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Abstract Multi-cloud computing is a promising paradigm to support very large scale

world wide distributed applications. Multi-cloud computing is the usage of multi-

ple, independent cloud environments, which assumed no priori agreement between

cloud providers or third party. However, multi-cloud computing has to face several

key challenges such as portability, provisioning, elasticity, and high availability. De-

velopers will not only have to deploy applications to a specific cloud, but will also

have to consider application portability from one cloud to another, and to deploy

distributed applications spanning multiple clouds. This article presents soCloud a

service-oriented component-based Platform as a Service (PaaS) for managing porta-

bility, elasticity, provisioning, and high availability across multiple clouds. soCloud

is based on the OASIS Service Component Architecture (SCA) standard in order to

address portability. soCloud provides services for managing provisioning, elasticity,

and high availability across multiple clouds. soCloud has been deployed and evalu-

ated on top of ten existing cloud providers: Windows Azure, DELL KACE, Amazon

EC2, CloudBees, OpenShift, dotCloud, Jelastic, Heroku, Appfog, and an Eucalyptus

private cloud.
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1 Introduction

Cloud computing builds on established trends for driving the cost out of the deliv-

ery of services while increasing the speed and agility with which services are de-

ployed. Virtualization, on-demand deployment, Internet delivery of services are parts

of Cloud computing. Cloud computing differentiates itself by changing how we in-

vent, develop, deploy, scale, update, maintain, and pay for applications and the in-

frastructure on which they run.

Different cloud service providers, based on different technologies, support a large

number of cloud services such as Infrastructure as a Service (IaaS) and Platform as

a Service (PaaS). Cloud service consumers select what fit their requirements from

the cloud services. For instance, requirements can be: price, quality of service (QoS),

programming language, database, middleware, etc. It is difficult to cloud service con-

sumers to meet all these requirements with a single cloud provider. Multi-cloud com-

puting as the usage of multiple, independent cloud environments, which assumed no

priori agreement between cloud providers or third party is a promising paradigm to

support very large scale world wide distributed applications.

However, multi-cloud computing has to face several key challenges: portability,

provisioning, elasticity, and high availability. Multi-cloud portability means writing

applications once and running them on any clouds. Most existing cloud providers

are typically offered through proprietary APIs and limited to a single infrastructure

provider. In such situations, vendor lock-in is a primary concern for moving towards

a cloud provider. Multi-cloud provisioning refers to the capability to deploy a dis-

tributed application spanning multiple cloud providers. Deploying a distributed ap-

plication in a multi-cloud context is not an easy task. Multi-cloud elasticity refers

to the capability to scale applications across multiple clouds. Currently, there is no

convenient way to express specific application elasticity rules for each part of a dis-

tributed application as needed. Multi-cloud high availability refers to the degree to

which an application is operable across multiple clouds. Cloud provider services can

become unavailable due to outages or denials of services. High availability needs

to be analysed and set across multiple clouds in order to reduce the probability of

outages that could affect services deployed in a single cloud system.

In this article we discuss the design and implementation of soCloud. soCloud is

a multi-cloud PaaS that addresses the four key challenges presented previously. so-

Cloud is a distributed PaaS that provides a model for building distributed applications.

This model is an extension of the OASIS SCA standard1. Our ongoing approach to

address portability and provisioning in a multi-cloud context is the use of the SCA

standard. Our elasticity management approach is based on autonomic computing with

the overall aim of creating self-managed elastic multi-cloud applications. High avail-

ability is achieved in two ways. Firstly, soCloud provides a multi-cloud load balancer

service that fronts traffic for applications deployed across multiple clouds and makes

a decision about where to route the traffic when cloud nodes fail. Secondly, the so-

Cloud architecture uses redundancy at all levels to ensure that no single component

failure in a cloud provider impacts the overall system availability. We describe a way

1 http://www.oasis-opencsa.org/sca
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to annotate SCA artifacts with deployment information needed to optimize the use of

services in multiple cloud environments. These annotations also allow to express elas-

ticity rules that ensure the appropriate adjustment decisions made in timely manner to

meet service needs in the presence of cloud service failures. The soCloud architecture

is composed of the following SCA components: service deployer, constraints valida-

tor, PaaS deployment, SaaS deployment, load balancer, node provisioning, monitor-

ing, workload manager and controller components. soCloud is deployed and evalu-

ated on ten existing cloud providers Windows Azure, DELL KACE, Amazon EC2,

CloudBees, OpenShift, dotCloud, Jelastic, Heroku, Appfog, and an Eucalyptus pri-

vate cloud.

The remainder of this article is organized as follows. In Section 2, we discuss the

four challenges we addressed for multi-clouds. Next, Section 3 presents the design

and implementation of the soCloud platform, and its integration with existing cloud

providers. The evaluation of soCloud is discussed in Section 4. Section 5 compares

soCloud with the state-of-the-art. Section 6 discusses the limitations of this work,

while Section 7 concludes this article and presents future work we intend to address.

2 Multi-cloud challenges

IT companies are starting to realize and recognize the benefits and advantages of

cloud computing. However, cloud technology maturity is still a concern. This section

describes four key challenges for multi-cloud computing: portability, provisioning,

elasticity, and high availability.

2.1 Multi-cloud portability

In the cloud computing area, the portability issue should take into account both appli-

cation and data. Although data portability is an important feature, this article focuses

only on application portability. In an emerging and rapidly changing market such as

cloud computing, it is easy to create applications that are locked into one vendor cloud

because of the use of proprietary APIs and formats. To avoid this vendor lock-in syn-

drome, SaaS must be portable on top of various cloud PaaS and IaaS providers. Then,

this multi-cloud portability allows the migration from one cloud provider to another

in order to take advantage of cheaper prices or better QoS. However, SaaS portability

requires that the runtime support provides a common model to hide the diversity of

underlying PaaS and IaaS. Furthermore, the dominant programming models today

have grown increasingly complex. SCA, in contrast, provides a simplified program-

ming model and unified way to applications that communicate using a variety of

network protocols [28].

To address the challenge of multi-cloud portability, soCloud promotes SCA as the

model to design and develop both multi-cloud SaaS applications and the underlying

soCloud PaaS.

2.2 Multi-cloud provisioning

Application Provisioning: Application provisioning includes building and deploy-

ment on multiple cloud environments. Providing a consistent methodology and pro-

cess for modelling how applications are built and provisioned, enabling flexibility and
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choice for developers to use any cloud provider they choose. Application provision-

ing should deliver business agility and operational efficient by high level abstraction

and automating provisioning of applications across multiple cloud providers.

Geo-diversity: The authors in [43] advocates that small data centers, which consume

less power, may be more advantageous than large ones, and that geo-diversity tends

to better match user demands. Geo-diversity lowers latency to users and increases

reliability in the presence of an outage taken out an entire site. In a legal context, data

protection law and confidentiality can lead users to place their data in a specific area.

In fact, the location of data can be facilitated or restricted in particular jurisdictions.

Overall, to address the challenge of multi-cloud provisioning, soCloud offers a

service to provision applications across multiple cloud providers.

2.3 Multi-cloud elasticity

The management of elasticity can be further split into two approaches: fine-grained or

coarse-grained. The first one allows to scale resources either by changing the number

of virtual machines (VMs) using horizontal scaling (adding more virtual machines or

devices to the computing platform to handle an increased application load) or vertical

scaling (adding more CPU, Memory, Disk, Bandwidth to handle an increased appli-

cation load) depending on the application memory, storage, network bandwidth and

CPU requirements. The second one manages the resources scalability by changing

cloud providers. Indeed, when outages occur with one cloud provider, the coarse-

grained elasticity will switch to another cloud provider. While, the fine-grained elas-

ticity can actually be made up of many fine-grained resources. In managing elasticity

across multiple clouds, automation is a mandatory requirement, and it is thus a foun-

dational design principle [23]. The function of any autonomic capability is a control

loop that collects details from the system and acts accordingly. However, developers

should have the possibility to define specific elasticity rules on their services. For

example, the developers specify constraints on the response time depending of the

number of users currently accessing the provided service.

To address the challenge of multi-cloud elasticity, soCloud offers an autonomic

service which provides a global mechanism to manage elasticity across multiple

clouds and also offers the possibility to define application specific elasticity rules.

2.4 Multi-cloud high availability

A series of news [22,42] and papers [3,36] have pointed several cloud provider out-

ages. According to a recent report by the International Working Group on Cloud

computing Resiliency2, a total of 568 hours of downtime at thirteen well-known

cloud services since 2007 caused financial damage of more than US$71.7 million.

The average unavailability of cloud services is 7.5 hours per year, amounting to an

availability rate of 99.9%, according to the group preliminary results. These results

are far from the expected reliability of mission critical system which is 99.999%.

As a comparison, the average unavailability for electricity in a modern capital city

is less than 15 minutes per year [30]. Besides this economic impact, the downtime

2 http://iwgcr.org
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also affects millions of end-users. Of course, downtime costs money and dammage,

unfortunately protecting systems against downtime with 99.999% of availability is

not free.

To address the challenge of multi-cloud high availability despite outages, soCloud

provides high availability in two ways. Firstly, with the applications deployed with

a soCloud platform, the high availability is ensured by using a load balancer service

which distributes requests among instances of the application deployed on multiple

cloud providers. Secondly, the soCloud architecture uses redundancy at all levels to

ensure that no single component failure in a cloud provider impacts the overall system

availability.

3 soCloud design and implementation

In this section we present the design and implementation of soCloud platform. We

first discuss background elements of SCA and FraSCAti. Next, we describe some

components of the soCloud architecture and its implementation. Finally, we describe

how the soCloud platform is deployed on existing IaaS/PaaS providers.

3.1 SCA

soCloud is based on the SCA standard. SCA is a set of OASIS specifications for

building distributed applications and systems using Service-Oriented Architecture

(SOA) principles [15]. SCA promotes a vision of Service-Oriented Computing (SOC)

where services are independent of implementation languages (Java, Spring, BPEL,

C++, COBOL, C, etc.), networked service access technologies (Web Services, JMS,

etc.), interface definition languages (WSDL, Java, etc.) and non-functional proper-

ties. Component-Based Design [11] and SOA are two major software engineering

approaches widely used for structuring systems. SCA targets composition of services

in SOA systems and thus is suitable for building enterprise and cross-enterprise ap-

plications built on already-developed components and services.

3.2 FraSCAti

Several open source implementations of the SCA specifications exist. Three of the

most well known are Apache Tuscany, Fabric3 and FraSCAti. Compared to Tuscany

and Fabric3, FraSCAti introduces reflective capabilities to the SCA programming

model, and allows dynamic introspection and reconfiguration via a specialization of

the Fractal component model [6]. FraSCAti provides a component-based approach

to support the heterogeneous composition of various interface definition languages

(WSDL, Java), implementation technologies (Spring, EJB, BPEL, OSGI, Jython,

Jruby, Xquery, Groovy, Velocity, Fscript, Beanshell.), and binding technologies (Web

Services, JMS, RPC, REST, RMI, UPnP.).

soCloud is built on top of FraSCAti. FraSCAti is the execution environment of

both the soCloud PaaS and soCloud applications deployed on the top of this multi-

cloud PaaS.

3.3 soCloud SaaS applications

Application specification soCloud applications are built using the SCA model. As

illustrated in Fig. 1, the basic SCA building blocks are software components, which
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provide services, require references and expose properties. The references and ser-

vices are connected by wires. For SCA references, a binding describes the access

mechanism used to invoke a remote service. In the case of services, a binding de-

scribes the access mechanism that clients use to invoke the service. We describe how

SCA can be used to package SaaS applications. The first requirement is that the pack-

age must describe and contain all artifacts needed for the application. The second re-

quirement is that provisioning constraints and elasticity rules must be described in the

package. The SCA assembly model specification describes how SCA and non-SCA

artifacts (such as code files) are packaged. The central unit of deployment in SCA is

a contribution. A contribution is a package that contains implementations, interfaces

and other artifacts necessary to run components. The SCA packaging format is based

on ZIP files, however, other packaging formats are explicitly allowed. Fig. 1 shows a

three-tier application is packaged as a ZIP file (SCA contribution) and its architecture

is described.

Fig. 1 An annotated soCloud application.

Annotations Some cloud-based applications require more detailed description of

their deployment (c.f. Fig. 1). The deployment and monitoring of soCloud appli-

cations are bound by a description of the overall software system architecture and the

requirements of the underlying components, that we refer to as the application man-

ifest. Basically, the application manifest consists of describing what components the

application is composed with functional and non-functional requirements for deploy-

ment. In fact, the application can be composed of multiple components (c.f. Fig. 1).

The application manifest defines elasticity rule for the service component (e.g., in-

crease/decrease instance of component). Commonly, scale up or down, is translated

to a condition-action statement that reasons on performance indicators of the compo-

nent deployed. In order to fulfill the requirements for the soCloud application descrip-

tor, we propose to annotate the SCA components with the four following annotations:
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1. placement constraint (@location) allows to map components of a soCloud ap-

plication to available physical hosts within a geographical datacenter in multi-

cloud environments.

2. computing constraint (@vm) provides necessary computing resources defined

for components of a soCloud application in the multi-cloud environments.

3. replication (@replication) specifies the number of instances of the component

that must be deployed in multi-cloud environments.

4. elasticity rule (@elasticity) defines a specific elasticity rule that should be ap-

plied to the component deployed on multi-cloud environments.

For example, let us consider the three-tier web application described in Fig. 1. The

annotation (@location=France) of the frontend component indicates to deploy this

component on a cloud provider located in France. Next, the annotation (@vm=medium)

on the computing component specifies the kind of computing resources required by

this component and can be deployed on any cloud provider. The developer has the

possibility to specify through the @vm annotation the computing resources (micro,

small, medium, large) she need. Finally, the annotations (@location=Norway and

@replication=2) on the storage component indicate to deploy this component on two

different cloud providers located in Norway. soCloud automates the deployment of

this three-tier application in a multiple cloud environment by respecting given anno-

tations.

3.4 Constraint analysis and formulation

To express constraints (placement, computation, etc.) and define specific elasticity

rules, we analyse each step of the formulation of these constraints. To express a con-

straint we use this formula P = {n, v}. Where n indicates the name of the constraint

and v the value of the constraint. Regarding the elasticity rule, we use R = {c, a},

where c indicates the condition and a the resulting action.

The placement can be a location or a provider name. For example, specifying

@placement=”Amazon Ireland” or @placement=”Ireland” on a component has the

same interpretation (i.e, the component should be placed in Ireland) from the point

of view of placement constraint.

To express different computation capacities, we use the instance type taxonomy

defined by Amazon EC23. An example of computation constraint request is P = {vm,

medium}. This request has name “vm” and value “medium” which represents the

computing capacity.

However, in a heterogeneous multi-cloud environment, existing types of VM pro-

vided by different clouds can have small differences. In order to use these clouds and

hide these differences, the soCloud platform defines a high-level abstraction where

similar VMs are classified in the same type. Let T be the set of VM types defined in

the soCloud platform (see Equation 1) and C the characteristics of the VM provided

by different clouds (see Equation 2). Equation 3 defines how the soCloud platform

hides the differences between the VMs provided from different clouds.

T = {micro, small,medium, large} (1)

3 http://aws.amazon.com/ec2/instance-types/
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C = {Ci, i ∈ Provider} (2)

VMtype = {C : f(Ci), f(Ci) ∈ T, i ∈ Provider} (3)

The soCloud platform offers to developers the opportunity to choose the spe-

cific VM (with the best performance) by indicating, as an additional information, the

provider name. Overall, choosing a specific VM refers to the combination of @vm

and @placement annotations, where @placement corresponds to the provider name.

3.5 A soCloud application descriptor

Let us consider the three-tier application architecture described in Fig. 1, where we

need to deploy a distributed application. This distributed application is packaged as

a contribution that contains three contributions and one file (application descriptor)

describing the architecture of the distributed application. Each contained contribu-

tion corresponds to each tier of the distributed application. In the case the application

deployed is not distributed, the contribution contains a single contribution with a

composite file. This distributed application needs placement, elasticity, and compu-

tation requirements. In order to fulfill these requirements, we use SCA properties to

express them (see Listing 1). Lines 3, 9, 18 correspond to our SCA extension defined

to represent respectively frontend, computing and storage contributions. The place-

ment constraints for frontend and storage components are expressed at Line 6 and

20 respectively. The computing constraint is expressed at Line 12 for the computing

component. The number of replication of the storage component is expressed at Lines

21. Lines 13-15 express the elasticity rule for the computing component. We adopt

an event-condition-action approach for rule specification. The event-condition syntax

is an Event Processing Language statement [25]. Basically, the elasticity rule and ac-

tion defined at Lines 13-15 means: when the average response time of the component

exceeds 4 seconds, then add a new virtual machine running this component.

1 <composite name="DistributedApplication">

2 <component name="frontend">

3 <implementation.contribution contribution="frontend.zip"/>

4 <reference name="compute" target="computing/compute"/>

5 <reference name="storage" target="storage/storage"/>

6 <property name="location">France</property>

7 </component>

8 <component name="computing">

9 <implementation.contribution contribution="computing.zip"/>

10 <service name="compute"/>

11 <reference name="storage" target="storage/storage"/>

12 <property name="vm">medium</property>

13 <property name="elasticity">

14 Scaling out when ResponseTime > 4s

15 </property>

16 </component>

17 <component name="storage">

18 <implementation.contribution contribution="storage.zip"/>

19 <service name="storage"/>

20 <property name="location">Norway</property>

21 <property name="replication">2</property>

22 </component>

23 </composite>

Listing 1 A soCloud application descriptor.
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3.6 soCloud architecture

Fig. 2 gives an overview of the soCloud architecture. The soCloud architecture has

two parts: the soCloud master, and the soCloud agent. This partitioning provides

flexibility for deploying the soCloud PaaS across a highly distributed multi-cloud en-

vironment. Firstly, the soCloud master consists of a set of eight components. This

part of the architecture focuses on the intelligence processing of soCloud. Secondly,

the soCloud agent is used to host, execute and monitor soCloud applications. This

part provides the necessary services for managing a set of applications and resources.

soCloud agents work with the soCloud master and run in different cloud infrastruc-

tures. All communication between a soCloud master and the applications deployed

is mediated by the soCloud agent.

Fig. 2 Overview of the soCloud Architecture.

3.6.1 Monitoring

The component provides an unified-platform independent mechanism that collects,

aggregates and reports details (such as health and performance metrics) about ap-

plications deployed on multiple cloud environments. It brings information about cur-

rently executing process as well as the system on which the monitoring service is run-

ning. The monitoring component captures any change in the state of the application.

The monitoring associates to each application deployed on the soCloud platform, a

temporary table (ResponsivenessEvent) that collects informations such as applica-

tion responseTime, number of requests, etc. The metrics collected in a time interval

are sent to the Workload Manager component for analyzing. The monitoring compo-

nent acts at three levels: Operating System (OS), Java Virtual Machine (JVM), and

Execution Environment (FraSCAti). The monitoring component exposes services via

REST and JMS to monitor a distributed environment. The consumer of these services

is the workload manager component or can be also any external application running

outside soCloud. Each application deployed with the soCloud PaaS is automatically

monitored. However, with some cloud providers such as Salesforce.com or Google
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App Engine our monitoring component could not work. As example, Google App

Engine forbids the use of JMX.

3.6.2 Workload Manager

The Workload Manager (WM) component provides some event processing function-

ality [16]. All events are processed to extract drift indicators (DI). An example of DI

can be a CPU consumption is greater than 90% for a period of 2 minutes. The WM is

centered on DI tracking perform filtering, transformation, and most importantly ag-

gregation of events. All the metrics (events data) sent by monitoring components are

continuously analyzed in terms of drift indicators that are expressed by event rules,

and acts upon opportunities and threats in real time, potentially by creating derived

events. One of WM major goals is to find a symptom and analyses it to find its root

cause. The WM uses a technique called event correlation4 to examine symptoms and

identify groups of symptoms that have a common root cause. As an example of event

correlation, WM takes multiple occurrences of the same event, examines them for du-

plicate information, removes redundancies and reports them as a single event. When

a drift occurs, the WM reports it to the controller component. The ability to derive

instant insights into the operations of the resource provisioning is essential. Thus, the

capability to dynamically allocate and dispose resources is an important ingredient to

build a platform for elastic applications.

Related to the events received from an inbound monitoring component, how

events can be woven together to pull out the right information? This is accomplished

through Complex Event Processing (CEP)5. To achieve this, we use DiCEPE, a Dis-

tributed Complex Event Processing Engine we have presented in [35]. The particu-

larity of DiCEPE is the integration of CEP engines in distributed systems, and the

fact that they can be exposed via various communication protocols. The DiCEPE

integrates the Esper6 engine for further processing. We apply Esper because of its

performance and the metric-value pairs are delivered as events each time their values

change between measurements.

3.6.3 Controller

The controller component provides the mechanisms that construct the actions needed

to achieve goals and objectives. For example, it multiplexes workloads onto an ex-

isting infrastructure, and allows for on-demand allocation of resources to workloads.

The system state is managed by the controller component. By state, we mean the

information retained in one component that is meaningful for this component (as ex-

ample: a table on each instance of LB to associate network addresses with the sym-

bolic names of available hosts). The system state offers the potential for improving

the consistency, and reliability of the system. For components to work together effec-

tively, they must agree on common goals and coordinate their actions. This requires

that each part to know something about the other. For example, the node provisioning

stores a table of available resources: If the developer wants to deploy an application

4 http://tinyurl.com/qdrcpm3.
5 CEP: Computing that performs operations on complex events, including reading, creating, transform-

ing, or abstracting them[25].
6 http://www.espertech.com/



soCloud: A service-oriented component-based PaaS for multiple clouds 11

on the resource, the controller can notify the node provisioning to allocate new re-

sources for the application when the available resource is not sufficient. The second

potential advantage of the system state is reliability. If information is replicated at

several cloud providers and one of the copies is lost due to a failure, then it may be

possible to use one of the other copies to recover the lost information. Compared to

the workload manager and node provisioning components, the controller takes deci-

sion in the system. The controller component is self-adaptive in order to respond in

a coherent and timely manner to changes in environment, and to failures of compo-

nents.

All requests handled by a controller component are processed as transactions.

The transaction engine is implemented for the specific needs of the soCloud archi-

tecture. Each transaction is created and managed by a coordinator. Two well-known

problems of concurrent transactions can be mentioned: i) lost update and ii) incon-

sistent retrievals. To avoid these problems we use a serially equivalent execution of

transactions [12]. The use of serial equivalence as a criterion for correct concurrent

execution prevents the occurrence of lost updates and inconsistent retrievals. The

controller component is the core of the elasticity management, it is made to tolerate

failures by the use of redundant components.

3.6.4 Service Deployer

The process illustrated by the sequence diagram in Fig. 3 describes how each task

vary with a service deployment scenario. The Service Deployer (SD) component is

responsible for handling the additional information of coordinating and managing

the service across multiple clouds (i.e., placement, binding, manage service). The SD

component decomposes and captures the constraints (specified by the developer) of

the service. For example, a constraint can be a placement of an application, resource

capacities needed by an application, or defined elasticity rules. In the case where the

constraints expressed on the components are fulfilled by multiple cloud providers,

soCloud randomly choses one of the providers offering the lowest price. To perform

Fig. 3 Application deployment sequence diagram.

the deployment, the SD component captures the constraints defined and validates
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them with the Constraint Validator component. Once the validation is done, the SD

component deploys a whole application this corresponds to sequences 4 to 6 in Fig. 3

with the support of the SaaS Deployment, PaaS Deployment, and Node Provisioning

components.

This component deploys the contribution package in three steps:

1. Validates the contribution package by checking if the contribution package con-

tains at least one ZIP file and one composite file.

2. Uses the constraint validator to validate the SCA properties defined in the com-

posite file.

3. Matches each constraint or elasticity rule defined in the composite file and in-

vokes the corresponding execution operation: Node provisioning, PaaS deploy-

ment, SaaS deployment.

3.7 Elasticity specification

In this section, we will describe how the soCloud architecture automates specific

elasticity rules associated with soCloud applications.

soCloud manages elasticity at IaaS and PaaS levels in the same manner. In fact,

the elasticity management in soCloud is not focused on any cloud layer (IaaS or

PaaS) specific resources, instead it refers to resources through abstractions provided

by the NP component, that offers an uniform way to manage resources from both

IaaS and PaaS. soCloud provides the capacity to scale the resources allocated for

the application as needed. For example, soCloud can add more nodes if it detects a

degradation on the application performance. On the other hand, if the resources are

underused, resizing is necessary. This feature is managed as a feedback control loop

by the soCloud platform. However, for specific cases, the developer should be able to

define automatic elasticity rules associated to its application. These rules are defined

inside the application architecture and supervised by the soCloud platform. Each rule

is composed of a condition or a set of conditions to be monitored. Those specific

elasticity rules are also managed by the soCloud feedback control loop. In order to

achieve elasticity, we need to keep track of the frequency of requests to resources

hosted and applications deployed on them. Thus, we use a proactive scheme that relies

on the current workload arrival rate to detect overload conditions. We measure the

incoming workload rate by monitoring the number of user connections being opened

in the load balancer component. To maintain hit statistics for frequently-accessed

applications, we dynamically compute an exponential weighted moving average of

request inter-arrival times, along the same lines as TCP computes its estimated round-

trip time [24]. Specially, we compute an average of the inter-arrival time using the

following formula:

f(t) = (1− α) ∗ f(t− 1) + α ∗ (δt(t)− δt (t− 1)) (4)

The arrival time of every hit is represented by δt(t). The constantα is a smoothing

factor that puts more weight on recent samples than on old samples. We have used a

value of α = 0.125, which is recommended for TCP7.

7 http://tools.ietf.org/html/rfc2988
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To detect overloads and underloads in the soCloud platform, we use a threshold-

based scheme to trigger dynamic allocation. Let us note that the calculation of a

threshold scheme based on equation 4 varies from one deployed application to an-

other.

Fig. 4 Conceptual view of a soCloud deployment.

3.8 soCloud deployment

In this section we describe how the soCloud architecture is deployed on a concrete

multi-cloud environment.

The soCloud PaaS provides high availability by replicating itself on different

clouds as shown in Fig. 4. We assume in our implementation that cloud services

can fail, and such fault service may later recover. The system administrator has the

possibility to define the deployment policy by specifying the number of replications.

For instance in Fig. 4, there is one replication of the soCloud master. Then, the de-

ployment is done in three steps. In the first step, the soCloud master is deployed in

dotCloud. In the second step, the soCloud master (deployed in dotCloud) dynami-

cally deploys another soCloud master in CloudBees. Automatically, the first soCloud

master becomes leader and the second one the follower. The soCloud master leader

is active, while the soCloud master follower is passive. By active, we mean the so-

Cloud master processes the operations in the system. By passive, we refer to the

standby soCloud master used as replication. At this stage, only the soCloud master

and its replication are deployed. Finally, the soCloud master leader will provision a

new cloud node on which it deploys both the execution environment (FraSCAti) and

a soCloud agent. When the soCloud agent is deployed, it uses a service discovery

mechanism to find which Workload Manager component the information collected



14 Fawaz Paraiso et al.

should be sent. Periodically, the service discovery checks if the Workload Manager

component is reachable in order to update the services table when failure occurs on

the target soCloud master. The soCloud PaaS service discovery mechanism is imple-

mented using Google Fusion Table [19] and FraSCAti dynamical multiple reference

binding. We use Google Fusion Table to persist the state of the active master and with

the dynamical multiple reference provided by FraSCAti we add on the fly a reference

to the new component. By state we mean the operational state of the soCloud master.

soCloud provides a capability for reliability using sources of state that are external to

soCloud itself. Typically, this is done with Google Fusion Table. The soCloud plat-

form provides a mechanism called “health checking” by which a component notifies

its health. This mechanism is implemented as an XML push mechanism which tests

if a component is reachable. Both the soCloud master and agent need the execution

environment (FraSCAti) to be running. However, when the system grows (the number

of applications or load increase), the third step is repeated.

3.9 Fail-overs

In this section we describe how the soCloud PaaS ensures the high availability at two

levels: soCloud level, and application level.

soCloud level The active soCloud master is called the leader and the passive soCloud

master is called the follower. The process of electing a leader allows the system to in-

dicate which soCloud master will have the decision of execution. The soCloud master

leader and follower are synchronized such that when the leader fails, automatically

the leader election is organized to elect a new leader. Specifically, we use Wait-Free

Synchronization that is appropriate in fault tolerant and real-time applications [18].

In the case the system administrator has been defined only one replication of the so-

Cloud master, the soCloud master follower is automatically elected. Otherwise, the

election is organized between the soCloud master followers. The leader election is

organized and supervised by the controller component. We assume that each com-

ponent has a reachable latency. The reachable latency is obtained by making a ping

from one component to another. Ping refers to the ability to have a live component

connection. Our leader election algorithm is simple. This algorithm ensures that the

component with minimum reachable latency gets elected as the leader. However, the

soCloud platform is not restricted to this algorithm, the system administrator has the

possibility to define another one (e.g., Chang-Roberts algorithm [9], Malpini algo-

rithm [26]), according to her requirement. Elections are held between two entities

that have the same function (e.g., two monitoring components, two workload man-

ager components, etc.). Then, the controller component organizes an election in order

to compare the reachable latency. By using this strategy, all the components of the

soCloud master leader are in the same cloud and the follower components in other.

When the soCloud master follower fails, automatically the soCloud master leader

deploys a new soCloud master follower.

Application level Same to soCloud replication, the developer has the possibility to

define the number of instances which will be deployed for its application. Each appli-
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cation deployed with soCloud is replicated in different clouds. The fail-overs mecha-

nism is achieved by the LB component. When failure occurs with one instance of the

application, the Controller component takes the decision to instantiate a new one.

Overall, the fail-overs automation in the soCloud platform enables our system

to recover quickly from most outages. In addition, we also monitor our system for

any variety of error conditions. With the two levels of availability, the soCloud PaaS

addresses the high availability challenge presented in Section 2.4.

3.10 Recovery

In this section we describe the method used by the soCloud PaaS for fault tolerance,

i.e., check-pointing8. A checkpoint can be local to a process or global in the system.

With the soCloud PaaS we use a global checkpoint. We use Google Fusion Table [19]

to record a global state of the system so that in the event of failure the entire system

can be rolled back to the global checkpoint and restarted. To record the global state,

soCloud uses the coordinated checkpoint method [5]. In fact, there are some dis-

advantages of uncoordinated checkpoint compared with coordinated checkpointing

schemes [18]. First, for coordinated checkpoint it is sufficient to keep just the most

recent global state snapshot in the stable storage. For uncoordinated checkpoints a

more complex processing scheme is required. Moreover, in the case of a failure, the

recovery method for coordinated checkpoint is simpler.

Fig. 5 soCloud deployment with ten cloud providers.

8 A checkpoint is a snapshot of the state of a process, saved on nonvolatile storage to survive process

failures [41].
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3.11 Integration with existing IaaS/PaaS

We report on the existing cloud environments on which the soCloud platform has

been deployed. The soCloud platform extends an experiment that was presented in a

previous work [34]. The soCloud platform is actually deployed on ten target cloud en-

vironments that are publicly accessible on the Internet9. The deployment is done with

IaaS/PaaS providers as illustrated in Fig. 5. With IaaS, resources are provisioned from

Windows Azure, DELL KACE, Amazon EC2, and our Eucalyptus private cloud, we

installed a PaaS stack composed of a Linux distribution, a Java Virtual Machine, a

web container and FraSCAti. soCloud is also deployed on PaaS such as: CloudBees,

OpenShift, dotCloud, Jelastic, Heroku, and Appfog as a WAR file.

4 Evaluation

In this section, we evaluate three key aspects of the soCloud platform: elasticity, high

availability and the overhead introduced by soCloud. Firstly, Section 4.1 describes

a use case scenario. Then, Section 4.2 evaluates the reaction of soCloud when faced

with flash crowd effects (i.e., elasticity of soCloud). Section 4.3 evaluates the soCloud

behavior against failures (i.e., high availability of soCloud). Finally, Section 4.4 eval-

uates the overhead introduced by soCloud.

4.1 Use case

We describe a scenario that can be used in a multiple clouds environment, and explain

briefly its requirements.

4.1.1 Description

Let us consider a motivating scenario in which a company built a device called ”Fuel

optimiser” in charge of reducing the fuel consumed by vehicles (car, boat, tractor,

lorry, etc). To improve the quality of their products, they analyse metrics (fuel con-

sumption per km) collected from vehicles. At the end of each trip, the vehicle sensors

sent metrics to a company application via REST messages. The application must face

requirements like:

– The application must be close to vehicles (geo-diversity).

– Unpredictable and unlimited growth of vehicles.

– Peaks and unpredictable workloads.

To address these challenges, the architecture of this application and the infrastruc-

ture need to be flexible, highly available, well performing, reliable and scalable. The

application uses a three-tier model; the vehicle sensors are directly connected to the

frontend tier, the middle tier analyses the metrics collected, and the storage tier

stores the metrics into a database. The application described in this scenario is used

for the evaluation of soCloud elasticity, and high availability.

9 http://socloud.soceda.cloudbees.net



soCloud: A service-oriented component-based PaaS for multiple clouds 17

Fig. 6 The series of two flash crowd effects. (a) Effective number of requests during the evolution of

the scenario. (b) Response time experienced by clients during the flash crowd effect without soCloud

elasticity. (c) Number of requests failed during the two phases of the flash crowd effect. (d) Response

time experienced by clients during the flash crowd effect with soCloud elasticity.

4.2 Measure of the reaction time to flash crowd effects

We have implemented a prototype of the application described in Section 5.1 and

deployed it with the soCloud platform. Our soCloud platform is deployed on ten

different cloud providers. We have conducted an experimental evaluation of this ap-

plication in order to assess how the soCloud platform behaves and effectiveness at

sustaining flash crowd effects10. We conducted an analysis of: (a) the application is

deployed without the soCloud elasticity mechanism, and (b) the application is de-

ployed with the soCloud elasticity mechanism.

4.2.1 Without soCloud elasticity

In the first case, we have observed the behavior of this application without elasticity

capability under high request load. Each request triggers an operation that consists

of analysing metrics collected by a vehicle and stores the results into a database.

To that end, we have configured httperf [32] to create 50,000 connections, with 10

requests per connection and a number of new connections created per second varying

between 10 and 150 ; this corresponds to a total of 3,020,000 requests. Fig. 6(a)

shows the number of requests achieved by the application with two phases of a flash

crowd effect, and Fig. 6(b) shows the corresponding response time (computed as the

number of operations performed). During the two phases of the flash crowd effect, the

average response time is 65.90 seconds. Fig. 6(a) and 6(b) show a mounted sudden

load caused by the flash crowd effect. We have noted that the number of requests

10 The flash crowd effect, also called the slash dot effect, resulte from a sudden increase in request traffic.
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increases with the response time. Then, Fig. 6(c) shows the number of request errors,

and shows the corresponding number of the failed requests. Thus, during the flash

crowd effect, 1.13% of requests have failed, precisely 34,039 requests. These request

errors are due to the processing timeout that we have set at 5 seconds for each request.

In fact, this timeout means that the lack of any server activity on the TCP connection

for this duration will be considered to be an error.

Overall, when the application becomes saturated, it suffers from performance fail-

ures and cause long response delays. We observe that the application can sustain the

request rate only up to a certain limit, which directly depends on the number of re-

quests on a time interval.

4.2.2 With soCloud elasticity

In the second case, we have studied the evolution of the response time during the two

phases of the flash crowd effect when soCloud elasticity is activated.

We assume that resource(VM) is preallocated and a soCloud agent is deployed

inside. Fig. 6(d) shows the results of the same experiment when using the soCloud

elasticity mechanism. We initially observe some contention at the source of applica-

tion as the response time decreases. During the first phase of the flash crowd effect,

the average response time is 37.30 seconds. Indeed, the soCloud platform has de-

tected peak mounted in 300 ms. After 4 seconds, the soCloud platform replicates

the application into another soCloud agent and updates the load balancer table for

balancing charge across different instances of the application. This reaction appears

clearly in Fig. 6(d), where the application replication is performed. The soCloud load

balancer dispatches the requests among the two instances of the application and the

response time remains small despite the high traffic. During the second phase of the

flash crowd effect, the application was already deployed, the soCloud platform has

detected peak mounted in 300 ms. As shown in Fig. 6(d), we do not notice mounted

peak during the second phase of the flash crowd effect, and the average response time

is 23.38 seconds. The relatively small response time during the second phase of the

flash crowd is due to the fact that the soCloud platform has already replicated the

application.

Overall, at the peak of the flash crowd, all the requests are performed with zero

failure and relatively acceptable response time, the soCloud platform allows the ap-

plication to scale more with better quality of service. These results demonstrate that

the soCloud platform deals well with elasticity across multiple cloud providers.

4.3 soCloud behavior against failures

We perform all our evaluation with the application described in the previous sections.

To show the behavior in soCloud over time as failures are injected, we deploy so-

Cloud as described in Fig. 4. The deployment of soCloud is done on ten clouds. The

soCloud master is replicated to tolerate more faults. The leader and follower of the so-

Cloud master are deployed respectively on dotCloud and CloudBees. soCloud agents

are deployed on Amazon EC2, Windows Azure, DELL KACE, OpenShift, Jelastic,

Heroku, Appfog, and our Eucalyptus private cloud.



soCloud: A service-oriented component-based PaaS for multiple clouds 19

4.3.1 Deployment time of soCloud

As described in Section 3, the deployment of soCloud consists of the deployment of

both a soCloud master and several agents.

soCloud master The deployment of a soCloud master is done by deploying both

leader and follower instances on two different clouds to ensure the high availabil-

ity. The deployment on each cloud consists of deploying the execution environment

(FraSCAti) with the soCloud master. The deployment of a soCloud master takes about

2.1 minutes.

soCloud agent We measure the time for the deployment of one soCloud agent. The

deployment consists of deploying the execution environment (FraSCAti) with the

soCloud agent. The deployment of a soCloud agent takes about 0.9 minute.

Overall, the average time taken to deploy soCloud with two masters (leader and

follower) and one agent is about 3 minutes.

4.3.2 Failure and recovery of a soCloud master leader

We assume that soCloud is running and our scenario application is deployed. To sim-

ulate a failure, we stop the soCloud master leader in dotCloud. In our observations,

soCloud takes about 3.5 minutes average to recovery and to become operational. so-

Cloud takes less than 200 ms to elect a new leader. The recovery process is performed

as follows. First, the soCloud master follower becomes leader after the election and

rollbacks the system. Then, a new soCloud master follower is deployed on another

cloud. Finally, the soCloud agent discovers automatically the new soCloud master

leader. According to [30,1], the average Mean Time To Recovery (MTTR) for pub-

lic clouds is 7.5 hours. As a comparison, the recovery time of soCloud takes only 3.5

minutes as shown in Table 1.

Table 1 MTTR results

MTTR(Hour)

soCloud 0.06 hour

Public clouds 7.5 hours

Failure and recovery of a soCloud master follower In this case, we simulate the

failure of a soCloud master follower in CloudBees, the soCloud master leader detects

automatically the failure. The soCloud master leader takes about 1200 ms to elect and

start a new master follower.

Downtime of an application deployed on soCloud The failure of an application de-

ployed with soCloud does not affect its availability. In fact, when a failure occurs,

the load balancer takes about 300 ms to detect and switch automatically to another

instance of the application deployed.

Downtime of a soCloud agent The failure of a single soCloud agent does not affect

the availability of the application deployed on soCloud. The soCloud load balancer

allows to redirect the requests to another instance of the application. The soCloud

agent deployment and start still take about 0.9 minute. However, the deployment time

of applications that were on the platform depends on the size of these applications.
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4.3.3 The soCloud high availability

Let us consider the availability equation below [27,39]:

Availability =
MTBF

MTBF +MTTR
(5)

As Equation 5 shows, the longer the MTTR is, the worse off a system is. The

formula illustrates how both Mean Time Between Failure (MTBF) and MTTR impact

the overall availability of a system. As MTTR goes up, availability goes down. To

compare the availability of soCloud and public clouds, we must estimate the same

MTBF. Then, in a year we assume that the MTBF is 8760 hours. The availability is

calculated in Table 2.

Table 2 Availability comparison

Availability

soCloud 8760

8760+0.06
= 99.999%

Public clouds 8760

8760+7.5
= 99.914%

Overall, as shown in Table 2, the availability of public clouds is 99.914%. As a

comparison, the soCloud availability is 99.999%. This result is close from the ex-

pected reliability of mission critical systems (c.f. Section 2.4). The soCloud platform

increases high availability. This result demonstrates that soCloud ensures well high

availability across multiple clouds.

4.4 Overhead introduced by soCloud

In order to analyse the overhead introduced by the soCloud platform, we have de-

ployed our use case application directly on CloudBees and through the soCloud plat-

form. We have packaged two different archive files. The first archive file is a WAR

file, its size is 50.7 Mb. This file contains the application and the execution environ-

ment FraSCAti. The second archive file is a Zip file (an SCA contribution), its size

is 2.1 Mb. The second file contains only the application. The WAR and Zip files are

deployed respectively on CloudBees and soCloud. The deployment of the WAR and

Zip files is performed ten times. Table 3 reports the average deployment time of each

file.

Table 3 Deployment time of the Zip and WAR files

Implementation File size Avg. deploy. time

Zip File (Application) 2.1 Mb 5301.5 ms

WAR File (Application + FraSCAti) 50.7 Mb 80830.8 ms

As noticed, the deployment time of the application directly on CloudBees is

greater than the deployment time on soCloud. This is explained by the size of the

WAR file which is greater than the Zip file. In fact, uploading a small file in the net-

work is faster than a big file. When deployed the Zip file on the soCloud platform,

the execution environment is already deployed and started. This is not the case of the
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WAR file which contains the FraSCAti execution environment that will be installed

and instantiated on the CloudBees PaaS before deploying the application on it.

To evaluate the overhead introduced by the soCloud platform, 10, 000 requests

were generated and sent with the Httperf tool. We evaluate two implementations of

this scenario: i) the application without soCloud, and ii) with soCloud. The scenario

was executed ten times on each of the two implementations. Table 4 presents the

results of the average execution time for each implementation, as well as the mean

overhead introduced by the soCloud platform.

Table 4 Execution time and Overhead

Implementation Avg. exec. time soCloud overhead

(Application + FraSCAti) 10.85 sec -

(Application + FraSCAti + soCloud) 11.10 sec 2.3%

From the results presented in Table 4, we can notice that the overhead introduced

by the soCloud platform is 2.3%. This overhead is generated by the soCloud monitor-

ing and the Load Balancing components. The overhead of the monitoring component

is due to the information collected for the elasticity.

Overall, the abstraction provided by the soCloud platform is not free, because

it introduces an overhead of 2.3%. However, the benefits provided by the soCloud

platform in multi-cloud environment outweigh the difference in the execution time.

5 Related work

Related to the Inter-Cloud Architectural taxonomy presented in [20], soCloud can be

classified into the Multi-Cloud service category. This section presents some of the

related work to multi-cloud computing challenges discussed in Section 2: portability,

provisioning, elasticity, and high availability across multiple clouds.

Multi-cloud portability Portability approaches can be classified into three categories-

[33]: functional portability, data portability and service enhancement. The authors[37]

of mOSAIC deal with service enhancement portability at IaaS and PaaS levels. mO-

SAIC provides a component-based programming model with asynchronous commu-

nication. However, mOSAIC APIs are not standardized and are complex to put at

work in practice. Our soCloud solution deals with service enhancement portability

with an API that runs on existing PaaS and IaaS. soCloud supports both synchronous

and asynchronous communications offered by the SCA standard. Moreover, SCA

defines an easy way to use portable API. The Cloud4SOA [14] project deals with

the portability between PaaS using a semantic approach. soCloud intends to provide

portability using an API based on the SCA standard.

Multi-cloud provisioning A great deal of research on dynamic resource allocation

for physical and virtual machines and clusters of virtual machines [2] exists. The

work of dynamic provisioning of resource in cloud computing may be classified into

two categories. Authors in [31] have addressed the problem of provisioning resources

at the granularity of VMs. Other authors in [10] have considered the provisioning of

resources at a finer granularity of resources. In our work, we consider provisioning at

both VM and finer granularity of resources.
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The authors in [17] have addressed the problem of deploying a cluster of vir-

tual machines with given resource configurations across a set of physical machines.

While [13] defines a Java API permitting developers to monitor and manage a cluster

of Java VMs and to define resource allocation policies for such clusters. Unlike [17,

13], soCloud uses both an application-centric and virtual machine approaches. Using

knowledge on application workload and performance goals combined with server

usage, soCloud utilizes a more versatile set of automation mechanisms.

Multi-cloud elasticity Managing elasticity across multiple cloud providers is a chal-

lenging issue. However, although managed elasticity through multiple clouds would

benefit when outages occur, few solutions are supporting it. For instance, in [7], the

authors present a federated cloud infrastructure approach to provide elasticity for ap-

plications, however, they do not take into account elasticity management when out-

ages occur. Another approach was proposed by [40], which managed the elasticity

with both a controller and a load balancer. However, their solution does not address

the management of elasticity through multiple cloud providers. The authors in [29]

propose a resource manager to manage application elasticity. However, their approach

is specific for a single cloud provider.

Multi-cloud high availability Cloud providers such as Amazon EC2, Windows Azure,

Jelastic already provide a load balancer service with a single cloud to distribute load

among virtual machines. However, they do not provide load balancing across multiple

cloud providers. Different approaches of dynamic load balancing have been proposed

in the literature [8,21], however, they do not provide a mechanism to scale the load

balancers themselves. The authors in [38] have explored the agility way to quickly

reassign resources. However, their approach does not take into account a multi cloud

environment. Most existing membership protocols [4] employ a consensus algorithm

to achieve agreement on the membership. Achieving consensus in an asynchronous

distributed system is impossible without the use of timeouts to bound the time within

which an action must take place. Even with the use of timeouts, achieving consensus

can be relatively costly in the number of messages transmitted, and in the delays in-

curred. To avoid such costs, soCloud uses a novel Leader Determined Membership

Protocol that does not involve the use of a consensus algorithm.

6 Discussion and limitations

soCloud is a PaaS to aggregate multiple clouds. Throughout the article, we have es-

sentially discussed the advantages of soCloud. On the one hand, soCloud may miss

some features that are provided by the underlying clouds used. In other words, so-

Cloud may not exploit the specific features (i.e., elasticity rules, provisioning prop-

erties, replication trigger) that is not provided by it. On the other hand it may be the

case that some developers or companies may not like to use an SCA-based approach.

Indeed, the soCloud adoption can become therefore an issue. One approach for so-

Cloud to address these concerns is to use a wrapper that enable transparent access

to cloud provider features. As an SCA-based approach, soCloud offers a solution to

deploy and execute service oriented applications. It would be useful in future work

for soCloud to overcome the constraint of supporting only SCA-based applications.
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When deployed the soCloud platform on other PaaS, the scaling mechanism of these

platforms is not used by our platform in order to avoid duplicated mechanism.

The cloud platforms and their features provided, especially at the PaaS level are

evolving dynamically. However, in general the problem of maintaining the mappings

to various cloud providers and managing this evolution to keep up with recent features

of our supported clouds are a concern. A common way to address these issues is by

wrapping them as soCloud features. However, the use of the future standard for Cloud

computing is still the best approach.

soCloud provides an abstraction to hide the heterogeneity and the complexity

of the underlying clouds. The solution provided by soCloud can introduce an ad-

ditional cost (i.e., in term of performance, footprint) to existing IaaS/PaaS environ-

ments. However, soCloud provides a uniform way to deploy, execute and manage

applications in multi-cloud environments. As benefits, the developer focuses on the

cloud rather than troubleshooting implementations, exploits multi-cloud portability,

has an efficient management of her applications across multi-cloud. In comparison

to heterogeneous ways offered by the several IaaS/PaaS solutions, soCloud provides

many benefits.

7 Conclusion

In this article, we have proposed soCloud a service-oriented component-based PaaS

for managing portability, provisioning, elasticity, and high availability across mul-

tiple clouds. soCloud is a distributed PaaS that provides a model for building any

multi-cloud SaaS applications. This model is based on an extension of the OASIS

SCA standard. We surveyed each of the concepts related to express specific elasticity

rules, ensure high availability across multiple clouds and pointed out problematics.

To address these problems, this article proposes an architecture, and describes the

interactions between each component of this architecture. We explain how the com-

ponents in a soCloud application descriptor can be annotated with elasticity rules,

placement constraints, computation constraints. Based on these annotations, deploy-

able contributions can be loaded and deployed in a suitable manner. The article de-

scribed the approach used by the soCloud platform to ensure high availability. In

particular soCloud takes a wait-free approach to the problem of coordinating com-

ponents in different clouds and uses load balancer to switch from one application

instance to another in case of failures. In comparison, the soCloud’s availability with

public [30] cloud availability, we demonstrate that soCloud ensures high availability

in minutes instead of hours. We analyse the flash crowd phenomenon on a use case,

and demonstrate how the soCloud platform increases the elasticity of the application.

This approach is proactive in the case that the content replication is performed when

detecting a traffic surge and anticipating a flash crowd.

As of future work, we plan to continue our research in the following directions.

First, currently, soCloud manages application’s components as contribution file in

terms of packaging and deployment. The archive that is referred to by implemen-

tation.contribution may be an artifact within a larger contribution (i.e., an EAR or

WAR file inside a larger ZIP file), or archive may itself be a contribution. Indeed,

soCloud will manage and deploy all Java EE archive (WAR, EAR). Second, we will
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investigate how the concept of aggregated multiple clouds can be used to reduce the

resource provisioning cost, while maintaining the Quality of Service (QoS) to cus-

tomers who use the resources. Third, as many organizations need to move data from

one cloud to another we will work on data portability in a multi-cloud environment.
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