The Maximum Degree of a Random Delaunay Triangulation in a Smooth Convex

Nicolas Broutin 1 Olivier Devillers 2 Ross Hemsley 2
2 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We give a new polylogarithmic bound on the maximum degree of a random Delaunay triangulation in a smooth convex, that holds with probability one as the number of points goes to infinity. In particular, our new bound holds even for points arbitrarily close to the boundary of the domain.
Document type :
Poster communications
Liste complète des métadonnées

Cited literature [4 references]  Display  Hide  Download


https://hal.inria.fr/hal-01018187
Contributor : Ross Hemsley <>
Submitted on : Thursday, July 3, 2014 - 5:34:49 PM
Last modification on : Friday, May 25, 2018 - 12:02:03 PM
Document(s) archivé(s) le : Friday, October 3, 2014 - 12:01:23 PM

Files

degree.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : hal-01018187, version 1

Collections

Citation

Nicolas Broutin, Olivier Devillers, Ross Hemsley. The Maximum Degree of a Random Delaunay Triangulation in a Smooth Convex. AofA 2014 - 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (2014), Jun 2014, Paris, France. ⟨hal-01018187⟩

Share

Metrics

Record views

364

Files downloads

887