers(s)) < min inst(s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL CONFIG 4 >
END

FAIL IGNORE: extended ordinary >
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run_peers(s)) = min_inst(s) not theorem >
THEN
actl: 1 state(token owner(s) » s) := FAIL IGN 4 >
END
IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE

grdl: s € SERVICES not theorem >

grd2: i state(token owner(s) » s) = FAIL IGN 4 not theorem »
THEN

actl: i state(token owner(s) » s) := RUN 4 >
END

REDEPLOY INSTC: extended ordinary >
REFINES
REDEPLQOY INSTC
ANY
s >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >

Page 6

M12

grd2: i € PEERS not theorem »

grd3: i & run peers(s) u fail peers[{s}] u unav peers u
dep inst[{s}] not theorem >i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: token owner(s) » (s » 1) € actv inst not theorem >

grd5: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem
>

grdo: card(actv _inst[{token owner(s)}]1[{s}]) < deplo inst(s)
not theorem >

grd7: card(dep inst[{s}]) + card(run peers(s)) < min inst(s)
not theorem >
THEN
actl: actv inst = actv inst u {token owner(s) » (s » 1)} >
END
REDEPLOY_ INSTS: extended ordinary >
REFINES
REDEPLOY INSTS
ANY
S >
WHERE

grdl: s € SERVICES not theorem >

grd6: card(actv_inst[{token owner(s)}][{s}]) = deplo inst(s)
not theorem >

grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)
not theorem >

grd8: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem

>

THEN
actl: dep _inst = dep inst u ({s}xactv inst[{token owner(s)}]
[{s}]) »
act2: actv_inst = actv_inst » ({s} < ran(actv_inst)) >
END
REDEPLOY: extended ordinary »
REFINES
REDEPLOY
ANY
S >
WHERE

grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem

grd7: actv inst[{token owner(s)}1[{s}]=2 not theorem >
grdé6: dep inst[{s}] # @ not theorem >
grd4: card(run _peers(s))+card(dep inst[{s}]) = min inst(s) not

theorem »
THEN

Page 7

M12

actl: i state(token owner(s) » s) = DPL 4 >
act2: run _peers(s) = run peers(s) u dep inst[{s}] »
act3: dep inst = {s} < dep inst >
END
HEAL: extended ordinary >
REFINES
HEAL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = DPL 4 not theorem >
THEN
actl: i state(token owner(s) » s) = RUN 4 >
END
UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER
ANY
S >
p >
WHERE
grdl: s € SERVICES not theorem >
grd2: p € PEERS not theorem >
grd3: s » p € fail peers not theorem >
THEN
actl: fail peers = fail peers\{s » p} >
END

MAKE PEER_AVAIL: extended ordinary >
REFINES
MAKE PEER AVAIL

ANY

p >
WHERE

grdl: p € PEERS not theorem »

grd2: p € unav peers not theorem >
THEN

actl: unav_peers = unav_peers \ {p} >
END

END

Page 8

M13

MACHINE
M13

REFINES
M12

SEES
Cco8

VARIABLES
run_peers
suspc_peers
fail peers
dep inst
token owner
unav_peers

suspc _inst
rec_inst instances that are tried to be recontacted
rct inst instances effectively recontacted after a try
actv_inst instances activated by token ownes
i state

INVARIANTS

invl: suspc_inst € (PEERSxSERVICES) -- P(PEERS) not theorem

inv2: V p, s - pe€PEERS A s € SERVICES A (p » s) € dom(suspc_inst) =
p = token owner(s) not theorem

inv3: V p, s - p € PEERS A s € SERVICES A p = token owner(s) = (p »
s) € dom(suspc_inst) not theorem

gluing tok ownl: Vp, s+ pe€PEERS A s € SERVICES A (p » s) € dom
(suspc_inst) = susp inst[{p}]1[{s}] = suspc _inst(p » s) not theorem
EVENTS
INITIALISATION: not extended ordinary
THEN

act2: run_peers = InitSrvcPeers
act3: suspc_peers = InitSuspPeers
act4: fail peers = @
acth: dep inst = o
act6: token _owner := init tok
act7: unav_peers = @
act8: suspc_inst InitSuspPeers

actl0: rec inst

actll: rct inst

actl2: actv inst = g

actl3: 1 state = InitStatus
END

Q Q i i

MAKE PEER UNAVAIL: not extended ordinary
REFINES
MAKE PEER UNAVAIL
ANY
prs
E new values for token owner per service if needed

Page 1

M13

is >
p_s >~
s i >
WHERE
grdl: prs c PEERS not theorem >
grd2: prs ¢ unav_peers not theorem >

grd3: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed

grd4: i s € (PEERSxSERVICES) -+ STATES 4 not theorem >

grd5: V srv - srv € SERVICES A token owner(srv) & prs = E
(srv) = token owner(srv) not theorem >If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd6: V srv - srv € SERVICES A token owner(srv) € prs A
token owner(srv) » srv € dom(suspc_peers) = E(srv) € run peers(srv)\(unav_peers
u prs u fail peers[{srv}]) not theorem >if the owner of the token for a service
becomes unavailable and the service is not suspicious,

then a new token owner among available peers is chosen
grd7: VYV srv - srv € SERVICES A token owner(srv) € prs A
token owner(srv) » srv € dom(suspc _peers) = E(srv) € run peers(srv)\(unav_peers
u prs u fail peers[{srv}] u suspc peers(token owner(srv) » srv)) not theorem
>1f the owner of the token for a service becomes unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers 1is chosen

grd8: Vp,s - pe€PEERS A s € SERVICES A p» s € dom(i s) =
p = E(s) not theorem >

grdo: V srv - srv € SERVICES = (E(srv) » srv) » i state
(token owner(srv) » srv) € i s not theorem >

grdl0: p s € (PEERSxSERVICES) -+ P(PEERS) not theorem >

grdll: V p, s - p € PEERS A s € SERVICES A p » s € dom(p_s) =
p = E(s) not theorem >

grdl2: V srv - srv € SERVICES = (E(srv) » srv) » suspc _peers
(token owner(srv) » srv) € p s not theorem >

grdl3: s i € (PEERSxSERVICES) -- P(PEERS) not theorem >

grdl4: V p, s - p € PEERS A s € SERVICES A p » s € dom(s i) =
p = E(s) not theorem >

grdl5: V srv - srv € SERVICES A token owner(srv) & prs = (E
(srv) » srv) » suspc inst(E(srv) » srv) € s i not theorem >

grdle: V srv - srv € SERVICES A token owner(srv) € prs = (E
(srv) » srv) » g € s i not theorem >

THEN

actl: unav_peers = unav_peers u prs >the peers in prs become

unavailable

Page 2

M13

act2: token owner = token owner < E >new value for token owner
per service is given if needed

act3: rec inst = prs < rec inst >the peers in prs can not try
to recontact instances anymore

act4: rct inst = prs < rct inst >the peers in prs can not
recontact instances anymore

acth: actv _inst = prs < actv inst >

acto: i state =1 s >

act7: suspc _peers = p s >

act8: suspc inst = s i >

END

SUSPECT INST: not extended ordinary >
REFINES
SUSPECT INST

ANY
S >a service s
susp >suspicious instances
WHERE
grdl: s € SERVICES not theorem >
grd2: susp ¢ PEERS not theorem >
grd3: susp = run_peers(s) n unav_peers not theorem >instances
in susp are suspicious if the peers running them becomes unavailable
grd4: suspc_inst(token owner(s) » s) = g not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: i state(token owner(s) » s) = RUN 4 not theorem >the
state of s is OK
grd6: susp # ¢ not theorem >
THEN
actl: suspc_inst(token owner(s) » s) = susp >the members of
susp become suspected instances for s by the token owner of s
END
FAIL: not extended ordinary »
REFINES
FAIL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = RUN 4 not theorem >
grd3: suspc_inst(token owner(s) » s) # g not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL 4 >
act2: suspc_peers(token owner(s) » s) = suspc_inst(token owner
(s) »s) >
act3: suspc _inst(token owner(s) » s) =g >
END

Page 3

M13

RECONTACT INST OK: extended ordinary »
REFINES
RECONTACT INST OK
ANY
s >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem »
grd3: i state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspc peers(token owner(s) » s) # o not theorem >the set
of suspicious peers for s is not empty

grd5: i € suspc_peers(token owner(s) » s)\unav_peers not
theorem >i is a suspicious instance of s and is available (can be contacted)

grdo: token owner(s) » (s » 1) € rec inst not theorem >the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token owner(s)}]1[{s}] c suspc peers

(token owner(s) » s) not theorem >the token owner of s has not yet tried to
recontact all the suspecious instances of s
THEN
actl: rec_inst = rec_inst u {token owner(s) » (s » 1)} >the
token owner of s has tried to recontact i
act2: rct_inst = rct inst u {token owner(s) » (s » i)} »>1i is
recontacted by the token owner of s successfully
END

RECONTACT INST KO: extended ordinary >
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance 1
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspc peers(token owner(s) » s) # @ not theorem >the set
of suspicious peers for s is not empty
grd5: i € suspc peers(token owner(s) » s)nunav_peers not

theorem >i is a suspicious instance of s and is unavailable (can not be
contacted)

grdo: token owner(s) » (s » 1) € rec inst not theorem >the
token owner of s has not yet tried to recontact i
grd7: rec inst[{token owner(s)}]1[{s}] c suspc peers

(token owner(s) » s) not theorem >the token owner of s has not yet tried to

Page 4

M13

recontact all the suspecious instances of s

THEN
actl: rec inst = rec _inst u {token owner(s) » (s » 1)} >the
token owner of s has tried to recontact i
END

FAIL DETECT: extended ordinary »
REFINES
FAIL DETECT

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL 4 not theorem >
grd5: suspc_peers(token owner(s) » s) # @ not theorem >
grd8: rec_inst[{token owner(s)}]1[{s}] = suspc peers
(token owner(s) » s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL DETECT 4 »
act2: suspc_peers(token owner(s) » s) = suspc_peers
(token owner(s) » s) \ rct inst[{token owner(s)}I[{s}] >
act3: rec_inst = rec_inst » ({s} < ran(rec_inst)) >
act4: rct inst = rct inst » ({s} < ran(rct _inst)) >
END
IS OK: extended ordinary >
REFINES
IS OK
ANY
S >
WHERE

grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem

grd5: suspc_peers(token owner(s) » s) = o not theorem >
THEN
actl: i state(token owner(s) » s) = RUN 4 >
END
FAIL ACTIV: extended ordinary »
REFINES
FAIL ACTIV
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem

Page 5

M13

grd5: suspc_peers(token owner(s) » s) # o not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL ACTIV 4 >
act2: run_peers(s) = run _peers(s) \ suspc_peers(token owner(s)
b s) >
act3: fail peers = fail peers u ({s}xsuspc peers(token owner
(s) » s)) >
act4: suspc peers(token owner(s) » s) =g >
END
FAIL CONFIGURE: extended ordinary »
REFINES
FAIL CONFIGURE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run peers(s)) < min inst(s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL CONFIG 4 >
END

FAIL IGNORE: extended ordinary >
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run_peers(s)) = min _inst(s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL IGN 4 >
END
IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE

grdl: s € SERVICES not theorem >

grd2: i state(token owner(s) » s) = FAIL IGN 4 not theorem »
THEN

actl: i state(token owner(s) » s) = RUN 4 >
END

Page 6

M13

REDEPLOY INSTC: extended ordinary »
REFINES
REDEPLOY INSTC
ANY
s >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem »
grd3: i & run peers(s) u fail peers[{s}] u unav peers u
dep inst[{s}] not theorem >i does not run s, is not failed for s, is not
unavailable and is not already activated for s
grd4: token owner(s) » (s » 1) & actv inst not theorem >
grd5: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem
>
grd6: card(actv_inst[{token owner(s)}]1[{s}]) < deplo inst(s)
not theorem »

grd7: card(dep _inst[{s}]) + card(run peers(s)) < min inst(s)
not theorem >
THEN
actl: actv_inst = actv _inst u {token owner(s) » (s » 1)} >
END
REDEPLOY_ INSTS: extended ordinary >
REFINES
REDEPLOY_ INSTS
ANY
S >
WHERE

grdl: s € SERVICES not theorem >

grd6: card(actv_inst[{token owner(s)}]1[{s}]) = deplo inst(s)
not theorem >

grd7: card(dep_inst[{s}]) + card(run peers(s)) < min_inst(s)
not theorem >

grd8: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem

>

THEN
actl: dep inst = dep inst u ({s}xactv inst[{token owner(s)}]
[{s}]) »
act2: actv _inst = actv_inst » ({s} < ran(actv_inst)) >
END
REDEPLOY: extended ordinary >
REFINES
REDEPLOY
ANY
S >
WHERE

Page 7

M13

grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem

grd7: actv inst[{token owner(s)}1[{s}]=2 not theorem >
grdé6: dep inst[{s}] # @ not theorem >
grd4: card(run peers(s))+card(dep inst[{s}]) = min inst(s) not
theorem >
THEN
actl: i state(token owner(s) » s) = DPL 4 >
act2: run peers(s) = run peers(s) u dep inst[{s}] »
act3: dep inst = {s} < dep inst >
END
HEAL: extended ordinary >
REFINES
HEAL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = DPL_4 not theorem >
THEN
actl: i state(token owner(s) » s) = RUN 4 >
END
UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER
ANY
S >
p >
WHERE
grdl: s € SERVICES not theorem >
grd2: p € PEERS not theorem >
grd3: s » p e fail peers not theorem >
THEN
actl: fail peers = fail peers\{s » p} >
END

MAKE PEER AVAIL: extended ordinary »
REFINES
MAKE PEER AVAIL

ANY
p >
WHERE
grdl: p € PEERS not theorem »
grd2: p € unav peers not theorem >
THEN

Page 8

M13

actl: unav_peers = unav_peers \ {p} >
END

END

Page 9

M14

MACHINE
M14

REFINES
M13

SEES
Cco8

VARIABLES
run_peers
suspc_peers
failr peers
dep instc
token owner
unav_peers

suspc _inst
rect inst instances that are tried to be recontacted
rctt inst instances effectively recontacted after a try
actv_inst instances activated by token ownes
i state

INVARIANTS

invl: rect inst € (PEERSxSERVICES) -~ P(PEERS) not theorem

inv2: V p, s - p € PEERS A s € SERVICES A (p » s) € dom(rect inst) =
p = token owner(s) not theorem

inv3: V p, s - p € PEERS A s € SERVICES A p = token owner(s) = (p »
s) € dom(rect inst) not theorem

gluing tok own recl: V p, s+ pe€PEERS A s € SERVICES A (p p s) €
dom(rect inst) = rec inst[{p}]1[{s}] = rect inst(p » s) not theorem

invé4: rctt inst € (PEERSxSERVICES) - P(PEERS) not theorem

inv5: Vp, s - p € PEERS A s € SERVICES A (p » s) € dom(rctt inst) =
p = token owner(s) not theorem

inv6: V p, s - p € PEERS A s € SERVICES A p = token owner(s) = (p »
s) € dom(rctt _inst) not theorem

gluing tok own rctl: V p, s+ pe€PEERS A s € SERVICES A (p p s) €
dom(rctt inst) = rct inst[{p}]1[{s}] = rctt inst(p » s) not theorem

inv7: failr peers € SERVICES — P(PEERS) not theorem

gluing fail 1: V s - s € SERVICES = fail peers[{s}] = failr peers(s)
not theorem

inv8: dep instc € SERVICES — P(PEERS) not theorem

gluing act 1: V s - s € SERVICES = dep _inst[{s}] = dep instc(s) not
theorem

EVENTS
INITIALISATION: not extended ordinary
THEN

act2: run peers = InitSrvcPeers
act3: suspc_peers = InitSuspPeers
act4: failr peers = InitFail
acth: dep _instc = InitFail
acto: token owner = init tok
act7: unav_peers = @

Page 1

M14

act8: suspc_inst = InitSuspPeers >
actlo: rect inst InitSuspPeers >
actll: rctt inst InitSuspPeers >
actl2: actv inst = ¢ >

i i i

actl3: 1 state = InitStatus >
END
MAKE PEER UNAVAIL: not extended ordinary »
REFINES
MAKE PEER UNAVAIL
ANY
prs >
E >new values for token owner per service if needed
is >
p_s >~
s i >
rc.s >
rt s >
WHERE
grdl: prs ¢ PEERS not theorem >
grd2: prs ¢ unav_peers not theorem >

grd3: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed

grd4: i s € (PEERSxSERVICES) -~ STATES 4 not theorem >
grd5: p_s € (PEERSxSERVICES) - P(PEERS) not theorem >
grd6: s 1 € (PEERSxSERVICES) -~ P(PEERS) not theorem >

grd7: rt s € (PEERSxSERVICES) - P(PEERS) not theorem >

grd8: rc s € (PEERSxSERVICES) - P(PEERS) not theorem >

grd9: V srv - srv € SERVICES A token owner(srv) & prs = E
(srv) = token owner(srv) not theorem >If the token owner of a service srv does
not belong to prs, the token owner is not changed

grdl0: V srv - srv € SERVICES A token owner(srv) € prs = E
(srv) € run_peers(srv)\(unav _peers u prs u failr peers(srv) u suspc_peers
(token owner(srv) » srv)) not theorem >if the owner of the token for a service
becomes unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers 1is chosen

grdll: dom(i s) = E~ A dom(p s) = dom(i s) A dom(s i) = dom
(i s) A dom(rc s) = dom(i s) A dom(rt s) = dom(i s) not theorem >

grdl2: V srv - srv € SERVICES = ((E(srv) » srv) » i state
(token owner(srv) » srv) € i s A (E(srv) p» srv) » suspc peers(token owner(srv) »
srv) € p_s) not theorem >

grdl3: V srv - srv € SERVICES A token owner(srv) & prs = ((E
(srv) » srv) » suspc inst(E(srv) » srv) € s i) A ((E(srv) » srv) » rctt inst(E

Page 2

M14

(srv) » srv) € rt s) A ((E(srv) » srv) » rect inst(E(srv) » srv) € rc_s) not
theorem >

grdl4: V srv - srv € SERVICES A token owner(srv) € prs = ((E
(srv) » srv) » g € s i) A ((E(srv) » srv) » g € rt s) A ((E(srv) » srv) » g €
rc s) not theorem »

THEN
actl: unav_peers := unav_peers u prs >the peers in prs become
unavailable
act2: token owner = token owner < E >new value for token owner
per service is given if needed
act3: rect inst = rc_s >the peers in prs can not try to
recontact instances anymore
act4: rctt inst = rt s >the peers in prs can not recontact
instances anymore
acth: actv_inst = prs < actv _inst >
acto: i state =1 s >
act7: suspc_peers = p s >
act8: suspc_inst = s i >
END

SUSPECT INST: extended ordinary >
REFINES
SUSPECT INST

ANY
s >a service s
susp >suspicious instances
WHERE
grdl: s € SERVICES not theorem >
grd2: susp ¢ PEERS not theorem >
grd3: susp = run_peers(s) n unav_peers not theorem >instances
in susp are suspicious if the peers running them becomes unavailable
grd4: suspc_inst(token owner(s) » s) = @ not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: i state(token owner(s) » s) = RUN 4 not theorem >the
state of s is OK
grdo: susp # o not theorem >
THEN
actl: suspc_inst(token owner(s) » s) := susp >the members of
susp become suspected instances for s by the token owner of s
END
FAIL: extended ordinary >
REFINES
FAIL
ANY
S >
WHERE

grdl: s € SERVICES not theorem >

Page 3

M14

grd2: 1 state(token owner(s) » s) = RUN 4 not theorem >
grd3: suspc_inst(token owner(s) » s) # @ not theorem »
THEN
actl: i state(token owner(s) » s) = FAIL 4 »
act2: suspc _peers(token owner(s) » s) = suspc _inst(token owner
(s) » s) >
act3: suspc _inst(token owner(s) » s) =g >
END
RECONTACT INST OK: not extended ordinary »
REFINES
RECONTACT INST OK
ANY
S >a service s
i >an instance i
WHERE

grdl: s € SERVICES not theorem >

grd2: i € PEERS not theorem >

grd3: i state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspc_peers(token owner(s) » s) # g not theorem >the set
of suspicious peers for s is not empty

grd5: i € suspc_peers(token owner(s) » s)\unav_peers not
theorem >i is a suspicious instance of s and is available (can be contacted)

grdo: i & rect _inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i

grd7: rect inst(token owner(s) » s) c suspc_peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect_inst(token owner(s) » s) = rect inst(token_owner(s)
b s) u {i} >the token owner of s has tried to recontact i
act2: rctt_inst(token owner(s) » s) = rctt inst(token_owner(s)
» s) u {i} »i is recontacted by the token owner of s successfully
END
RECONTACT INST KO: not extended ordinary >
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance i
WHERE

grdl: s € SERVICES not theorem >

grd2: i € PEERS not theorem >

grd3: i state(token owner(s) » s) = FAIL 4 not theorem »>the
state of s is SUSPICIOUS

grd4: suspc_peers(token owner(s) » s) # @ not theorem >the set

Page 4

M14

of suspicious peers for s is not empty

grd5: i € suspc peers(token owner(s) p» s)nunav_peers not
theorem >i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i € rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i
grd7: rect inst(token owner(s) » s) c suspc peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
END

FAIL DETECT: not extended ordinary >
REFINES
FAIL DETECT

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL 4 not theorem >
grd5: suspc_peers(token owner(s) » s) # g not theorem >
grds8: rect inst(token owner(s) » s) = suspc_peers(token owner
(s) » s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL DETECT 4
act2: suspc_peers(token owner(s) » s) = suspc_peers
(token owner(s) » s) \ rctt _inst(token owner(s) » s) >
act3: rect inst(token owner(s) » s) =@ >
act4: rctt inst(token owner(s) » s) =@ >
END
IS OK: extended ordinary >
REFINES
IS OK
ANY
S >
WHERE

grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem

grd5: suspc_peers(token owner(s) » s) = g not theorem >
THEN
actl: i state(token owner(s) » s) = RUN 4 >
END
FAIL ACTIV: not extended ordinary »

Page 5

M14

REFINES
FAIL ACTIV
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem

grd5: suspc peers(token owner(s) » s) # ¢ not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL ACTIV 4 >
act2: run_peers(s) = run _peers(s) \ suspc_peers(token owner(s)
b s) >
act3: failr peers(s) = failr _peers(s) u suspc_peers
(token owner(s) » s) >
act4: suspc_peers(token owner(s) » s) =g >
END
FAIL CONFIGURE: extended ordinary >
REFINES
FAIL CONFIGURE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run peers(s)) < min inst(s) not theorem >
THEN
actl: 1 state(token owner(s) » s) := FAIL CONFIG 4 >
END
FAIL IGNORE: extended ordinary >
REFINES
FAIL IGNORE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run peers(s)) = min inst(s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL IGN 4 >
END
IGNORE: extended ordinary >
REFINES
IGNORE
ANY

Page 6

M14

S >
WHERE

grdl: s € SERVICES not theorem >

grd2: i state(token owner(s) » s) = FAIL IGN 4 not theorem »
THEN

actl: i state(token owner(s) » s) = RUN 4 >
END

REDEPLOY INSTC: not extended ordinary »
REFINES
REDEPLOY INSTC
ANY
s >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i € run _peers(s) v failr peers(s) u unav_peers u
dep instc(s) not theorem >i does not run s, is not failed for s, is not
unavailable and is not already activated for s
grd4: token _owner(s) » (s » i) € actv_inst not theorem >
grd5: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem
>
grd6: card(actv_inst[{token owner(s)}]1[{s}]) < deplo inst(s)
not theorem >

grd7: card(dep_instc(s)) + card(run _peers(s)) < min_inst(s)
not theorem >
THEN
actl: actv_inst = actv_inst u {token owner(s) » (s » 1)} >
END
REDEPLOY_ INSTS: not extended ordinary >
REFINES
REDEPLQOY_ INSTS
ANY
S >
WHERE

grdl: s € SERVICES not theorem >

grdo6: card(actv_inst[{token owner(s)}]1[{s}]) = deplo inst(s)
not theorem >

grd7: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)
not theorem >

grds8: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem

THEN
actl: dep instc(s) = dep instc(s) u actv inst[{token owner
(s)}1l{s}] »

act2: actv inst = actv inst » ({s} < ran(actv inst)) >

Page 7

M14
END

REDEPLOY: not extended ordinary »
REFINES
REDEPLOY
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem

grd7: actv inst[{token owner(s)}]1[{s}]=2 not theorem >
grd6: dep instc(s) # @ not theorem >
grd4: card(run_peers(s))+card(dep _instc(s)) = min_inst(s) not
theorem >
THEN
actl: i state(token owner(s) » s) = DPL 4 >
act2: run_peers(s) = run _peers(s) u dep instc(s) >
act3: dep instc(s) = @ >
END
HEAL: extended ordinary »
REFINES
HEAL
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: 1 state(token owner(s) » s) = DPL 4 not theorem >
THEN
actl: 1 state(token owner(s) » s) = RUN 4 >
END

UNFAIL PEER: not extended ordinary >
REFINES
UNFAIL PEER

ANY
S >
p >
WHERE
grdl: s € SERVICES not theorem >
grd2: p € PEERS not theorem >
grd3: p € failr peers(s) not theorem >
THEN
actl: failr peers(s) = failr peers(s)\{p} >
END

MAKE PEER AVAIL: extended ordinary »

Page 8

M14

REFINES

MAKE PEER AVAIL
ANY

p >
WHERE

grdl: p € PEERS not theorem »

grd2: p € unav peers not theorem >
THEN

actl: unav peers := unav peers \ {p} >
END

END

Page 9

M15

MACHINE
M15

REFINES
M14

SEES
Cco8

VARIABLES
run_peers
suspc_peers
failr peers
dep instc
token owner
unav_peers

suspc _inst
rect inst instances that are tried to be recontacted
rctt inst instances effectively recontacted after a try
actv_instc instances activated by token ownes
i state

INVARIANTS

invl: actv_instc € (PEERSxSERVICES) -~ P(PEERS) not theorem

inv2: V p, s - pe€PEERS A s € SERVICES A (p » s) € dom(actv _instc) =
p = token owner(s) not theorem

inv3: V p, s - p € PEERS A s € SERVICES A p
s) € dom(actv_instc) not theorem

token owner(s) = (p »

gluing tok own recl: V p, s+ pe€PEERS A s € SERVICES A (p p s) €
dom(actv_instc) = actv _inst[{p}]1[{s}] = actv _instc(p » s) not theorem
EVENTS
INITIALISATION: not extended ordinary
THEN

act2: run_peers = InitSrvcPeers
act3: suspc_peers = InitSuspPeers
act4: failr peers = InitFail
act5: dep instc = InitFail
act6: token _owner := init tok
act7: unav_peers = @
act8: suspc_inst = InitSuspPeers
actl0: rect inst = InitSuspPeers
actll: rctt inst = InitSuspPeers

actl2: actv instc = InitSuspPeers
actl3: 1 state = InitStatus
END

MAKE PEER UNAVAIL: not extended ordinary
REFINES
MAKE PEER UNAVAIL
ANY
prs
E new values for token owner per service if needed

Page 1

M15

is >
p_s >~
s i >
rc.s >
rt s >
ac i >
WHERE
grdl: prs ¢ PEERS not theorem >
grd2: prs ¢ unav_peers not theorem >

grd3: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed
grd4: i s € (PEERSxSERVICES) -+ STATES 4 not theorem >
grd5: p s € (PEERSxSERVICES) -+ P(PEERS) not theorem >
grd6: s i € (PEERSxSERVICES) -+ P(PEERS) not theorem >
grd7: rt s € (PEERSxSERVICES) -- P(PEERS) not theorem >
grds8: rc s € (PEERSxSERVICES) -- P(PEERS) not theorem >
grd9: ac_1 € (PEERSxSERVICES) -~ P(PEERS) not theorem >
grdl0: dom(i s) = E~ A dom(p_s) = dom(i s) A dom(s i) = dom
(i s) A dom(rc_s) = dom(i s) A dom(rt s) = dom(i s) A dom(ac_i) = dom(i s) not
theorem >
grdll: V srv - srv € SERVICES A token owner(srv) € prs
=
E(srv) = token owner(srv) A
s 1(E(srv) » srv) = suspc_inst(E(srv) » srv) A
rt s(E(srv) » srv) rctt inst(E(srv) » srv) A
rc s(E(srv) » srv) rect inst(E(srv) » srv) A
ac_i(E(srv) p» srv) actv_instc(E(srv) » srv) not
theorem >If the token owner of a service srv does not belong to prs, the token
owner is not changed
grdl2: V srv - srv € SERVICES A token owner(srv) € prs
=
E(srv) € run_peers(srv)\(unav_peers u prs u failr peers
(srv) u suspc_peers(token owner(srv) p» srv)) A
s i(E(srv) p srv) = o
rt s(E(srv) » srv)
rc s(E(srv) » srv)
ac i(E(srv) » srv) g not theorem >if the owner of the
token for a service becomes unavailable, and the service

A
A
A

Q ®

possess suspicious
instances, then a new token owner among available and not
suspicious peers 1is
chosen
grdl3: V srv - srv € SERVICES = i s(E(srv) » srv) = i state
(token owner(srv) p» srv) A p s(E(srv) » srv) = suspc peers(token owner(srv) »
srv) not theorem >
THEN
actl: unav_peers = unav_peers u prs >the peers in prs become
unavailable

Page 2

act2:

M15

token owner = token owner < E >new value for token owner

per service is given if needed

act3:

rect inst = rc_s >the peers in prs can not try to

recontact instances anymore

act4:
instances anymore
act5s:
acto6:
act7:
act8:
END

SUSPECT INST:

REFINES

rctt inst :

rt s >the peers in prs can not recontact

actv _instc = ac i »
i state =1 s >

Suspc_peers = p S >
suspc inst = s i >

extended ordinary >

SUSPECT INST

ANY
s
susp
WHERE
grdl:
grd2:
grd3:

>a service s

>suspicious instances

s € SERVICES not theorem >
susp ¢ PEERS not theorem >
susp = run_peers(s) n unav_peers not theorem >instances

in susp are suspicious if the peers running them becomes unavailable

grd4:

suspc_inst(token owner(s) » s) = g not theorem >the

member of susp have not yet been suspected for s by the token owner of s

grd5:

state of s is OK
grd6:

THEN
actl:

i state(token owner(s) » s) = RUN 4 not theorem >the
susp # o not theorem >

suspc_inst(token owner(s) » s) = susp >the members of

susp become suspected instances for s by the token owner of s

END

FAIL:
REFINES

FAIL

ANY
S
WHERE
grdl:
grd2:
grd3:
THEN
actl:
act2:
(s) »s) »
act3:
END

extended ordinary >

s € SERVICES not theorem >
i state(token owner(s) » s) = RUN 4 not theorem >
suspc inst(token owner(s) » s) # @ not theorem >

i state(token owner(s) » s) = FAIL 4 >
suspc_peers(token owner(s) » s) = suspc_inst(token owner

suspc_inst(token owner(s) » s) = g »

Page 3

M15

RECONTACT INST OK: extended ordinary »

REFINES
RECONTACT INST OK

ANY
s >a service s
i >an instance i

WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem »
grd3: i state(token owner(s) » s) = FAIL 4 not theorem >the

state of s is SUSPICIOUS

grd4: suspc peers(token owner(s) » s) # o not theorem >the set
of suspicious peers for s is not empty

grd5: i € suspc_peers(token owner(s) » s)\unav_peers not
theorem >i is a suspicious instance of s and is available (can be contacted)

grd6: i & rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i

grd7: rect inst(token owner(s) » s) c suspc peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
» s) u {i} >the token owner of s has tried to recontact i
act2: rctt _inst(token owner(s) » s) = rctt inst(token owner(s)
» s) u {i} »i is recontacted by the token owner of s successfully
END
RECONTACT INST KO: extended ordinary >
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance 1
WHERE

grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >

grd3: i state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspc peers(token owner(s) » s) # @ not theorem >the set
of suspicious peers for s is not empty

grd5: i € suspc peers(token owner(s) » s)nunav_peers not

theorem >i is a suspicious instance of s and is unavailable (can not be
contacted)

grdo: i & rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i
grd7: rect inst(token owner(s) » s) c suspc peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all

Page 4

M15

the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
END

FAIL DETECT: extended ordinary »
REFINES
FAIL DETECT

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL 4 not theorem >
grd5: suspc_peers(token owner(s) » s) # @ not theorem >
grd8: rect inst(token owner(s) » s) = suspc peers(token owner
(s) » s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL DETECT 4 »
act2: suspc_peers(token owner(s) » s) = suspc_peers
(token owner(s) » s) \ rctt inst(token owner(s) » s) >
act3: rect inst(token owner(s) » s) = @ >
act4: rctt inst(token owner(s) » s) = @ >
END
IS OK: extended ordinary >
REFINES
IS 0K
ANY
S >
WHERE

grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem

grd5: suspc_peers(token owner(s) » s) = o not theorem >
THEN
actl: i state(token owner(s) » s) = RUN 4 >
END
FAIL ACTIV: extended ordinary »
REFINES
FAIL ACTIV
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL DETECT 4 not theorem

Page 5

M15

grd5: suspc_peers(token owner(s) » s) # o not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL ACTIV 4 >
act2: run_peers(s) = run _peers(s) \ suspc_peers(token owner(s)
b s) >
act3: failr peers(s) = failr peers(s) u suspc peers
(token owner(s) » s) »
act4: suspc peers(token owner(s) » s) =g >
END
FAIL CONFIGURE: extended ordinary »
REFINES
FAIL CONFIGURE
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run peers(s)) < min inst(s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL CONFIG 4 >
END

FAIL IGNORE: extended ordinary >
REFINES
FAIL IGNORE

ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL ACTIV 4 not theorem >
grd3: card(run_peers(s)) = min _inst(s) not theorem >
THEN
actl: i state(token owner(s) » s) = FAIL IGN 4 >
END
IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
WHERE

grdl: s € SERVICES not theorem >

grd2: i state(token owner(s) » s) = FAIL IGN 4 not theorem »
THEN

actl: i state(token owner(s) » s) = RUN 4 >
END

Page 6

>

REDEPLOY INSTC:

M15

not extended ordinary >

REFINES
REDEPLQOY INSTC
ANY
S >a service s
i >an instance i
WHERE

grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i € run peers(s) v failr peers(s) u unav_peers u
dep instc(s) not theorem >i does not run s, is not failed for s, is not
unavailable and is not already activated for s

theorem >

not theorem >

(s) » s) v {i} >

theorem >

not theorem >

grd4: i € actv instc(token owner(s) » s) not theorem >
grd5: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem
grd6: card(actv_instc(token owner(s) » s)) < deplo _inst(s) not
grd7: card(dep _instc(s)) + card(run_peers(s)) < min_inst(s)
THEN
actl: actv_instc(token owner(s) » s) = actv_instc(token owner
END
REDEPLOY_ INSTS: not extended ordinary >
REFINES
REDEPLOY_ INSTS
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd6: card(actv_instc(token owner(s) » s)) = deplo inst(s) not
grd7: card(dep_instc(s)) + card(run _peers(s)) < min_inst(s)
grd8: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem
THEN
actl: dep instc(s) = dep instc(s) u actv _instc(token owner(s)
act2: actv_instc(token owner(s) » s) = @ >
END
REDEPLOY: not extended ordinary »
REFINES
REDEPLOY
ANY
S >

Page 7

M15

WHERE
grdl: s € SERVICES not theorem >
grd2: i state(token owner(s) » s) = FAIL CONFIG 4 not theorem

grd7: actv _instc(token owner(s) » s)=g not theorem >
grdo: dep instc(s) # @ not theorem >
grd4: card(run_peers(s))+card(dep_instc(s)) = min_inst(s) not
theorem >
THEN
actl: i state(token owner(s) » s) = DPL 4 >
act2: run peers(s) = run peers(s) u dep instc(s) >
act3: dep instc(s) = @ »
END
HEAL: extended ordinary »
REFINES
HEAL
ANY
S >
WHERE
grdl: s € SERVICES not theorem »
grd2: i state(token owner(s) » s) = DPL 4 not theorem >
THEN
actl: i state(token owner(s) » s) = RUN 4 >
END

UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER

ANY
S >
p >
WHERE
grdl: s € SERVICES not theorem >
grd2: p € PEERS not theorem >
grd3: p € failr peers(s) not theorem >
THEN
actl: failr peers(s) = failr peers(s)\{p} >
END

MAKE PEER AVAIL: extended ordinary >
REFINES
MAKE PEER AVAIL

ANY
p >

WHERE
grdl: p € PEERS not theorem »
grd2: p € unav peers not theorem >

Page 8

M15
THEN
actl: unav_peers = unav_peers \ {p} >
END

END

Page 9

MACHINE
M16

REFINES
M15

SEES
Co9

VARIABLES
run_peers
suspc_peers
failr peers
dep instc
token owner
unav_peers

M16

suspc _inst
rect inst instances that are tried to be recontacted
rctt inst instances effectively recontacted after a try
actv_instc instances activated by token ownes
inst state

INVARIANTS

invl: inst state € (PEERSxSERVICES) - STATES 4 not theorem

inv2: Y s + s € SERVICES
theorem

= token owner(s) » s € dom(inst state) not

gluing state 1: V s - s € SERVICES = i state(token owner(s) » s) =

inst state(token owner(s) » s) not

inv3: V s + s € SERVICES
(s) not theorem

invé4: V s + s € SERVICES
run_peers(s) not theorem

inv5: V s + s € SERVICES
(s) not theorem

inv6: V s + s € SERVICES
(s) not theorem

inv7: V s + s € SERVICES
p S) not theorem

inv8: V s + s € SERVICES
(s) » s) not theorem

inv9: V s + s € SERVICES
p s) not theorem

invl0: V s - s € SERVICES
b s) not theorem

invll: V s - s € SERVICES
suspc_peers(token owner(s) » s) =

invl2: VYV s - s € SERVICES

theorem
= rctt _inst(token owner(s) » s) c run peers

suspc_peers(token owner(s) » s) ¢
suspc_inst(token owner(s) » s) c run _peers
rect inst(token owner(s) » s) c run peers
token owner(s) € suspc_inst(token owner(s)

token _owner(s) €& suspc_peers(token owner

token owner(s) €& rctt inst(token owner(s)

L 2

token owner(s) €& rect inst(token owner(s)

= suspc_inst(token owner(s) » s) n

@ not theorem

A inst state(token owner(s) » s) €

{FAIL 4,FAIL DETECT 4} = suspc peers(token owner(s) » s) = g not theorem

invl3: V s - s € SERVICES

A inst state(token owner(s) » s) # FAIL 4 =

rctt inst(token owner(s) » s) = g not theorem

invl4: V s - s € SERVICES

A inst state(token owner(s) » s) # FAIL 4 =

rect inst(token owner(s) » s) = g not theorem

Page 1

M16

EVENTS
INITIALISATION: not extended ordinary

THEN
actl: run peers = InitSrvcPeers
act2: suspc _peers = InitSuspPeers
act3: failr peers = InitFail
act4: dep instc = InitFail
acth: token owner = init tok
acto6: unav_peers = @
act7: suspc inst = InitSuspPeers
act8: rect inst = InitSuspPeers
act9: rctt inst = InitSuspPeers
actlO: actv instc = InitSuspPeers
actll: inst state = InitStateSrv

END

MAKE PEER UNAVAIL: not extended ordinary

REFINES
MAKE PEER UNAVAIL

ANY
prs
E new values for token owner per service if needed
p_s
s i
rc_s
rt.s
ac i

WHERE
grdl: prs ¢ PEERS not theorem
grd2: prs ¢ unav_peers not theorem

grd3: V srv - srv € SERVICES = dom(dom(inst state) » {srv})
\prs # ¢ not theorem
grd4: E € SERVICES — PEERS not theorem >new value for token
owner per service if needed
grd5: p_s € (PEERSxSERVICES) -+ P(PEERS) not theorem
grdé6: s 1 € (PEERSxSERVICES) -+ P(PEERS) not theorem
grd7: rt s € (PEERSxSERVICES) -— P(PEERS) not theorem
grd8: rc s € (PEERSxSERVICES) -+ P(PEERS) not theorem
grd9: ac 1 € (PEERSxSERVICES) -+ P(PEERS) not theorem
grdlo: dom(p s) = E~ A dom(s i) = E~ A dom(rc_s) = E~ A dom
(rt s) = E~ A dom(ac_i) = E~ not theorem
grdll: V srv - srv € SERVICES A token owner(srv) & prs
=
E(srv) = token owner(srv) A

s i(E(srv) » srv) = suspc _inst(E(srv) » srv) A
rt s(E(srv) » srv) = rctt inst(E(srv) » srv) A
rc s(E(srv) » srv) = rect inst(E(srv) » srv) A
ac i(E(srv) » srv) = actv instc(E(srv) » srv) not

Page 2

M16

theorem >If the token owner of a service srv does not belong to prs, the token
owner is not changed
grdl2: V srv - srv € SERVICES A token owner(srv) € prs

=

E(srv) € run peers(srv)\(unav peers u prs u failr peers
(srv) u suspc peers(token owner(srv) » srv)) A

E(srv) » srv € dom(inst state) A

inst state(E(srv) » srv) = inst state(token owner(srv) »
Srv) A

s i(E(srv) »p srv) =@

rt s(E(srv) » srv)

rc s(E(srv) » srv)

ac_i(E(srv) » srv) g not theorem >if the owner of the
token for a service becomes unavailable, and the service

A
g N
g A

possess suspicious
instances, then a new token owner among available and not
suspicious peers 1is
chosen
grdl3: V srv - srv € SERVICES = p s(E(srv) » srv) =
suspc_peers(token owner(srv) » srv) not theorem >

WITH
is: i s = E~ <« inst _state >
THEN
actl: unav_peers := unav_peers u prs >the peers in prs become
unavailable
act2: token_owner := token owner < E >new value for token owner
per service is given if needed
act3: rect inst = rc_s >the peers in prs can not try to
recontact instances anymore
act4: rctt inst = rt s >the peers in prs can not recontact
instances anymore
act5: actv_instc = ac i >
acto6: suspc_peers = p_ s >
act7: suspc_inst = s i >
act8: inst state = (prsxSERVICES) < inst state >
END

SUSPECT INST: not extended ordinary >
REFINES
SUSPECT INST

ANY

s >a service s

susp >suspicious instances
WHERE

grdl: s € SERVICES not theorem >

grd2: susp ¢ PEERS not theorem >

grd3: susp = run_peers(s) n unav _peers not theorem >instances
in susp are suspicious if the peers running them becomes unavailable

Page 3

M16

grd4: suspc_inst(token owner(s) » s) = g not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: inst state(token owner(s) » s) = RUN 4 not theorem »>the
state of s is OK
grdo: susp # @ not theorem »
THEN
actl: suspc_inst(token owner(s) » s) = susp >the members of
susp become suspected instances for s by the token owner of s
END
FAIL: not extended ordinary »
REFINES
FAIL
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = RUN 4 not theorem >
grd4: suspc_inst(token owner(s) » s) # @ not theorem >
grd5: prop = run_peers(s)\(suspc_inst(token owner(s) » s) u
unav_peers) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL 4}) >
act2: suspc_peers(token owner(s) » s) = suspc_inst(token owner
(s) »s) >
act3: suspc_inst(token owner(s) » s) =g >
END
RECONTACT INST OK: not extended ordinary >
REFINES
RECONTACT INST OK
ANY
s >a service s
i >an instance 1
WHERE

grdl: s € SERVICES not theorem >

grd2: i € PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspc_peers(token owner(s) » s) # @ not theorem >the set
of suspicious peers for s is not empty

grd5: 1 € suspc peers(token owner(s) p» s)\unav_peers not
theorem >i is a suspicious instance of s and is available (can be contacted)

grd6: i € rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i

grd7: rect inst(token owner(s) » s) c suspc peers(token owner

Page 4

M16

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
act2: rctt inst(token owner(s) » s) = rctt inst(token owner(s)
p s) u {i} »>i is recontacted by the token owner of s successfully
END
RECONTACT INST KO: not extended ordinary »
REFINES
RECONTACT INST KO
ANY
S >a service s
i >an instance i
WHERE

grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspc_peers(token owner(s) » s) # g not theorem >the set
of suspicious peers for s is not empty

grd5: i € suspc_peers(token owner(s) » s)nunav_peers not

theorem >i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i € rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i
grd7: rect inst(token owner(s) » s) c suspc_peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
END

FAIL DETECT: not extended ordinary >
REFINES
FAIL DETECT
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >
grd4: suspc_peers(token owner(s) » s) # ¢ not theorem >
grd5: rect inst(token owner(s) » s) = suspc peers(token owner

(s) » s) not theorem >

Page 5

M16

grdé6: prop = ((run _peers(s) \ suspc peers(token owner(s) » s))
u rctt inst(token owner(s)r s))\unav_peers not theorem
THEN
actl: inst state = inst state < ((propx{s})x{FAIL DETECT 4})

act2: suspc _peers(token owner(s) » s) = suspc_peers
(token owner(s) » s) \ rctt inst(token owner(s) » s)
act3: rect inst(token owner(s) » s) =@
act4: rctt inst(token owner(s) » s) =&
END
IS OK: not extended ordinary
REFINES
IS 0K
ANY
s
prop
WHERE

grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem
grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not

theorem
grd4: suspc_peers(token owner(s) » s) = g not theorem
grd5: prop = run_peers(s)\unav_peers not theorem
THEN
actl: inst state = inst state < ((propx{s})x{RUN 4})
END
FAIL ACTIV: not extended ordinary
REFINES
FAIL ACTIV
ANY
s
prop
WHERE
grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem
grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem
grd4: suspc_peers(token owner(s) » s) # @ not theorem
grd5: prop = run_peers(s) \ (unav_peers u suspcC_peers
(token owner(s) » s)) not theorem
THEN
actl: inst state = inst state < ((propx{s})x{FAIL ACTIV 4})
act2: run_peers(s) = run_peers(s) \ suspc_peers(token owner(s)
b s)
act3: failr peers(s) = failr peers(s) u suspc peers

(token owner(s) » s)

Page 6

M16

act4: suspc_peers(token owner(s) » s) =g
END
FAIL CONFIGURE: not extended ordinary
REFINES
FAIL CONFIGURE
ANY
s
prop
WHERE
grdl: s € SERVICES not theorem
grd2: prop c PEERS not theorem
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem
grd4: card(run_peers(s)) < min _inst(s) not theorem
grd5: prop = run_peers(s)\unav_peers not theorem
THEN
actl: inst state = inst state < ((propx{s})x{FAIL CONFIG 4})
END

FAIL IGNORE: not extended ordinary
REFINES
FAIL IGNORE

ANY
S
prop
WHERE
grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem
grd4: card(run_peers(s)) = min_inst(s) not theorem
grd5: prop = run_peers(s)\unav_peers not theorem
THEN
actl: inst state = inst state < ((propx{s})x{FAIL IGN 4})
END
IGNORE: not extended ordinary
REFINES
IGNORE
ANY
s
prop
WHERE

grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem
grd3: inst state(token owner(s) » s) = FAIL IGN 4 not theorem

Page 7

grd4:

THEN

actl:

END

REDEPLOY_ INSTC:

REFINES

M16
prop = run_peers(s)\unav_peers not theorem

inst state = inst state < ((propx{s})x{RUN 4})

not extended ordinary

REDEPLOY_ INSTC

ANY
S
i
WHERE

grdl:

grd2:

grd3:
dep instc(s) not theorem

a service s
an instance i

s € SERVICES not theorem

i € PEERS not theorem

i € run _peers(s) v failr peers(s) u unav_peers u
i does not run s, is not failed for s, is not

unavailable and is not already activated for s

grd4:

grd5:
theorem

grd6:
theorem

grd7:
not theorem

THEN
actl:

(s) »ps) v {i}
END

REDEPLOY_ INSTS:

REFINES

i e actv_instc(token owner(s) » s) not theorem
inst state(token owner(s) » s) = FAIL CONFIG 4 not

card(actv_instc(token owner(s) » s)) < deplo _inst(s) not

card(dep_instc(s)) + card(run _peers(s)) < min_inst(s)

actv_instc(token owner(s) » s) = actv _instc(token owner

not extended ordinary

REDEPLOY_ INSTS

ANY
S
WHERE

grdl:
grd2:

theorem

grd3:

not theorem

grd4:

theorem
THEN

actl:

b s)

act2:

END

s € SERVICES not theorem
card(actv_instc(token owner(s) » s)) = deplo inst(s) not

card(dep_instc(s)) + card(run peers(s)) < min inst(s)

inst state(token owner(s) » s) = FAIL CONFIG 4 not

dep instc(s) = dep instc(s) u actv instc(token owner(s)

actv_instc(token owner(s) » s) = @

Page 8

M16

REDEPLOY: not extended ordinary »
REFINES
REDEPLOY
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop c PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL CONFIG 4 not

theorem >
grd4: actv instc(token owner(s) » s)=g not theorem >
grd5: dep instc(s) # @ not theorem >
grd6: card(run_peers(s))+card(dep _instc(s)) = min_inst(s) not
theorem >
grd7: prop = run_peers(s)\unav_peers not theorem >
THEN
actl: inst state= inst state < ((propx{s})x{DPL 4}) >
act2: run_peers(s) = run _peers(s) u dep instc(s) >
act3: dep instc(s) = @ >
END
HEAL: not extended ordinary »
REFINES
HEAL
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = DPL 4 not theorem >
grd4: prop = run_peers(s)\unav_peers not theorem >
THEN
actl: inst state= inst state < ((propx{s})x{RUN 4}) >
END

UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER

ANY

S >

p >
WHERE

grdl: s € SERVICES not theorem >

grd2: p € PEERS not theorem >

grd3: p € failr peers(s) not theorem >
THEN

Page 9

M16

actl: failr peers(s) = failr peers(s)\{p} >
END

MAKE PEER AVAIL: extended ordinary »
REFINES
MAKE PEER AVAIL

ANY

p >
WHERE

grdl: p € PEERS not theorem »

grd2: p € unav peers not theorem >
THEN

actl: unav_peers = unav_peers \ {p} >
END

END

Page 10

M17

MACHINE
M17

REFINES
M16

SEES
Co9

VARIABLES
run_peers
suspct peers
failr peers
dep instc
token owner
unav_peers

suspc _inst
rect inst instances that are tried to be recontacted
rctt inst instances effectively recontacted after a try
actv_instc instances activated by token ownes
inst state
INVARIANTS
invl: suspct peers € (PEERSxSERVICES) -~ P(PEERS) not theorem
inv2: V s - s € SERVICES = token owner(s) » s € dom(suspct peers) not

theorem
gluing susp 1: V s - s € SERVICES = suspc_peers(token owner(s) » s) =
suspct peers(token owner(s) » s) not theorem

EVENTS
INITIALISATION: not extended ordinary

THEN
actl: run_peers = InitSrvcPeers
act2: suspct _peers = InitSuspPrs
act3: failr peers = InitFail
act4: dep _instc = InitFail
act5: token owner := init tok
act6: unav_peers = @
act7: suspc_inst = InitSuspPeers
act8: rect inst = InitSuspPeers
act9: rctt inst = InitSuspPeers
actlo: actv _instc = InitSuspPeers
actll: inst state = InitStateSrv

END

MAKE PEER UNAVAIL: not extended ordinary

REFINES
MAKE PEER UNAVAIL

ANY
prs Peers that will become unavailable
E Values for token owner per service

WHERE

grdl: prs c PEERS not theorem

Page 1

M17

grd2: prs ¢ unav_peers not theorem >the peers in prs are not
yet unavalaible

grd3: V srv - srv € SERVICES = dom(dom(inst state) > {srv})
\prs # ¢ not theorem >for each service srv, there must always be at least 1
peer available

grd4: E € SERVICES — PEERS not theorem >Value for token owner
per service

grd5: V srv - srv € SERVICES A token owner(srv) € prs

=
E(srv) = token owner(srv) not theorem >If the token
owner of a service srv does not belong to prs, the token owner is not changed
grd6: V srv - srv € SERVICES A token owner(srv) € prs
=

E(srv) € run_peers(srv)\(unav_peers u prs u failr peers
(srv) u suspct peers(token owner(srv) p» srv)) A

E(srv) » srv € dom(inst state) A E(srv) » srv € dom
(suspct _peers) a

inst state(E(srv) » srv) = inst state(token owner(srv) »
Srv) A

suspct _peers(E(srv) » srv) = suspct peers(token owner
(srv) » srv) not theorem >if the owner of the token for a service becomes
unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs

WITH
p_s: p s = E~ < suspct peers >
rcs: rc_s = ((prsxSERVICES) < rect inst) < (((E\token_owner)
~)x{e}) >
s i: s 1 = ((prsxSERVICES) < suspc inst) < (((E\token owner)
~)x{e}) >
rt s: rt s = ((prsxSERVICES) < rctt inst) < (((E\token owner)
~)x{e}) >
ac i: ac i = ((prsxSERVICES) < actv _instc) < (((E\token owner)
~)x{e}) >
THEN
actl: unav_peers = unav_peers u prs >the peers in prs become
unavailable
act2: token owner = token owner < E >new values for token

owner per service
act3: rect inst = ((prsxSERVICES) < rect inst) <
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances

Page 2

M17

anymore (1)
act4: rctt inst = ((prsxSERVICES) < rctt inst) =
(((E\token owner)~)x{g}) >the peers in prs can not try to recontact instances
anymore (2)
act5: actv_instc = ((prsxSERVICES) < actv instc) =
(((E\token owner)~)x{@}) >the peers in prs can not activate instances anymore
acto6: suspct _peers := (prsxSERVICES) < suspct peers >the peers
in prs can not suspect instances anymore (1)
act7: suspc_inst = ((prsxSERVICES) < suspc_inst) <
(((E\token owner)~)x{@}) >the peers in prs can not suspect instances anymore (2)
act8: inst state = (prsxSERVICES) < inst state >the peers in
prs can not monitor the state of the services provided anymore
END

SUSPECT _INST: extended ordinary >
REFINES
SUSPECT INST

ANY

s >a service s

susp >suspicious instances
WHERE

grdl: s € SERVICES not theorem >
grd2: susp ¢ PEERS not theorem >

grd3: susp = run_peers(s) n unav_peers not theorem >instances
in susp are suspicious if the peers running them becomes unavailable
grd4: suspc_inst(token owner(s) » s) = g not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: inst state(token owner(s) » s) = RUN 4 not theorem >the
state of s is OK
grdo: susp # o not theorem >
THEN
actl: suspc_inst(token owner(s) » s) := susp >the members of
susp become suspected instances for s by the token owner of s
END
FAIL: not extended ordinary »
REFINES
FAIL
ANY
S >
prop ’
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >

grd3: inst state(token owner(s) » s) = RUN 4 not theorem >
grd4: suspc_inst(token owner(s) » s) # g not theorem >
grd5: prop = run_peers(s)\(suspc_inst(token owner(s) » s) u

unav_peers) not theorem >

Page 3

M17

THEN
actl: inst state = inst state < ((propx{s})x{FAIL 4}) >
act2: suspct peers = suspct peers < ((propx{s})x{suspc inst
(token owner(s) » s)}) >
act3: suspc _inst(token owner(s) » s) =g >
END
RECONTACT INST OK: not extended ordinary »
REFINES
RECONTACT INST OK
ANY
s >a service s
i >an instance 1
WHERE

grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspct _peers(token owner(s) » s) # g not theorem >the
set of suspicious peers for s is not empty

grd5: i € suspct peers(token owner(s) » s)\unav_peers not
theorem »>i is a suspicious instance of s and is available (can be contacted)

grdo: i e rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i

grd7: rect inst(token owner(s) » s) c suspct peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
act2: rctt inst(token owner(s) » s) = rctt inst(token owner(s)
» s) u {i} »i is recontacted by the token owner of s successfully
END
RECONTACT INST KO: not extended ordinary >
REFINES
RECONTACT INST KO
ANY
S >a service s
i >an instance i
WHERE

grdl: s € SERVICES not theorem >

grd2: i € PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspct peers(token owner(s) » s) # @ not theorem >the
set of suspicious peers for s is not empty
grd5: i € suspct peers(token owner(s) p» s)nunav _peers not

Page 4

M17

theorem >i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i € rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i
grd7: rect inst(token owner(s) » s) c suspct peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
END

FAIL DETECT: not extended ordinary »
REFINES
FAIL DETECT

ANY
S >
prop >
susp >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd7: susp ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >
grd4: suspct peers(token owner(s) » s) # g not theorem >
grd5: rect inst(token owner(s) » s) = suspct peers(token owner
(s) » s) not theorem >
grd6: prop = ((run_peers(s) \ suspct peers(token owner(s) v
s)) u rctt _inst(token owner(s)» s))\unav_peers not theorem >
grd8: susp = suspct peers(token owner(s) » s)\rctt inst
(token owner(s)» s) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL DETECT 4})
act2: suspct peers = suspct peers < ((propx{s})x{susp}) >
act3: rect inst(token owner(s) » s) =g >
act4: rctt inst(token owner(s) » s) =g >
END
IS OK: not extended ordinary >
REFINES
IS 0K
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >

Page 5

M17

grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not

theorem >
grd4: suspct peers(token owner(s) » s) = ¢ not theorem >
grd5: prop = run_peers(s)\unav_peers not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{RUN 4}) >
END
FAIL ACTIV: not extended ordinary »
REFINES
FAIL ACTIV
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem >
grd4: suspct peers(token owner(s) » s) # g not theorem >
grd5: prop = run_peers(s) \ (unav_peers u suspct peers
(token owner(s) » s)) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL ACTIV 4}) >
act2: run_peers(s) = run_peers(s) \ suspct peers(token owner
(s) »s) >
act3: failr peers(s) = failr peers(s) u suspct peers
(token owner(s) » s) >
act4: suspct peers = suspct peers < ((propx{s})x{e}) >
END
FAIL CONFIGURE: extended ordinary >
REFINES
FAIL CONFIGURE
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem »
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem >
grd4: card(run peers(s)) < min inst(s) not theorem >
grd5: prop = run peers(s)\unav peers not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL CONFIG 4})
END

Page 6

>

M17

FAIL IGNORE: extended ordinary >
REFINES
FAIL IGNORE

ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem »
grd4: card(run peers(s)) = min inst(s) not theorem >
grd5: prop = run peers(s)\unav peers not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL IGN 4}) >
END
IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
prop ’
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL IGN 4 not theorem

grd4: prop = run_peers(s)\unav_peers not theorem >
THEN

actl: inst state = inst state < ((propx{s})x{RUN 4}) >
END

REDEPLOY_ INSTC: extended ordinary >
REFINES
REDEPLOY INSTC
ANY
s >a service s
i >an instance 1
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i & run peers(s) u failr peers(s) u unav peers u
dep instc(s) not theorem >i does not run s, is not failed for s, is not
unavailable and is not already activated for s
grd4: i ¢ actv _instc(token owner(s) » s) not theorem »
grd5: inst state(token owner(s) » s) = FAIL CONFIG 4 not
theorem »

Page 7

M17

grdo: card(actv_instc(token owner(s) » s)) < deplo inst(s) not
theorem >
grd7: card(dep_instc(s)) + card(run _peers(s)) < min_inst(s)
not theorem >
THEN
actl: actv_instc(token owner(s) » s) = actv_instc(token owner
(s) »s)u{i} >
END
REDEPLOY INSTS: extended ordinary »
REFINES
REDEPLOY INSTS
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: card(actv_instc(token owner(s) » s)) = deplo _inst(s) not
theorem >
grd3: card(dep _instc(s)) + card(run _peers(s)) < min_inst(s)
not theorem >
grd4: inst state(token owner(s) » s) = FAIL CONFIG 4 not
theorem >
THEN
actl: dep instc(s) = dep instc(s) u actv_instc(token owner(s)
b Ss) >
act2: actv_instc(token owner(s) » s) = @ >
END
REDEPLOY: extended ordinary >
REFINES
REDEPLOY
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL CONFIG 4 not
theorem >
grd4: actv instc(token owner(s) » s)=¢ not theorem >
grd5: dep instc(s) # o not theorem >
grdo: card(run _peers(s))+card(dep instc(s)) = min inst(s) not
theorem >
grd7: prop = run peers(s)\unav peers not theorem >
THEN
actl: inst state= inst state < ((propx{s})x{DPL 4}) »
act2: run peers(s) = run peers(s) u dep instc(s) »
act3: dep instc(s) = @ »

Page 8

M17
END

HEAL: extended ordinary >
REFINES
HEAL
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = DPL 4 not theorem >
grd4: prop = run peers(s)\unav peers not theorem >
THEN
actl: inst state= inst state < ((propx{s})x{RUN 4}) »
END

UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER

ANY
S >
p >
WHERE
grdl: s € SERVICES not theorem >
grd2: p € PEERS not theorem >
grd3: p € failr peers(s) not theorem >
THEN
actl: failr peers(s) = failr peers(s)\{p} >
END

MAKE PEER_AVAIL: extended ordinary >
REFINES
MAKE PEER AVAIL

ANY

p >
WHERE

grdl: p € PEERS not theorem »

grd2: p € unav peers not theorem >
THEN

actl: unav_peers = unav_peers \ {p} >
END

END

Page 9

M18

MACHINE
M18 >

REFINES
M17

SEES
Co9

VARIABLES
run_inst >
suspct peers >
failr peers
dep instc
token owner
unav_peers
suspc _inst >
rect inst >instances that are tried to be recontacted
rctt inst >instances effectively recontacted after a try
actv_instc >instances activated by token ownes
inst state >

v VvV Vv v

INVARIANTS
invl: run_inst € (PEERSxSERVICES) -~ P(PEERS) not theorem >
inv2: ¥V s - s € SERVICES = token owner(s) » s € dom(run_inst) not
theorem >
gluing run 1: V s - s € SERVICES = run_inst(token owner(s) » s) =
run_peers(s) not theorem >
EVENTS
INITIALISATION: not extended ordinary »
THEN
actl: run_inst = InitRunPeers >
act2: suspct peers := InitSuspPrs >
act3: failr peers = InitFail >
act4: dep _instc = InitFail >
act5: token owner := init tok >
act6: unav_peers = g >
act7: suspc_inst = InitSuspPeers >
act8: rect inst = InitSuspPeers >
act9: rctt inst = InitSuspPeers >
actlO0: actv instc = InitSuspPeers >
actll: inst state = InitStateSrv >
END
MAKE PEER UNAVAIL: not extended ordinary >
REFINES
MAKE PEER UNAVAIL
ANY
prs >Peers that will become unavailable
E >Values for token owner per service
WHERE

grdl: prs c PEERS not theorem >

Page 1

M18

grd2: prs ¢ unav_peers not theorem >the peers in prs are not
yet unavalaible

grd3: V srv - srv € SERVICES = dom(dom(inst state) > {srv})
\prs # ¢ not theorem >for each service srv, there must always be at least 1
peer available

grd4: E € SERVICES — PEERS not theorem >Value for token owner
per service

grd5: V srv - srv € SERVICES A token owner(srv) €& prs = E

(srv) = token owner(srv) not theorem >If the token owner of a service srv
does not belong to prs, the token owner is not changed
grdo: V srv - srv € SERVICES A token owner(srv) € prs
=

E(srv) € run_inst(token owner(srv) » srv)\(unav_peers u
prs u failr peers(srv) u suspct peers(token owner(srv) p» srv)) A

E(srv) » srv € dom(inst state) n dom(suspct peers) n dom
(run_inst) A

run_inst(E(srv) » srv) = run_inst(token owner(srv) »
srv) A

inst state(E(srv) » srv) = inst state(token owner(srv) »
srv) A

suspct _peers(E(srv) » srv) = suspct peers(token owner
(srv) » srv) not theorem >if the owner of the token for a service becomes
unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
THEN

actl: unav_peers := unav_peers u prs >the peers in prs become
unavailable

act2: token_owner := token owner < E >new values for token
owner per service

act3: rect inst = ((prsxSERVICES) < rect inst) =
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances
anymore (1)

act4: rctt inst = ((prsxSERVICES) < rctt inst) =
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances
anymore (2)

act5: actv _instc = ((prsxSERVICES) < actv instc) <
(((E\token owner)~)x{@}) >the peers in prs can not activate instances anymore

acto: suspct peers = (prsxSERVICES) < suspct peers »>the peers
in prs can not suspect instances anymore (1)

act7: suspc_inst = ((prsxSERVICES) < suspc inst) <

Page 2

M18

(((E\token owner)~)x{@}) >the peers in prs can not suspect instances anymore (2)
act8: inst state = (prsxSERVICES) < inst state >the peers in
prs can not monitor the state of the services provided anymore
act9: run _inst = (prsxSERVICES) < run inst >
END

SUSPECT INST: not extended ordinary >
REFINES
SUSPECT INST

ANY

s >a service s

susp >suspicious instances
WHERE

grdl: s € SERVICES not theorem >

grd2: susp ¢ PEERS not theorem >

grd3: susp = run_inst(token owner(s) » s) n unav_peers not
theorem >instances in susp are suspicious if the peers running them becomes
unavailable

grd4: suspc_inst(token owner(s) » s) = g not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: inst state(token owner(s) » s) = RUN 4 not theorem >the
state of s is 0K
grd6: susp # g not theorem »
THEN
actl: suspc_inst(token owner(s) » s) = susp >the members of
susp become suspected instances for s by the token owner of s
END
FAIL: not extended ordinary »
REFINES
FAIL
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = RUN 4 not theorem >
grd4: suspc_inst(token owner(s) » s) # g not theorem >
grd5: prop = run_inst(token owner(s) » s)\(suspc_inst
(token owner(s) » s) u unav_peers) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL 4}) >
act2: suspct peers = suspct peers < ((propx{s})x{suspc inst
(token owner(s) » s)}) >
act3: suspc_inst(token owner(s) » s) =g >
END

Page 3

M18

RECONTACT INST OK: extended ordinary »
REFINES
RECONTACT INST OK
ANY
s >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem »
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS
grd4: suspct peers(token owner(s) » s) # o not theorem >the
set of suspicious peers for s is not empty
grd5: i € suspct peers(token owner(s) » s)\unav _peers not
theorem >i is a suspicious instance of s and is available (can be contacted)
grd6: i & rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i
grd7: rect inst(token owner(s) » s) c suspct peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
» s) u {i} >the token owner of s has tried to recontact i
act2: rctt _inst(token owner(s) » s) = rctt inst(token owner(s)
» s) u {i} »i is recontacted by the token owner of s successfully
END
RECONTACT INST KO: extended ordinary >
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance 1
WHERE

grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspct peers(token owner(s) » s) # o not theorem >the
set of suspicious peers for s is not empty

grd5: i € suspct peers(token owner(s) » s)nunav_peers not

theorem >i is a suspicious instance of s and is unavailable (can not be
contacted)

grdo: i & rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i
grd7: rect inst(token owner(s) » s) c suspct peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

Page 4

M18

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
END

FAIL DETECT: not extended ordinary
REFINES
FAIL DETECT

ANY
s
prop
susp
WHERE
grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem
grd7: susp ¢ PEERS not theorem
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem
grd4: suspct peers(token owner(s) » s) # g not theorem
grd5: rect inst(token owner(s) » s) = suspct peers(token owner
(s) » s) not theorem
grd6: prop = ((run_inst(token owner(s) » s) \ suspct peers
(token owner(s) » s)) u rctt _inst(token owner(s)r s))\unav_peers not theorem
grds: susp = suspct peers(token owner(s) » s)\rctt inst
(token owner(s)» s) not theorem
THEN
actl: inst state = inst state < ((propx{s})x{FAIL DETECT 4})
act2: suspct _peers = suspct peers < ((propx{s})x{susp})
act3: rect inst(token owner(s) » s) = @
act4: rctt inst(token owner(s) » s) = @
END
IS OK: not extended ordinary
REFINES
IS OK
ANY
s
prop
WHERE

grdl: s € SERVICES not theorem

grd2: prop ¢ PEERS not theorem

grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem

grd4: suspct peers(token owner(s) » s) = @ not theorem

grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem

THEN
actl: inst state = inst state < ((propx{s})x{RUN 4})

Page 5

M18

END
FAIL ACTIV: not extended ordinary
REFINES
FAIL ACTIV
ANY
s
prop
WHERE
grdl: s € SERVICES not theorem
grd2: prop c PEERS not theorem
grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem
grd4: suspct peers(token owner(s) » s) # @ not theorem
grd5: prop = run_inst(token owner(s) » s) \ (unav_peers u
suspct peers(token owner(s) » s)) not theorem
THEN
actl: inst state = inst state < ((propx{s})x{FAIL ACTIV 4})
act2: run_inst = run_inst < ((propx{s})x{run_inst(token_ owner
(s) » s)\suspct peers(token owner(s) » s)})
act3: failr peers(s) = failr peers(s) u suspct peers
(token owner(s) » s)
act4: suspct peers = suspct peers < ((propx{s})x{e})
END
FAIL CONFIGURE: not extended ordinary
REFINES
FAIL CONFIGURE
ANY
s
prop
WHERE
grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem
grd4: card(run_inst(token owner(s) » s)) < min_inst(s) not
theorem
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem
THEN
actl: inst state = inst state < ((propx{s})x{FAIL CONFIG 4})
END

FAIL IGNORE: not extended ordinary
REFINES
FAIL IGNORE
ANY

Page 6

M18

S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not

theorem >
grd4: card(run_inst(token owner(s) » s)) = min inst(s) not
theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL IGN 4}) >
END
IGNORE: not extended ordinary >
REFINES
IGNORE
ANY
S >
prop ’
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL IGN 4 not theorem
grd4: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{RUN 4}) >
END

REDEPLOY_ INSTC: not extended ordinary >
REFINES
REDEPLQOY_ INSTC
ANY
s >a service s
i >an instance 1
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i € run_inst(token owner(s) » s) u failr peers(s) u
unav_peers U dep instc(s) not theorem >i does not run s, is not failed for s, is
not unavailable and is not already activated for s
grd4: i € actv_instc(token owner(s) » s) not theorem >
grd5: inst state(token owner(s) » s) = FAIL CONFIG 4 not
theorem >
grd6: card(actv_instc(token owner(s) » s)) < deplo inst(s) not

Page 7

M18

theorem
grd7: card(dep _instc(s)) + card(run _inst(token owner(s) p» s))
< min _inst(s) not theorem
THEN
actl: actv _instc(token owner(s) » s) = actv instc(token owner
(s) » s) u {i}
END
REDEPLOY INSTS: not extended ordinary
REFINES
REDEPLOY INSTS
ANY
s
WHERE
grdl: s € SERVICES not theorem
grd2: card(actv_instc(token owner(s) » s)) = deplo _inst(s) not
theorem
grd3: card(dep _instc(s)) + card(run_inst(token owner(s) » s))

< min_inst(s) not theorem
grd4: inst state(token owner(s) » s) = FAIL CONFIG 4 not
theorem
THEN
actl: dep instc(s) = dep instc(s) u actv _instc(token owner(s)
b S)
act2: actv_instc(token owner(s) » s) =@
END

REDEPLOY: not extended ordinary
REFINES
REDEPLOY
ANY
s
prop
WHERE
grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem

grd3: inst state(token owner(s) » s) = FAIL CONFIG 4 not
theorem

grd4: actv_instc(token owner(s) » s)=g not theorem

grd5: dep _instc(s) # @ not theorem

grdo: card(run_inst(token owner(s) » s))+card(dep instc(s)) =
min inst(s) not theorem

grd7: prop = run_inst(token owner(s) » s)\unav_peers not
theorem

THEN
actl: inst state= inst state < ((propx{s})x{DPL 4})
act2: run _inst = run inst < ((propx{s})x {run inst(token owner

(s) » s) u dep instc(s)})

Page 8

M18

act3: dep instc(s) = @ >
END
HEAL: not extended ordinary »
REFINES
HEAL
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = DPL 4 not theorem >
grd4: prop = run_inst(token owner(s) » s)\unav_peers not
theorem »
THEN
actl: inst state= inst state < ((propx{s})x{RUN 4}) >
END

UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER

ANY
S >
p >
WHERE
grdl: s € SERVICES not theorem >
grd2: p € PEERS not theorem >
grd3: p € failr peers(s) not theorem >
THEN
actl: failr peers(s) = failr peers(s)\{p} >
END

MAKE PEER_AVAIL: extended ordinary >
REFINES
MAKE PEER AVAIL

ANY

p >
WHERE

grdl: p € PEERS not theorem >

grd2: p € unav peers not theorem >
THEN

actl: unav_peers = unav_peers \ {p} >
END

END

Page 9

M19

MACHINE
M19 >

REFINES
M18

SEES
Co9

VARIABLES
run_inst >
suspct peers >
failr inst
dep instc
token owner
unav_peers
suspc _inst >

v VvV Vv v

rect inst >instances that are tried to be recontacted
rctt inst >instances effectively recontacted after a try

actv_instc >instances activated by token ownes
inst state >

INVARIANTS
invl: failr_inst € (PEERSxSERVICES) -~ P(PEERS) not theorem >
inv2: ¥V s - s € SERVICES = token owner(s) » s € dom(failr_inst) not

theorem >
gluing fail 1: V s - s € SERVICES = failr inst(token owner(s) » s)
failr peers(s) not theorem >

EVENTS
INITIALISATION: not extended ordinary »

THEN
actl: run_inst = InitRunPeers >
act2: suspct peers := InitSuspPrs >
act3: failr_inst = InitSuspPeers >
act4: dep _instc = InitFail >
act5: token owner := init tok >
act6: unav_peers = g >
act7: suspc_inst = InitSuspPeers >
act8: rect inst = InitSuspPeers >
act9: rctt inst = InitSuspPeers >
actlO0: actv instc = InitSuspPeers >
actll: inst state = InitStateSrv >

END

MAKE PEER UNAVAIL: not extended ordinary >

REFINES
MAKE PEER UNAVAIL

ANY
prs >Peers that will become unavailable
E >Values for token owner per service

WHERE

grdl: prs c PEERS not theorem >

Page 1

M19

grd2: prs ¢ unav_peers not theorem >the peers in prs are not
yet unavalaible
grd3: V srv - srv € SERVICES = dom(dom(inst state) > {srv})
\prs # ¢ not theorem >for each service srv, there must always be at least 1
peer available
grd4: E € SERVICES — PEERS not theorem >Value for token owner
per service
grd5: V srv - srv € SERVICES A token owner(srv) €& prs = E
(srv) = token owner(srv) not theorem >If the token owner of a service srv
does not belong to prs, the token owner is not changed
grdo: V srv - srv € SERVICES A token owner(srv) € prs
=
E(srv) € run_inst(token owner(srv) » srv)\(unav_peers u
prs u failr inst(token owner(srv) » srv) u suspct peers(token owner(srv) » srv))
A
E(srv) » srv € dom(inst state) n dom(suspct peers) n dom
(run_inst) n dom(failr_inst) A
run_inst(E(srv) » srv) = run_inst(token owner(srv) »
srv) A
inst state(E(srv) » srv) = inst state(token owner(srv) »
srv) A
suspct peers(E(srv) » srv) = suspct peers(token owner
(srv) » srv) A
failr_inst(E(srv) » srv) = failr _inst(token owner(srv) »
srv) not theorem >if the owner of the token for a service becomes unavailable,

A new token owner is chosen: the new token owner must have same characteristics
as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
THEN

actl: unav_peers := unav_peers u prs >the peers in prs become
unavailable

act2: token _owner := token owner < E >new values for token
owner per service

act3: rect inst = ((prsxSERVICES) < rect inst) =
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances
anymore (1)

act4: rctt inst = ((prsxSERVICES) < rctt inst) <
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances
anymore (2)

acth: actv _instc = ((prsxSERVICES) < actv instc) <
(((E\token owner)~)x{@}) >the peers in prs can not activate instances anymore

acto6: suspct peers = (prsxSERVICES) < suspct peers >the peers

Page 2

M19

in prs can not suspect instances anymore (1)

act7: suspc_inst = ((prsxSERVICES) < suspc inst) <
(((E\token owner)~)x{@}) >the peers in prs can not suspect instances anymore (2)

act8: inst state = (prsxSERVICES) < inst state >the peers in
prs can not monitor the state of the services provided anymore

act9: run _inst = (prsxSERVICES) < run inst >

actl0: failr inst = (prsxSERVICES) < failr inst >

END

SUSPECT INST: extended ordinary »
REFINES
SUSPECT INST

ANY

s >a service s

susp >suspicious instances
WHERE

grdl: s € SERVICES not theorem >

grd2: susp ¢ PEERS not theorem >

grd3: susp = run_inst(token owner(s) » s) n unav_peers not
theorem >instances in susp are suspicious if the peers running them becomes
unavailable

grd4: suspc_inst(token owner(s) » s) = g not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: inst state(token owner(s) » s) = RUN 4 not theorem >the
state of s is OK
grd6: susp # o not theorem >
THEN
actl: suspc_inst(token owner(s) » s) = susp >the members of
susp become suspected instances for s by the token owner of s
END
FAIL: extended ordinary >
REFINES
FAIL
ANY
S >
prop i
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = RUN 4 not theorem >
grd4: suspc inst(token owner(s) » s) # @ not theorem >
grd5: prop = run_inst(token owner(s) » s)\(suspc inst
(token owner(s) » s) u unav_peers) not theorem »
THEN
actl: inst state = inst state < ((propx{s})x{FAIL 4}) >
act2: suspct peers = suspct peers < ((propx{s})x{suspc inst

(token owner(s) » s)}) >

Page 3

M19

act3: suspc_inst(token owner(s) » s) = g >
END
RECONTACT INST OK: extended ordinary »
REFINES
RECONTACT INST OK
ANY
s >a service s
i >an instance i
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem »
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS
grd4: suspct peers(token owner(s) » s) # o not theorem >the
set of suspicious peers for s is not empty
grd5: i € suspct peers(token owner(s) » s)\unav_peers not
theorem >i is a suspicious instance of s and is available (can be contacted)
grd6: i & rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i
grd7: rect inst(token owner(s) » s) c suspct peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
act2: rctt _inst(token owner(s) » s) = rctt inst(token owner(s)
» s) u {i} »i is recontacted by the token owner of s successfully
END
RECONTACT INST KO: extended ordinary >
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance i
WHERE

grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspct peers(token owner(s) » s) # @ not theorem >the
set of suspicious peers for s is not empty

grd5: i € suspct peers(token owner(s) » s)nunav_peers not

theorem >i is a suspicious instance of s and is unavailable (can not be

contacted)
grdo: i & rect inst(token owner(s) » s) not theorem >the token

owner of s has not yet tried to recontact i

Page 4

M19

grd7: rect inst(token owner(s) » s) c suspct peers(token owner
(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} »>the token owner of s has tried to recontact i
END

FAIL DETECT: extended ordinary »
REFINES
FAIL DETECT

ANY
S >
prop >
susp >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd7: susp ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >
grd4: suspct peers(token owner(s) » s) # o not theorem >
grd5: rect inst(token owner(s) » s) = suspct peers(token owner
(s) » s) not theorem >
grdo: prop = ((run_inst(token owner(s) » s) \ suspct peers
(token owner(s) » s)) u rctt _inst(token owner(s)r s))\unav_peers not theorem >
grd8: susp = suspct peers(token owner(s) » s)\rctt inst
(token owner(s)r s) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL DETECT 4})
>
act2: suspct peers = suspct peers < ((propx{s})x{susp}) >
act3: rect inst(token owner(s) » s) =g >
act4: rctt inst(token owner(s) » s) =g >
END
IS OK: extended ordinary >
REFINES
IS 0K
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >

grd2: prop ¢ PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem »

grd4: suspct peers(token owner(s) » s) = ¢ not theorem >

grd5: prop = run_inst(token owner(s) » s)\unav _peers not

Page 5

M19

theorem >
THEN
actl: inst state = inst state < ((propx{s})x{RUN 4}) >
END
FAIL ACTIV: not extended ordinary »
REFINES
FAIL ACTIV
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop c PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem >
grd4: suspct peers(token owner(s) » s) # g not theorem >
grd5: prop = run_inst(token owner(s) » s) \ (unav_peers u
suspct _peers(token owner(s) » s)) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL ACTIV 4}) >
act2: run_inst = run_inst < ((propx{s})x{run_inst(token_ owner
(s) » s)\suspct peers(token owner(s) » s)}) >
act3: failr _inst = failr _inst < ((propx{s})x {failr_inst
(token owner(s) » s) u suspct peers(token owner(s) » s)}) >
act4: suspct peers = suspct peers < ((propx{s})x{e}) >
END
FAIL CONFIGURE: extended ordinary >
REFINES
FAIL CONFIGURE
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem >
grd4: card(run_inst(token owner(s) » s)) < min _inst(s) not
theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL CONFIG 4}) »
END

FAIL IGNORE: extended ordinary »

Page 6

M19

REFINES
FAIL IGNORE
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem >
grd4: card(run_inst(token owner(s) » s)) = min inst(s) not
theorem >
grd5: prop = run_inst(token owner(s) » s)\unav _peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL IGN 4}) >
END
IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL IGN 4 not theorem
>
grd4: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{RUN 4}) »
END

REDEPLOY_ INSTC: not extended ordinary >
REFINES
REDEPLQOY INSTC
ANY
s >a service s
i >an instance 1
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i € run inst(token owner(s) » s) u failr inst
(token owner(s) » s) u unav _peers u dep instc(s) not theorem >i does not run s,
is not failed for s, is not unavailable and is not already activated for s
grd4: i ¢ actv_instc(token owner(s) » s) not theorem >

Page 7

M19

grd5: inst state(token owner(s) » s) = FAIL CONFIG 4 not

theorem >
grdo: card(actv_instc(token owner(s) p» s)) < deplo inst(s) not
theorem >
grd7: card(dep_instc(s)) + card(run_inst(token owner(s) » s))
< min inst(s) not theorem >
THEN
actl: actv_instc(token owner(s) » s) = actv_instc(token owner
(s) »s)u {i} >
END
REDEPLOY INSTS: extended ordinary »
REFINES
REDEPLOY INSTS
ANY
S >
WHERE
grdl: s € SERVICES not theorem >
grd2: card(actv_instc(token owner(s) » s)) = deplo inst(s) not
theorem >
grd3: card(dep _instc(s)) + card(run_inst(token owner(s) » s))

< min inst(s) not theorem >
grd4: inst state(token owner(s) » s) = FAIL CONFIG 4 not

theorem >
THEN
actl: dep instc(s) = dep instc(s) v actv_instc(token owner(s)
b Ss) >
act2: actv_instc(token owner(s) » s) = @ »
END
REDEPLOY: extended ordinary »
REFINES
REDEPLOY
ANY
S >
prop ’
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL CONFIG 4 not

theorem »

grd4: actv instc(token owner(s) » s)=¢ not theorem >

grd5: dep instc(s) # @ not theorem >

grdo: card(run_inst(token owner(s) » s))+card(dep instc(s)) =
min inst(s) not theorem >

grd7: prop = run_inst(token owner(s) » s)\unav_peers not
theorem »

THEN

Page 8

M19

actl: inst state= inst state < ((propx{s})x{DPL 4}) »

act2: run_inst = run _inst < ((propx{s})x {run inst(token owner
(s) » s) u dep instc(s)}) »
act3: dep instc(s) = o >
END
HEAL: extended ordinary >
REFINES
HEAL
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s)

= DPL 4 not theorem >
grd4: prop = run_inst(token owner(s) » s

)\unav_peers not
theorem »
THEN
actl: inst state= inst state < ((propx{s})x{RUN 4}) »
END

UNFAIL PEER: not extended ordinary >
REFINES
UNFAIL PEER

ANY
S >
p >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: p € PEERS not theorem >
grd4: p € failr_inst(token owner(s) » s) not theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: failr _inst = failr inst < ((propx{s})x{failr inst
(token owner(s) » s) \ {p}}) >
END

MAKE PEER AVAIL: extended ordinary >
REFINES
MAKE PEER AVAIL
ANY
p >
WHERE
grdl: p € PEERS not theorem »

Page 9

M19
grd2: p € unav peers not theorem >
THEN
actl: unav_peers := unav_peers \ {p} >
END

END

Page 10

MACHINE
M20 >
REFINES
M19
SEES
Co9
VARIABLES
run_inst >
suspct peers
failr inst
dep instcs
token owner
unav_peers
suspc _inst >
rect inst
rctt inst
actv_instc
inst state >
INVARIANTS
invl:
inv2:
theorem >
gluing act 1:

v VvV Vv v

Vs

M20

V s

dep instc(s) not theorem >

>instances that are tried to be recontacted
>instances effectively recontacted after a try
>instances activated by token ownes

dep instcs € (PEERSxSERVICES) -- P(PEERS) not theorem >
s € SERVICES = token owner(s) » s € dom(dep instcs) not

s € SERVICES = dep_instcs(token owner(s) » s) =

EVENTS
INITIALISATION: not extended ordinary »

THEN
actl: run_inst = InitRunPeers >
act2: suspct peers := InitSuspPrs >
act3: failr_inst = InitSuspPeers >
act4: dep _instcs = InitSuspPeers >
act5: token owner := init tok >
act6: unav_peers = g >
act7: suspc_inst = InitSuspPeers >
act8: rect inst = InitSuspPeers >
act9: rctt inst = InitSuspPeers >
actlO0: actv instc = InitSuspPeers >
actll: inst state = InitStateSrv >

END

MAKE PEER UNAVAIL: not extended ordinary >

REFINES
MAKE PEER UNAVAIL

ANY
prs >Peers that will become unavailable
E >Values for token owner per service

WHERE
grdl: prs c PEERS not theorem >

Page 1

M20

grd2: prs ¢ unav_peers not theorem >the peers in prs are not
yet unavalaible

grd3: V srv - srv € SERVICES = dom(dom(inst state) > {srv})
\prs # ¢ not theorem >for each service srv, there must always be at least 1
peer available

grd4: E € SERVICES — PEERS not theorem >Value for token owner
per service

grd5: V srv - srv € SERVICES A token owner(srv) €& prs = E

(srv) = token owner(srv) not theorem >If the token owner of a service srv
does not belong to prs, the token owner is not changed
grdo: V srv - srv € SERVICES A token owner(srv) € prs
=

E(srv) € run_inst(token owner(srv) » srv)\(unav_peers u
prs u failr inst(token owner(srv) » srv) u suspct peers(token owner(srv) » srv))
A

E(srv) » srv € dom(inst state) n dom(suspct peers) n dom
(run_inst) n dom(failr_inst) n dom(dep instcs) A

run_inst(E(srv) » srv) = run_inst(token owner(srv) »
srv) A

inst state(E(srv) » srv) = inst state(token owner(srv) »
srv) A

suspct peers(E(srv) » srv) = suspct peers(token owner
(srv) » srv) A

failr_inst(E(srv) » srv) = failr _inst(token owner(srv) »
srv) A

dep instcs(E(srv) » srv) dep instcs(token owner(srv) »
srv) not theorem >if the owner of the token for a service becomes unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
THEN

actl: unav_peers = unav_peers u prs >the peers in prs become
unavailable

act2: token owner = token owner < E >new values for token
owner per service

act3: rect inst = ((prsxSERVICES) < rect inst) =
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances
anymore (1)

act4: rctt inst = ((prsxSERVICES) < rctt inst) <
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances
anymore (2)

act5: actv instc = ((prsxSERVICES) < actv instc) <

Page 2

M20

(((E\token owner)~)x{@}) >the peers in prs can not activate instances anymore

act6: suspct peers = (prsxSERVICES) < suspct peers »>the peers
in prs can not suspect instances anymore (1)

act7: suspc_inst = ((prsxSERVICES) < suspc_inst) <
(((E\token owner)~)x{@}) >the peers in prs can not suspect instances anymore (2)

act8: inst state = (prsxSERVICES) < inst state >the peers in
prs can not monitor the state of the services provided anymore

act9: run _inst = (prsxSERVICES) < run inst >

actlo: failr inst = (prsxSERVICES) < failr inst >

actll: dep instcs = (prsxSERVICES) < dep instcs >

END

SUSPECT INST: extended ordinary »
REFINES
SUSPECT INST

ANY

s >a service s

susp >suspicious instances
WHERE

grdl: s € SERVICES not theorem >

grd2: susp ¢ PEERS not theorem >

grd3: susp = run_inst(token owner(s) » s) n unav_peers not
theorem >instances in susp are suspicious if the peers running them becomes
unavailable

grd4: suspc_inst(token owner(s) » s) = @ not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: inst state(token owner(s) » s) = RUN 4 not theorem >the
state of s is OK
grdo: susp # o not theorem >
THEN
actl: suspc_inst(token owner(s) » s) = susp >the members of
susp become suspected instances for s by the token owner of s
END
FAIL: extended ordinary »
REFINES
FAIL
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >

grd3: inst state(token owner(s) » s) = RUN 4 not theorem >
grd4: suspc inst(token owner(s) » s) # o not theorem >
grd5: prop = run_inst(token owner(s) » s)\(suspc inst
(token owner(s) » s) u unav _peers) not theorem »
THEN

Page 3

M20

actl: inst state = inst state < ((propx{s})x{FAIL 4}) >
act2: suspct peers = suspct peers < ((propx{s})x{suspc inst
(token owner(s) » s)}) »
act3: suspc _inst(token owner(s) » s) = g >
END

RECONTACT INST OK: extended ordinary »

REFINES
RECONTACT INST OK

ANY
s >a service s
i >an instance i

WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the

state of s is SUSPICIOUS

grd4: suspct peers(token owner(s) » s) # o not theorem >the
set of suspicious peers for s is not empty

grd5: i € suspct peers(token owner(s) » s)\unav_peers not
theorem >i is a suspicious instance of s and is available (can be contacted)

grdo: i & rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i

grd7: rect inst(token owner(s) » s) c suspct peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
act2: rctt inst(token owner(s) » s) = rctt inst(token owner(s)
» s) u {i} »i is recontacted by the token owner of s successfully
END
RECONTACT INST KO: extended ordinary >
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance i
WHERE

grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem »

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspct peers(token owner(s) » s) # @ not theorem >the
set of suspicious peers for s is not empty

grd5: i € suspct peers(token owner(s) » s)nunav _peers not

theorem >i is a suspicious instance of s and is unavailable (can not be

Page 4

M20

contacted)

grdo: i ¢ rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i

grd7: rect inst(token owner(s) » s) c suspct peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} »>the token owner of s has tried to recontact i
END

FAIL DETECT: extended ordinary »
REFINES
FAIL DETECT

ANY
S >
prop ’
susp >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd7: susp ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >
grd4: suspct peers(token owner(s) » s) # o not theorem >
grd5: rect inst(token owner(s) » s) = suspct peers(token owner
(s) » s) not theorem >
grd6: prop = ((run_inst(token owner(s) » s) \ suspct peers
(token owner(s) » s)) u rctt inst(token owner(s)r s))\unav _peers not theorem >
grd8: susp = suspct peers(token owner(s) » s)\rctt inst
(token owner(s)r s) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL DETECT 4})
>
act2: suspct peers = suspct peers < ((propx{s})x{susp}) >
act3: rect inst(token owner(s) » s) =g >
act4: rctt inst(token owner(s) » s) = @ >
END
IS 0K: extended ordinary >
REFINES
IS OK
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not

Page 5

M20

theorem >
grd4: suspct peers(token owner(s) » s) = ¢ not theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{RUN 4}) >
END
FAIL ACTIV: extended ordinary »
REFINES
FAIL ACTIV
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem >
grd4: suspct peers(token owner(s) » s) # g not theorem >
grd5: prop = run_inst(token owner(s) » s) \ (unav_peers u
suspct peers(token owner(s) » s)) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL ACTIV 4}) »
act2: run_inst = run_inst < ((propx{s})x{run_inst(token owner
(s) » s)\suspct peers(token owner(s) » s)}) »
act3: failr _inst = failr _inst < ((propx{s})x {failr inst
(token owner(s) » s) u suspct peers(token owner(s) » s)}) >
act4: suspct peers = suspct peers < ((propx{s})x{e}) »
END
FAIL CONFIGURE: extended ordinary >
REFINES
FAIL CONFIGURE
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem >
grd4: card(run_inst(token owner(s) » s)) < min inst(s) not
theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN

actl: inst state = inst state < ((propx{s})x{FAIL CONFIG 4}) >

Page 6

M20
END
FAIL IGNORE: extended ordinary »

REFINES
FAIL IGNORE

ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem »
grd4: card(run_inst(token owner(s) » s)) = min inst(s) not
theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL IGN 4}) >
END
IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL IGN 4 not theorem
>
grd4: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{RUN 4}) »
END

REDEPLOY_ INSTC: not extended ordinary >
REFINES
REDEPLQOY INSTC
ANY
s >a service s
i >an instance 1
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >
grd3: i € run inst(token owner(s) » s) u failr inst

Page 7

M20

(token owner(s) » s) u unav _peers u dep instcs(token owner(s) » s) not theorem
i does not run s, is not failed for s, is not unavailable and is not already

activated for s

inst state(token owner(s) » s) = FAIL CONFIG 4 not

card(actv_instc(token owner(s) » s)) < deplo inst(s) not

card(dep_instcs(token owner(s) » s)) + card(run_inst

actv_instc(token owner(s) » s) = actv _instc(token owner

» s)) = deplo inst(s) not

» s)) + card(run_inst

FAIL CONFIG 4 not

» s)\unav_peers not

dep instcs = dep instcs < ((propx{s})x {dep instcs

= g

grd4: i € actv _instc(token owner(s) » s) not theorem
grd5:
theorem
grdo:
theorem
grd7:
(token owner(s) » s)) < min inst(s) not theorem
THEN
actl:
(s) »s) u {i}
END
REDEPLOY_ INSTS: not extended ordinary
REFINES
REDEPLOY_ INSTS
ANY
s
prop
WHERE
grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem
grd3: card(actv_instc(token owner(s)
theorem
grd4: card(dep_instcs(token owner(s)
(token owner(s) » s)) < min_inst(s) not theorem
grd5: inst state(token owner(s) » s)
theorem
grd6: prop = run_inst(token owner(s)
theorem
THEN
actl:
(token _owner(s)ps) u actv_instc(token owner(s)rs)})
act2: actv_instc(token owner(s) » s)
END
REDEPLOY: not extended ordinary
REFINES
REDEPLOY
ANY
s
prop
WHERE
grdl: s € SERVICES not theorem
grd2: prop ¢ PEERS not theorem
grd3: inst state(token owner(s) » s)

Page 8

FAIL CONFIG 4 not

M20

theorem >

grd4: actv_instc(token owner(s) » s)=g not theorem >

grd5: dep instcs(token owner(s) » s) # @ not theorem >

grd6: card(run_inst(token owner(s) » s))+card(dep _instcs
(token owner(s) » s)) = min inst(s) not theorem >

grd7: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >

THEN
actl: inst state= inst state < ((propx{s})x{DPL 4}) >
act2: run_inst = run_inst < ((propx{s})x {run inst(token owner

(s) » s) u dep instcs(token owner(s) » s)}) >
act3: dep instcs = dep instcs < ((propx{s})x{e}) >
END

HEAL: extended ordinary »

REFINES
HEAL

ANY
S >
prop ’

WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) p» s)

= DPL 4 not theorem >
grd4: prop = run_inst(token owner(s) » s

)\unav_peers not
theorem >
THEN
actl: inst state= inst state < ((propx{s})x{RUN 4}) >
END

UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER

ANY
S >
p >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: p € PEERS not theorem »
grd4: p € failr inst(token owner(s) » s) not theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem »
THEN
actl: failr inst = failr inst < ((propx{s})x{failr inst
(token owner(s) » s) \ {p}}) >
END

Page 9

M20

MAKE PEER AVAIL: extended ordinary »
REFINES
MAKE PEER AVAIL

ANY

p >
WHERE

grdl: p € PEERS not theorem »

grd2: p € unav peers not theorem >
THEN

actl: unav_peers = unav_peers \ {p} »
END

END

Page 10

M21

MACHINE
M21 >
REFINES
M20
SEES
co9
VARIABLES
run_inst >
suspct peers >
failr inst >
dep instcs >
token owner
unav_peers >
suspc _inst >
rect _inst >instances that are tried to be recontacted
rctt inst >instances effectively recontacted after a try
actv_instc >instances activated by token ownes
inst state >
INVARIANTS
invl: dom(run_inst) c dom(inst state) not theorem >
EVENTS
INITIALISATION: extended ordinary »
THEN
actl: run_inst = InitRunPeers >
act2: suspct peers = InitSuspPrs >
act3: failr _inst = InitSuspPeers >
act4: dep instcs = InitSuspPeers »
act5: token owner = init tok »
acto: unav_peers = g >
act7: suspc_inst = InitSuspPeers >
act8: rect inst = InitSuspPeers >
acto: rctt inst = InitSuspPeers >
actl0: actv instc = InitSuspPeers >
actll: inst state = InitStateSrv >
END
MAKE PEER UNAVAIL: not extended ordinary >
REFINES
MAKE PEER UNAVAIL
ANY
prs >Peers that will become unavailable
E >Values for token owner per service
WHERE
grdl: prs c PEERS not theorem >
grd2: prs ¢ unav_peers not theorem >the peers in prs are not
yet unavalaible
grd3: V srv - srv € SERVICES = dom(dom(inst state) > {srv})
\prs # ¢ not theorem >for each service srv, there must always be at least 1

Page 1

M21

peer available

grd4: E € SERVICES — PEERS not theorem »Value for token owner
per service

grd5: V srv - srv € SERVICES A token owner(srv) €& prs = E

(srv) = token owner(srv) not theorem >If the token owner of a service srv
does not belong to prs, the token owner is not changed
grdo: V srv - srv € SERVICES A token owner(srv) € prs
=

E(srv) € run_inst(token owner(srv) » srv)\(unav_peers u
prs u failr _inst(token owner(srv) » srv) u suspct peers(token owner(srv) » srv))
A

E(srv) » srv € dom(run_inst) n dom(suspct peers) n dom
(failr inst) n dom(dep instcs) A

run_inst(E(srv) » srv) = run_inst(token owner(srv) »
srv) A

inst state(E(srv) » srv) = inst state(token owner(srv) »
srv) A

suspct peers(E(srv) » srv) = suspct peers(token owner
(srv) » srv) A

failr _inst(E(srv) » srv) failr_inst(token owner(srv) »

srv) A

dep instcs(E(srv) » srv) dep instcs(token owner(srv) »
srv) not theorem >if the owner of the token for a service becomes unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
THEN

actl: unav_peers := unav_peers u prs >the peers in prs become
unavailable

act2: token_owner := token owner < E >new values for token
owner per service

act3: rect inst = ((prsxSERVICES) < rect inst) =
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances
anymore (1)

act4: rctt inst = ((prsxSERVICES) < rctt inst) =
(((E\token owner)~)x{@}) >the peers in prs can not try to recontact instances
anymore (2)

act5: actv _instc = ((prsxSERVICES) < actv instc) <
(((E\token owner)~)x{@}) >the peers in prs can not activate instances anymore

acto6: suspct peers = (prsxSERVICES) < suspct peers »>the peers
in prs can not suspect instances anymore (1)

act7: suspc_inst = ((prsxSERVICES) < suspc inst) <

Page 2

M21

(((E\token owner)~)x{@}) >the peers in prs can not suspect instances anymore (2)
act8: inst state = (prsxSERVICES) < inst state >the peers in
prs can not monitor the state of the services provided anymore
act9: run _inst = (prsxSERVICES) < run inst >
actl0: failr inst = (prsxSERVICES) < failr inst >
actll: dep instcs (prsxSERVICES) < dep instcs »

END

SUSPECT INST: extended ordinary »
REFINES
SUSPECT INST

ANY

s >a service s

susp >suspicious instances
WHERE

grdl: s € SERVICES not theorem >

grd2: susp ¢ PEERS not theorem >

grd3: susp = run_inst(token owner(s) » s) n unav_peers not
theorem >instances in susp are suspicious if the peers running them becomes
unavailable

grd4: suspc_inst(token owner(s) » s) = o not theorem >the
member of susp have not yet been suspected for s by the token owner of s
grd5: inst state(token owner(s) » s) = RUN 4 not theorem >the
state of s is OK
grd6: susp # o not theorem >
THEN
actl: suspc_inst(token owner(s) » s) = susp >the members of
susp become suspected instances for s by the token owner of s
END
FAIL: extended ordinary >
REFINES
FAIL
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >

grd3: inst state(token owner(s) » s) = RUN 4 not theorem >

grd4: suspc inst(token owner(s) » s) # @ not theorem >

grd5: prop = run_inst(token owner(s) » s)\(suspc inst
(token owner(s) » s) u unav_peers) not theorem »

THEN

actl: inst state = inst state < ((propx{s})x{FAIL 4}) >

act2: suspct peers = suspct peers < ((propx{s})x{suspc inst
(token owner(s) » s)}) »

act3: suspc _inst(token owner(s) » s) = g >

Page 3

M21
END

RECONTACT INST OK: extended ordinary »

REFINES
RECONTACT INST OK

ANY
s >a service s
i >an instance i

WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem »
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the

state of s is SUSPICIOUS

grd4: suspct peers(token owner(s) » s) # o not theorem >the
set of suspicious peers for s is not empty

grd5: i € suspct peers(token owner(s) » s)\unav_peers not
theorem >i is a suspicious instance of s and is available (can be contacted)

grd6: i & rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact 1

grd7: rect inst(token owner(s) » s) c suspct peers(token owner

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} >the token owner of s has tried to recontact i
act2: rctt _inst(token owner(s) » s) = rctt inst(token owner(s)
» s) u {i} »i is recontacted by the token owner of s successfully
END
RECONTACT INST KO: extended ordinary >
REFINES
RECONTACT INST KO
ANY
s >a service s
i >an instance 1
WHERE

grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >the
state of s is SUSPICIOUS

grd4: suspct peers(token owner(s) » s) # @ not theorem >the
set of suspicious peers for s is not empty

grd5: i € suspct peers(token owner(s) » s)nunav_peers not

theorem >i is a suspicious instance of s and is unavailable (can not be
contacted)

grdo: i & rect inst(token owner(s) » s) not theorem >the token
owner of s has not yet tried to recontact i
grd7: rect inst(token owner(s) » s) c suspct peers(token owner

Page 4

M21

(s) » s) not theorem >the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
actl: rect inst(token owner(s) » s) = rect inst(token owner(s)
b s) u {i} »>the token owner of s has tried to recontact i
END

FAIL DETECT: extended ordinary »
REFINES
FAIL DETECT

ANY
S >
prop >
susp >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd7: susp ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL 4 not theorem >
grd4: suspct peers(token owner(s) » s) # g not theorem >
grd5: rect_inst(token owner(s) » s) = suspct peers(token owner
(s) » s) not theorem >
grd6: prop = ((run_inst(token owner(s) » s) \ suspct peers
(token owner(s) » s)) u rctt inst(token owner(s)r s))\unav_peers not theorem >
grd8: susp = suspct peers(token owner(s) » s)\rctt inst
(token owner(s)» s) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL DETECT 4})
>
act2: suspct peers = suspct peers < ((propx{s})x{susp}) >
act3: rect inst(token owner(s) » s) = g >
act4: rctt inst(token owner(s) » s) = @ >
END
IS 0OK: extended ordinary >
REFINES
IS 0K
ANY
S >
prop >
WHERE

grdl: s € SERVICES not theorem >

grd2: prop ¢ PEERS not theorem >

grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem »

grd4: suspct peers(token owner(s) » s) = ¢ not theorem >

grd5: prop = run_inst(token owner(s) » s)\unav peers not
theorem »

Page 5

M21

THEN
actl: inst state = inst state < ((propx{s})x{RUN 4}) »
END
FAIL ACTIV: extended ordinary »
REFINES
FAIL ACTIV
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL DETECT 4 not
theorem >
grd4: suspct peers(token owner(s) » s) # g not theorem >
grd5: prop = run_inst(token owner(s) » s) \ (unav_peers u
suspct peers(token owner(s) » s)) not theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL ACTIV 4}) >
act2: run_inst = run_ inst < ((propx{s})x{run_inst(token owner
(s) » s)\suspct peers(token owner(s) » s)}) >
act3: failr _inst = failr _inst < ((propx{s})x {failr inst
(token owner(s) » s) u suspct peers(token owner(s) » s)}) »
act4: suspct peers = suspct peers < ((propx{s})x{e}) >
END
FAIL CONFIGURE: extended ordinary >
REFINES
FAIL CONFIGURE
ANY
S >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem >
grd4: card(run_inst(token owner(s) » s)) < min _inst(s) not
theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL CONFIG 4}) »
END

FAIL IGNORE: extended ordinary »
REFINES

Page 6

M21

FAIL IGNORE

ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL ACTIV 4 not
theorem >
grd4: card(run_inst(token owner(s) » s)) = min inst(s) not
theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{FAIL IGN 4}) >
END
IGNORE: extended ordinary >
REFINES
IGNORE
ANY
S >
prop ’
WHERE

grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL IGN 4 not theorem
>
grd4: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state = inst state < ((propx{s})x{RUN 4}) >
END

REDEPLOY_ INSTC: extended ordinary >
REFINES
REDEPLOY INSTC
ANY
s >a service s
i >an instance 1
WHERE
grdl: s € SERVICES not theorem >
grd2: i € PEERS not theorem »
grd3: i € run_inst(token owner(s) » s) u failr inst
(token owner(s) » s) u unav peers u dep instcs(token owner(s) » s) not theorem
>1 does not run s, is not failed for s, is not unavailable and is not already
activated for s
grd4: i € actv instc(token owner(s) » s) not theorem »

Page 7

M21

grd5: inst state(token owner(s) » s) = FAIL CONFIG 4 not

theorem >
grdo: card(actv_instc(token owner(s) » s)) < deplo inst(s) not
theorem >
grd7: card(dep instcs(token owner(s) » s)) + card(run inst
(token owner(s) » s)) < min inst(s) not theorem >
THEN
actl: actv instc(token owner(s) » s) = actv instc(token owner
(s) »s)u{i} >
END
REDEPLOY INSTS: extended ordinary »
REFINES
REDEPLOY INSTS
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: card(actv_instc(token owner(s) » s)) = deplo _inst(s) not
theorem >
grd4: card(dep_instcs(token owner(s) » s)) + card(run_inst

(token owner(s) » s)) < min_inst(s) not theorem >
grd5: inst state(token owner(s) » s) = FAIL CONFIG 4 not

theorem >
grd6: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: dep _instcs = dep instcs < ((propx{s})x {dep_instcs
(token owner(s)rs) u actv_instc(token owner(s)rs)}) >
act2: actv_instc(token owner(s) » s) = @ »
END
REDEPLOY: extended ordinary »
REFINES
REDEPLOY
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = FAIL CONFIG 4 not
theorem »
grd4: actv instc(token owner(s) » s)=¢ not theorem >
grd5: dep instcs(token owner(s) » s) # o not theorem >
grdo: card(run_inst(token owner(s) » s))+card(dep instcs

Page 8

M21

(token owner(s) » s)) = min inst(s) not theorem >

grd7: prop = run_inst(token owner(s) » s)\unav_peers not
theorem »
THEN
actl: inst state= inst state < ((propx{s})x{DPL 4}) »
act2: run inst = run inst < ((propx{s})x {run inst(token owner

(s) » s) u dep instcs(token owner(s) » s)}) >
act3: dep instcs = dep instcs < ((propx{s})x{e}) >
END

HEAL: extended ordinary »
REFINES
HEAL
ANY
S >
prop >
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: inst state(token owner(s) » s) = DPL 4 not theorem >
grd4: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: inst state= inst state < ((propx{s})x{RUN 4}) >
END

UNFAIL PEER: extended ordinary >
REFINES
UNFAIL PEER

ANY
S >
p >
prop ’
WHERE
grdl: s € SERVICES not theorem >
grd2: prop ¢ PEERS not theorem >
grd3: p € PEERS not theorem >
grd4: p € failr_inst(token owner(s) » s) not theorem >
grd5: prop = run_inst(token owner(s) » s)\unav_peers not
theorem >
THEN
actl: failr inst = failr inst < ((propx{s})x{failr inst
(token owner(s) » s) \ {p}}) »
END

MAKE PEER AVAIL: extended ordinary »
REFINES
MAKE PEER AVAIL

Page 9

END

ANY

P
WHERE

grdl:
grd2:

THEN

actl:

END

M21

p € PEERS not theorem »
p € unav peers not theorem >

unav_peers

= unav_peers \ {p} >

Page 10

