The Maximum Degree of a Random Delaunay Triangulation in a Smooth Convex - Archive ouverte HAL Access content directly
Poster Communications Year :

The Maximum Degree of a Random Delaunay Triangulation in a Smooth Convex

(1) , (2) , (2)
1
2
Nicolas Broutin
  • Function : Author
  • PersonId : 874919
Olivier Devillers
Ross Hemsley
  • Function : Author

Abstract

We give a new polylogarithmic bound on the maximum degree of a random Delaunay triangulation in a smooth convex, that holds with probability one as the number of points goes to infinity. In particular, our new bound holds even for points arbitrarily close to the boundary of the domain.
Fichier principal
Vignette du fichier
degree.pdf (74.58 Ko) Télécharger le fichier
Vignette du fichier
max_degree2.png (87.19 Ko) Télécharger le fichier
Vignette du fichier
poster.pdf (144.04 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Format : Figure, Image
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01018187 , version 1 (03-07-2014)

Identifiers

  • HAL Id : hal-01018187 , version 1

Cite

Nicolas Broutin, Olivier Devillers, Ross Hemsley. The Maximum Degree of a Random Delaunay Triangulation in a Smooth Convex. AofA 2014 - 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (2014), Jun 2014, Paris, France. ⟨hal-01018187⟩

Collections

INRIA INRIA2 ANR
223 View
946 Download

Share

Gmail Facebook Twitter LinkedIn More