N

N

Occlusion and Motion Reasoning for Long-term Tracking
Yang Hua, Karteek Alahari, Cordelia Schmid

» To cite this version:

Yang Hua, Karteek Alahari, Cordelia Schmid. Occlusion and Motion Reasoning for Long-term Track-
ing. ECCV - European Conference on Computer Vision, Sep 2014, Zurich, Switzerland. pp.172-187,
10.1007/978-3-319-10599-4_ 12 . hal-01020149

HAL Id: hal-01020149
https://inria.hal.science/hal-01020149
Submitted on 7 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01020149
https://hal.archives-ouvertes.fr

Occlusion and motion reasoning for long-term
tracking

Yang Hua, Karteek Alahari, and Cordelia Schmid

Inria*

Abstract. Object tracking is a reoccurring problem in computer vision.
Tracking-by-detection approaches, in particular Struck [20], have shown
to be competitive in recent evaluations. However, such approaches fail in
the presence of long-term occlusions as well as severe viewpoint changes
of the object. In this paper we propose a principled way to combine
occlusion and motion reasoning with a tracking-by-detection approach.
Occlusion and motion reasoning is based on state-of-the-art long-term
trajectories which are labeled as object or background tracks with an
energy-based formulation. The overlap between labeled tracks and de-
tected regions allows to identify occlusions. The motion changes of the
object between consecutive frames can be estimated robustly from the
geometric relation between object trajectories. If this geometric change is
significant, an additional detector is trained. Experimental results show
that our tracker obtains state-of-the-art results and handles occlusion
and viewpoints changes better than competing tracking methods.

1 Introduction

Although tracking objects is a well-established problem in computer vision [11,
22,23,46, 48, 49], it still remains a challenging task. Many of the previous works
have approached this problem from the perspective of either a motion tracker or
an object detector. In recent years, tracking-by-detection, i.e., approaches that
treat the tracking problem as a task of detecting the object over time [2, 3, 18, 20,
24, 27,40, 46, 47], has become an increasingly popular method for object tracking.
In fact, the latest evaluation papers [36,42, 48] have shown such an approach,
namely Struck [20], to be the best-performer on a diverse set of examples. One
of the critical steps in these methods is to update and improve the object model
over time. Consider the example in Figure 1. It shows a scenario where the
object of interest—a car—is occluded when it goes under a bridge. If the model
is updated in every frame, this results in the well-known issue of drift [32]. In
other words, a part of the bridge might be tracked instead of the car in the latter
frames in the sequence. In this paper we present an algorithm which can handle
such occlusions as well as significant viewpoint changes in a principled way, based
on state-of-the-art quasi-dense long-term trajectories [35, 45]. These trajectories

* LEAR team, Inria Grenoble Rhéne-Alpes, Laboratoire Jean Kuntzmann, CNRS,
Univ. Grenoble Alpes, France.

2 Y. Hua, K. Alahari, and C. Schmid

rely on dense optical flow [8] in combination with a forward-backward matching
criterion. Sundaram et al. [45] showed that they significantly outperform the
Kanade-Lucas-Tomasi (KLT) tracker [30], often used in tracking approaches [14,
24]. Our main contribution is to use these long-term trajectories in combination
with graph-cut based track labelling to identify the state of the object, e.g.,
partial or full occlusion, as well as change in viewpoint, and to choose and adapt
positive object samples accordingly to improve the model.

The goal of this paper is to track the object, given a bounding box initial-
ization in the first frame. Our approach begins by learning an initial appearance
model from the annotation in the first frame, similar to [20,24,46], and uses it
to propose candidate object locations in the latter frames. We incorporate mo-
tion cues to refine the candidate region search space and avoid incorrect object
proposals (Section 2). In order to determine whether a candidate location in a
frame contains the object, we compute long-term motion tracks in the video [45],
and use them to predict the state of the object, i.e., the transformation it has
undergone with respect to the previous frames (Section 3). More specifically, we
estimate states such as, partial or full occlusion, change in appearance of the
object. This is achieved with an energy-based formulation, where the task is to
assign each track an object or background label. When a significant part of the
tracks within a candidate region belong to the background, the object is iden-
tified to be occluded. We will show that other types of change in state, such as
a significant change in viewpoint, can also be estimated with our formulation.
With this additional cue in hand, we build a temporally-evolving object model
which deals with these state changes by updating the initially learned detector
accordingly (Section 3.2). In essence, our tracker proposes a new way to inter-
leave the motion-based and tracking-by-detection paradigms. Its performance is
evaluated on sequences from a recent benchmark dataset [48] and videos used
in [3, 20, 24, 46] (Section 5).

1.1 Related Work

The two key components of a tracking algorithm are the object representation
(appearance model) and the inference method used to localize it in each frame.
Examples of object representations include colour histograms [11] as well as
appearance representations learned with generative [26,29, 33, 41] and discrimi-
native [2, 10, 20,46] models. Our work builds on these discriminative models by
using the estimated state of the object to update the model. The inference meth-
ods range from Kalman filtering techniques, to those that use multiple cues [4, 5,
13,34, 37, 38,43, 44] and fuse their results with methods like particle filtering [22],
error analysis [44], and Markov chain Monte Carlo schemes [37]. These inference
methods have shown promising results, but tend to suffer from drift. Further-
more, it is unclear if they can recover from the object leaving or re-entering the
field of view.

Given the significant advances in algorithms for object detection [12, 15], the
tracking-by-detection approach [2,27,40,47] has gained popularity. A variant of
these approaches, known as adaptive tracking-by-detection, updates the object

Occlusion and motion reasoning for long-term tracking 3

Fig. 1. Three sample frames from the Carchase sequence in the TLD dataset [24]. Each
image also shows the result of our method (in green) and Struck [20] (in red). As the
car starts to move to a severely occluded state, updating the appearance model with
the prediction result leads to model drift, as shown by the Struck result. Our proposed
method estimates such states, and does not update the model in such cases. (Best viewed
in pdf.)

model over time [3, 18, 20, 24, 46]. It typically consists of two phases: (i) tracking,
where the detector is used to predict the object location in each frame; and
(ii) learning, where the estimated object locations (in the form of bounding
boxes) are used to generate training examples to improve the learned object
model. Observing that many of the adaptive methods lack a principled way of
generating the training samples, a joint structured output formulation (Struck)
was proposed in [20]. This work learns a function to predict the object location
in a frame based on its location in the previous frame and a predefined search
space. The prediction function is a dot product of a weight vector and a joint
kernel map. This weight vector is learned and updated with an online structured
output framework. Our approach is based on a similar philosophy, in that, we
learn and update a prediction function. However, we use state-of-the-art long-
term motion tracks [45] to determine the state of the object and produce an
effective set of training exemplars for the update step. In the example shown in
Figure 1, we predict that the object is severely occluded in the middle frame
and thus do not update our detector. Note that Struck (result shown in red in
Figure 1) drifts onto a part of the bridge in this example.

Our method is also closely related to two other recent approaches [24,46].
The TLD algorithm [24] aims to combine the benefits of tracker- and detector-
based approaches. It decomposes the tracking task into specialized components
for tracking, learning and detection, which are run simultaneously. The result
of this algorithm is a combination of the predictions from the frame-to-frame
tracking based on median optical flow and a detection component. The two
components mutually update each other. Specifically, the results of the tracker
provide training data to update the detector, and the detector re-initializes the
tracker when it fails, for example, when the object leaves the field-of-view. While
this is an interesting approach, it is somewhat restrictive as the object model
is a set of fixed-size template patches, i.e., TLD cannot handle severe changes
in object size, such as the scenario shown in Figure 2. Furthermore, the motion
information is limited to frame-to-frame constraints.

4 Y. Hua, K. Alahari, and C. Schmid

Fig. 2. Three frames from the CarScale sequence in [48] are shown to highlight the
severe change in object size over time in some of the videos.

Supancic and Ramanan [46] presented a tracking-by-detection method, where
the detector is updated using a pre-fixed number of frames, i.e., the top-k frames
chosen according to an SVM objective function, irrespective of the state of the
object. This does not handle long-term occlusions. In contrast, our algorithm
updates the model with only the frames that show a significant presence of the
object, as it relies on the long-term motion cues to choose the training exemplars,
unlike [46] which uses only the detector.

We experimentally compare with these related works [20, 24, 46], and show
the benefits of our approach in Section 5.

2 Overview

In line with the tracking-by-detection approach, our tracker comprises three
stages. First, a detector is learned from a given training set of positive and neg-
ative exemplars. Second, we track with this learned detector. Third, we update
the object model with a carefully selected subset of frames. We now present an
overview of these stages and then provide more details in Sections 3 and 4.

Initial detector and tracking. An initial object detector is required to set
off our tracker. It is learned with a training set, where the positive example is
the ground truth annotation in the first frame of the sequence, and the negative
samples are harvested from the frame, similar to [46]. The initial model is then
learned with HOG features [12,17] extracted from the bounding boxes and a
linear SVM.

The detector is used to predict candidate locations of the object in other
frames. In each frame, we find the most likely location of the object by evaluating
the detector in a region estimated from motion cues (optical flow computed
from the previous frame), and then choosing the bounding box with the best
detection score, as shown in Figure 3. The motion-refined search is not only
computationally efficient, but also avoids incorrect detections due to background
clutter. Note that the bounding box obtained from this step is not labelled as
the object yet.

We compute and analyze the motion cues to make the object label assignment
in each frame. To this end, we extract long-term point tracks which extend over
many frames in the video [45], see Figure 3-Left. At this stage, we discard tracks
less than 5 frames long, which are typically less reliable. We then propose an
energy-based formulation to label the remaining tracks as object or background.

Occlusion and motion reasoning for long-term tracking 5

Hame’{i Track labels

Fig. 3. Left: Long-term tracks beginning in frame 1 of the Coke sequence [48]. The
yellow box shows the search region used to compute the bounding box most likely to
contain the object (green box). We use the tracks to estimate the object state. Right:
Close-up of the track labels in frame 37. Here, less than 60% of the tracks within the
predicted bounding box are assigned to the object (blue), and the remaining are labelled
as background (red). Thus, the object is predicted to be in an occluded state. (Best
viewed in pdf.)

This is related to the labelling framework used in [28] for motion-clustering
tracks. The tracks within the bounding box in the first frame, i.e., the ground
truth annotation, are initialized with the object label, and those that lie outside
are given the background label. With these initial assignments and pairwise
energy terms (which measure track similarity), we optimize the energy function
and label all the new tracks, i.e., tracks that begin in the second or latter frames,
see Figure 3- Right.

Occlusion. If a significant part (40% or more) of the tracks within the bounding
box take the background label (as in Figure 3), we consider the object to be in an
occluded state. In this case, the object model is not updated with the detection
result. We continue to track the object with the non-updated detector as long as
there are object tracks and a detection response. This step avoids model drift [32,
46). For example, in the sequence in Figure 1, the model is not updated with the
frame shown in the middle to avoid the tracker drifting onto a part of the bridge,
which occludes the car. To handle cases where the object re-appears after a full
occlusion (e.g., the frame on the right in Figure 1), the detector is evaluated over
the entire image in subsequent frames.

Temporally-evolving detector. When the object is not occluded in a frame,
the long-term tracks are used to measure geometric transformations that the
object may have undergone, such as change in scale, rotation (see Figures 2
and 4). In this work, we approximate these transformations with a similarity
matrix [21],! and estimate it with track-point correspondences between consecu-
tive frames. The bounding box is then refined with the estimated transformation

! Other transformations, such as homography, can also be used here.

6 Y. Hua, K. Alahari, and C. Schmid

and is assigned the object label. This is illustrated on an example in Figure 4.
Based on the severity of the transformation, we either: (i) update the existing
detector; or (ii) learn a new detector. In summary, our detector model evolves
temporally to account for changes in object appearance by updating, i.e., learn-
ing, with new positive instances.

3 Motion Cues in the Tracker

Motion cues serve two purposes in our algorithm: (1) to determine the search
region for evaluating the detector; and (2) to estimate the state of the object.
We use dense optical flow computed between two frames for the first task, and
cues extracted from long-term tracks for the second.

Given the bounding box labelled as the object in a frame, we compute optical
flow [8] for all the pixels within the box, and obtain the median flow. With this
flow estimate, the bounding box is translated onto the following frame, and the
area surrounding it (an enlarged box) is considered as the search region for the
detector. In other words, we restrict the search space for the object detector
when finding the most likely location of the object in a new frame. An example
is illustrated in Figure 3. This useful cue is inspired by many of the traditional
motion-based trackers, but is limited to providing only local motion information.
We argue that these local cues are insufficient to reliably estimate (e.g., when the
optical flow measurements are poor) whether the new bounding box contains the
object or not. Our work integrates richer cues computed from long-term tracks
into the framework to make a robust estimation of the state of the object. We
achieve this with an energy-based formulation involving the long-term tracks.

Each track is represented with a random variable X; and takes a label z; €
{0,1}, where 0 denotes the background and 1 is the object. Let n denote the
number of tracks, and X = {X1, Xo,..., X, } be the set of random variables. A
labelling x refers to any possible assignment of labels to the random variables,
and takes values from the set {0, 1}™. The cost of a label assignment F(X = x),
or F(x) in short, is defined as:

B(x) =Y ¢i(z)+ X Y ¢i(wi), (1)
=1

(i,7)€E

where ¢;(x;) is the unary term to measure how likely it is for the track i to
take label x;. The function ¢;;(x;, xj) is a smoothness term to encourage similar
tracks to take the same label. The set of pairs of interacting tracks is denoted
by &, and X is a parameter to regulate the relative strength of the unary and
the pairwise terms. The energy function (1) is minimized exactly to obtain the
globally optimal labels for the tracks.

The pairwise smoothness term takes the form of a generalized Potts model [6]
and is given by:

exp(—Aqd(%, 7)) if x; # xj,

Gij (@i, x5) = { 0 otherwise, @)

Occlusion and motion reasoning for long-term tracking 7

where d(i, j) measures the dissimilarity between the two tracks ¢ and j and \g is
a parameter set to 0.1. This term is defined between pairs of neighbouring tracks,
and it assigns a low cost for two dissimilar tracks to take different labels. We
use the popular dissimilarity measure [7] computed as the maximum distance
between time-corresponding spatial coordinates p:, p; and velocity values v, v7

;] i_yI|2
as: d(i,j) = max; ||pi—pl| |§% This maximum is computed over points
t

in time where the two tracks overlap. The first term, ||p! — p?||2, measures the
spatial Euclidean distance, and the second term is the vector difference of the
velocities estimated over 5 frames, i.e., vi = pf+5 —pt.

For the unary terms, all the tracks that begin within the ground truth an-
notation in the first frame are assigned a very high cost to take the background
label. This prevents them from changing their label in the latter frames, and
is essentially a hard assignment of the object label. Inversely, tracks that lie
outside the annotation in the first frame are given a very high cost to take the
foreground label. The hard label assignment within the ground truth annotation
can be refined, for example, by assigning a subset of the tracks with the object
label using Grabcut-like segmentation techniques [9]. We found this refinement
step to be non-essential in our case, since the track labels are used in combination
with other cues, and not directly to determine the object location. The unary
term for any new tracks starting in the second frame and beyond is defined as:

1 : .
L e G if track 7 € box,
0.5 otherwise,

st =1 ={ 3
and ¢;(z; = 0) = 1 — ¢;(x; = 1). Here, d; is the SVM detection score for box;,
the bounding box estimate in frame t. The scalars a; and §; map this score into a
probabilistic output, and are computed using Platt’s method [39]. The intuition
behind this unary term is that new tracks within a strong detection are likely
to belong to the object. For tracks that lie outside the detection box, we allow
the pairwise similarity terms to decide on their labels by giving an equal unary
cost for assigning object or background labels.

In order to minimize the energy function (1) we apply the mincut/maxflow
algorithm [19, 25] on a corresponding graph, where each track is represented as
a node. All the tracks within the search region in frame ¢ (shown as a yellow box
in Figure 3) are added as nodes. Additionally, tracks labelled in the previous
frames which continue to exist in the frame are added. The unary and pairwise
costs, computed as described earlier, are added as weights on the edges in the
graph. We then perform st-mincut on the graph to get the optimal labels for
all the nodes. Building the graph and performing inference on it in every frame
allows us to update the labels of existing tracks based on new evidence from
neighbouring tracks. An illustration of track labels is shown in Figure 3.

3.1 Predicting the State

With the track labels in hand, we determine whether the object has been oc-
cluded or a change in viewpoint has occurred. If more than 40% of the tracks

8 Y. Hua, K. Alahari, and C. Schmid

(a) Frame 1 (b) Frame 4

Fig. 4. Sample frames from the MotorRolling sequence [/8], where the object under-
goes a significant transformation (rotates counter clockwise). (a) Frame 1 showing the
bounding box in the first frame. (b) The result of our tracker is shown is green. We show
the bounding box transformed with the estimated similarity in yellow. (Best viewed in
pdf.)

within box; belong to the background, it is marked as a partial occlusion. We
identify a full occlusion of the object if more than 80% of the tracks are assigned
the background label. In other cases where a majority of the tracks continue to
belong to the object, we verify if there have been any other transformations, see
Figures 2 and 4 for two such examples. We model these transformations with a
similarity matrix. It is estimated with a RANSAC approach [21], using points
on the tracks (inside the box;—1) in frames t — 1 and ¢ as correspondences. Since
it is feasible to obtain more reliable point correspondences between consecutive
frames, we compute frame-to-frame similarity matrices, and then accumulate
them over a set of frames. For example, the transformation S3, from frame 1 to
3, is computed as the product of the transformations S5 and Si. When a simi-
larity matrix shows a significant change in scale or rotation, fixed empirically as
15% and 10° respectively in all the experiments, we mark the state as change in
viewpoint.

To sum up, the candidate region box; is labelled as occluded when a full
occlusion state if predicted. When a change in viewpoint is estimated, box; is
transformed with the similarity matrix S} to obtain box?, which is then assigned
the object label. In other cases, i.e., neither occlusion nor change in viewpoint,
box; takes the object label.

3.2 Re-training the Model

Re-training (or updating) the model is crucial to the success of a tracking algo-
rithm to handle situations where the object may change in some form over time.
We use the predicted state of the object to precisely define the update step as
follows.

Occlusion and motion reasoning for long-term tracking 9

Case 1: No change in state. The model update is straightforward, if the
object is neither occluded, nor has undergone any of the other transformations.
The new bounding box, box;, is treated as a positive exemplar, and is used to
update the SVM classifier.

Case 2: Occlusion. When the object is in a (partial or fully) occluded state,
the classifier is not updated.

Case 3: Change in viewpoint. The detection result box; in this case is trans-
formed with the estimated similarity matrix to box;. We then fit an image-axes-
aligned box that encloses box?, as illustrated in the example in Figure 4. This
transformation changes either the scale or the aspect ratio of the bounding box
containing the object. Recall that our initial detector is trained from a single
positive example at one scale, and adding other samples with different scales (or
aspect ratios) will deteriorate it. We choose to train a new detector with the
new bounding box in frame ¢, and maintain a set of detectors which capture
various scales and aspect ratios of the object, as it changes over time. This idea
of maintaining multiple detectors for an object category is similar in spirit to
exemplar SVMs [31].

A summary of our method is given in Algorithm 1. Note that in the case
of a full occlusion, the best detection is obtained by running the detector over
the entire image. The state is estimated based on the strength of the detection,
and is set either to occlusion or no change in state, in which case a new track is
started.

4 Implementation Details

Detector. We chose a linear SVM and HOG features to learn the object detec-
tor in this work, following a recent approach [46] which showed its efficacy on
the tracking problem. The regularization parameter in the SVM is fixed to 0.1
for all our experiments. The SVM objective function is minimized with LIBLIN-
EAR [16]. The initial detector is learned with one positive sample in the first
frame and many negative examples harvested from bounding boxes (sampled
from the entire image) that do not overlap with the true positive by more than
10%. We also perform 5 iterations of hard negative mining, similar to [46]. The
learned detector is run at its original scale in the motion-predicted search region.
Recall that we handle severe changes in object state (change in scale, rotation)
by building a set of detectors (Section 2). For all the experiments, we fixed the
maximum size of this set to 4, and replaced the worst performing detector (i.e.,
the detector with the lowest score when evaluated on the new exemplar), when-
ever necessary. We found this approach to work better in practice compared to
one where a single multiscale detector is used. To update the detector efficiently
with new samples, we use the standard warm-start strategy [16, 46].

State prediction. The parameter A in the energy function (1), which controls
the strength of the unary and pairwise terms is set to 1 in all our experiments.
Pairwise terms are added between pairs of tracks that are less than a distance

10 Y. Hua, K. Alahari, and C. Schmid

Algorithm 1 Our approach for tracking an object and estimating its state.

Data: Image frames 1...n, Object location box; in frame 1
Result: Object location box; and state; in frames t =2...n
Learn initial detector in frame 1 (Section 2)
Compute long-term tracks (Section 2)
fort=2...ndo
box; + Best detection in frame ¢
Compute track labels (Section 3)
state; < Estimate object state in frame ¢ (Section 3.1)
switch state; do
case Full occlusion
bOXt <— @
No detector update
end
case Partial occlusion
| No detector update
end
case Change in viewpoint
S + Estimate the transformation
boxi ¢ Transform(box;, St) (Section 3.2)
box; <+ boxts
Learn new detector model (Section 3.2)
end
case Other
| Update detector model (Section 3.2)
end

endsw
end

of 5 pixels in a frame. We minimize (1) with the graph cut algorithm [19, 25].
The thresholds for determining a partial or full occlusion are empirically fixed
to 40% and 80% respectively in all our experiments.

5 Experimental Analysis

We now present a selection of results from experiments on benchmark datasets.
Code, additional results and videos are available on the project website [1].

5.1 Datasets

To compare with the most relevant tracking-by-detection approaches, we use the
test videos and ground truth annotations from [20, 24, 46]. We show a sample set
of frames from these videos in Figure 5. In particular, we evaluate on the following
sequences from the TLD dataset [24]: Carchase, Pedestrian2, Pedestrian3, which
contain challenging scenarios with pose, scale and illumination changes, full or
partial occlusion, and all the videos used in [20, 48,46], many of which contain

Occlusion and motion reasoning for long-term tracking 11

motion blur, fast motion, rotation, background clutter. We will highlight some of
the most interesting cases from these datasets in the paper, and present further
analysis on the project website. We note that the sequences in the tracking
benchmark dataset [48], do not annotate occlusion states. For example, frames
in the Coke sequence where the Coke can is completely occluded by a leaf are still
annotated with a bounding box. This inconsistency in evaluation when occlusion
happens was also noted by [42]. As a result, our method is evaluated unfairly, in
cases where we estimate an occlusion and do not output a bounding box.

5.2 Evaluation Measures

Some of the previous works in tracking have used mean displacement error in
pixels to evaluate the accuracy quantitatively. As argued in [46], this measure
is not scale-invariant and is not precise for cases when a method loses track of
the object. We follow [24,46] and treat an estimated object location as correct
if its sufficiently overlaps with the ground truth annotation. Then we compute
precision, recall and the F; score. In the results shown in Table 1, we use 50%
as the overlap threshold.

5.3 Results

In this section we compare our approach with the state-of-the-art methods,
namely TLD (2012) [24], SPLTT (2013) [46], and the winner of 2013 benchmark
evaluations [48]—Struck [20]. We used the original implementation provided by
the respective authors. For TLD, we set the size of the initial object bounding
box as 15, since it did not run with the default value of 24 for some of the
sequences.

When evaluated on all the 50 sequences from [48], our approach results
in 0.657 mean F; score (with 50% overlap threshold), whereas Struck [20],
SPLTT [46] and TLD [24] achieve 0.565, 0.661 and 0.513 respectively. We il-
lustrate a selection of these sequences in Table 1 and Figure 5.

Our method shows a significant improvement on some of the sequences (rows
1-3 in Table 1). For the Footballl sequence (row 1, Table 1), our F} score is 1.000
compared to 0.554 (SPLTT). In Figure 5(a), we see that Struck (columns 2, 3:
red box) tends to drift because the model is not selectively updated. SPLTT also
performs poorly (column 2: yellow box, column 3: loses track) as it only relies
on frame-to-frame optical flow between candidate detections computed in each
frame. If either the optical flow or the detection is weak, SPLTT loses track.
TLD (column 3: loses track) also uses frame-to-frame optical flow tracking and
is prone to drift. In contrast, our method uses long-term tracks and updates the
model selectively, which results in better performance.

For the Trellis sequence, our method shows nearly 10% improvement over
Struck (0.919 vs 0.821, see row 2, Table 1). Sample frames are shown in Fig-
ure 5(b). Here, TLD is confused by the illumination changes, drifts (blue box
in column 1) onto a part of the object (the face), and eventually loses track
(columns 2 and 3: no blue box). This is potentially due to the weaker object

12 Y. Hua, K. Alahari, and C. Schmid

Table 1. Comparison of our approach with the state-of-the-art methods using the
F1 measure (higher is better). Our approach plain and occ.+vpoint refers to variants
without and with using the object state respectively.

No. Sequence Struck TLD SPLTT Our approach

plain occ.4+vpoint

1 Footballl 0.378 0.351 0.554 1.000 1.000
2 Trellis 0.821 0.455 0.701 0.838 0.919
3 Walking 0.585 0.379 0.541 0.476 0.922
4 Car4 0.404 0.003 0.314 0.401 0.398
5 Jumping 0.859 0.843 0.997 0.994 1.000
6 Suv 0.587 0.913 0.904 0.531 0.907
7 Woman 0.936 0.829 0.891 0.935 0.920
8 Coke 0.948 0.694 0.804 0.801 0.880
9 David 0.240 0.773 0.546 0.635 0.679
10 Deer 1.000 0.817 0.986 1.000 1.000

11 MotorRolling 0.146 0.110 0.128 0.134 0.512
12 MountainBike 0.908 0.355 0.908 1.000 1.000
13 Pedestrian2 0.175 0.500 0.950 0.107 0.979
14 Pedestrian3 0.353 0.886 0.989 0.424 1.000
15 Carchase 0.036 0.340 0.290 0.098 0.312

model. The partial occlusions (column 2) and change in viewpoint (column 3)
lead to incorrect model updates, and thus poorer results for SPLTT (yellow box)
and Struck (red box). Our method (green box) estimates the state of the ob-
ject (occlusion or change in viewpoint) and performs a correct update step. For
the Walking sequence, we achieve an Fj score of 0.922 compared to 0.585 from
Struck (row 3, Table 1), since our tracks adapt to changes in object size (with
the help of long-term tracks).

The performance of our method is comparable on some sequences (rows 4-6
in Table 1). For example, an F} score of 0.398 compared to 0.404 (Struck) for the
Car4 sequence (see row 4, Table 1). In a few cases, our method performs worse
than the trackers we compare with. For example, on the Freeman4 sequence,
our method fails to track the object (0.004 Fy score). Struck, TLD and SPLTT
perform better than this (0.177, 0.134 and 0.145 respectively), but are still sig-
nificantly inferior to their average performance on the entire benchmark dataset.
As shown in Figure 5(c), none of the methods show a noteworthy performance,
and drift or miss the object often. We observed that the minimum size of our
detector was not ideal to find the object in this sequence, which is only 15 x 16
pixels large. All the trackers also perform poorly on the Soccer sequence—0.166
is the best performance, which is comparable to our score, 0.143. In Figure 5(d)
we see that the player’s face in this sequence is tracked initially, but due to severe
motion blur, fails in the latter frames.

In Figure 5(e) we show sample frames from the Woman sequence, where our
method identifies that the object is occluded (column 2). Due to the lack of

Occlusion and motion reasoning for long-term tracking 13

occlusion labelling in the ground truth annotation, our method is penalized for
frames where we estimate occlusion, and hence our result is slightly worse (0.920
vs 0.936 (Struck), shown in row 7, Table 1). The Coke sequence (row 8, Table 1)
is another such case, where our method (0.87) performs significantly better than
TLD (0.69) and SPLTT (0.80), but is inferior to Struck (0.95). Results on the
Pedestrian2 and Carchase long-term sequences, in Figures 5(f) and 5(g), show
that Struck cannot handle cases where the object re-enters the field of view after
occlusion, unlike our method.

Discussion. Table 1 also shows a component-level evaluation of our method.
Estimating the state of the object improves the performance in most cases (e.g.,
row 3). In some cases we observe a slight decrease in performance over the plain
vanilla method (e.g., row 7) due to lack of occlusion labelling in the ground truth
annotation (see text for Figure 5(e) above).

Note that long-term tracks are used as an additional information in our work.
If there are insufficient point tracks within the bounding box (< 10), we do not
estimate the state, and continue in a tracking-by-detection mode. For estimating
the object state, we observed two cases. (1) Object and camera motion: In this
case, tracks from [45] do not suffer from significant drift as they tend to be
relatively short in length. For example, on the Deer sequence (71 frames), the
average length of the track is 10.1, and less than 10% of tracks drift. This does not
affect our state estimation. (2) Object or camera motion only: Here, tracks can
drift, and then result in incorrect occlusion estimates (e.g., Crossing sequence:
120 frames; average track length 77, 50% drift). In the worst case, our tracker
predicts full occlusion and misses the object for a few frames, but recovers when
the detector is run over the entire image to overcome this occlusion state. In
essence, failures in long-term tracks have a limited impact on our system overall.
However, a limiting case of our approach is when an object undergoes occlusion,
and re-appears in a viewpoint which has not been seen before the occlusion (i.e.,
no template is learned).

Computation time of our method depends on the image size and the number
of tracks in the sequence. For sequences in Table 1, it takes 6.7s/frame on average,
with our unoptimized Matlab code (which does not include time to precompute
optical flow — 3.4s/frame on GPU).

Acknowledgements. This work was supported in part by the MSR-Inria joint
project, the European integrated project AXES and the ERC advanced grant
ALLEGRO.

References

1. http://lear.inrialpes.fr/research/tracking

2. Avidan, S.: Ensemble tracking. PAMI 29(2), 261-271 (2007)

3. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple
instance learning. PAMI 33(8), 1619-1632 (2011)

14 Y. Hua, K. Alahari, and C. Schmid

Fig.5. Tracking results on (a) Footballl, (b) Trellis, (c¢) Freemani, (d) Soccer, (e)
Woman sequences from the benchmark dataset [48], and (f) Pedestrian2, (g) Carchase
sequences from the TLD dataset [24]. Green: Our result, Red: Struck, Yellow: SPLTT,
Blue: TLD. See text for details. (Best viewed in pdf.)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Occlusion and motion reasoning for long-term tracking 15

Badrinarayanan, V., Pérez, P., Le Clerc, F., Oisel, L.: Probabilistic color and adap-
tive multi-feature tracking with dynamically switched priority between cues. In:
ICCV (2007)

Birchfield, S.: Elliptical head tracking using intensity gradients and color his-
tograms. In: CVPR, (1998)

Boykov, Y., Jolly., M.P.: Interactive graph cuts for optimal boundary & region
segmentation of objects in n-d images. In: ICCV (2001)

Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories.
In: ECCV (2010)

Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in vari-
ational motion estimation. PAMI 33(3), 510-513 (2011)

C. Rother, V. Kolmogorov, A.B.: Grabcut: Interactive foreground extraction using
iterated graph cuts. ACM Trans. Graphics (2004)

Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking
features. PAMI 27(10), 1631-1643 (2005)

Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25(5),
564-577 (2003)

Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR (2005)

Du, W., Piater, J.: A probabilistic approach to integrating multiple cues in visual
tracking. In: ECCV (2008)

Everingham, M., Sivic, J., Zisserman, A.: Taking the bite out of automatic naming
of characters in TV video. Image and Vision Computing 27(5) (2009)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
Pascal Visual Object Classes (VOC) Challenge. IJCV 88(2), 303-338 (2010)

Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A li-
brary for large linear classification. JMLR 9, 1871-1874 (2008)

Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part based models. PAMI 32(9), 16271645 (2010)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust
tracking. In: ECCV (2008)

Hammer, P.L.: Some network flow problems solved with pseudo-boolean program-
ming. Operations Research 13, 388-399 (1965)

Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels.
In: ICCV (2011)

Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, second edn. (2004)

Isard, M., Blake, A.: ICONDENSATION: Unifying low-level and high-level track-
ing in a stochastic framework. In: ECCV (1998)

Jepson, A.D., Fleet, D.J., Maraghi, T.F.E.: Robust online appearance models for
visual tracking. PAMI 25(10), 1296-1311 (2003)

Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. PAMI 34(7),
1409-1422 (2012)

Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? PAMI 26(2), 147-159 (2004)

Lee, K., Ho, J., Yang, M., Kriegman, D.: Visual tracking and recognition using
probabilistic appearance manifolds. CVIU 99(3), 303-331 (2005)

Leibe, B., Schindler, K., Cornelis, N., van Gool, L.: Coupled object detection and
tracking from static cameras and moving vehicles. PAMI 30(10), 1683-1698 (2008)
Lezama, J., Alahari, K., Sivic, J., Laptev, I.: Track to the future: Spatio-temporal
video segmentation with long-range motion cues. In: CVPR (2011)

16

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Y. Hua, K. Alahari, and C. Schmid

Liu, B., Huang, J., Kulikowski, C., Yang, L.: Robust visual tracking using local
sparse appearance model and k-selection. PAMI 35(12), 2968-2981 (2013)

Lucas, B., Kanade, T.: An iterative image registration technique with an applica-
tion to stereo vision. In: IJCAT (1981)

Malisiewicz, T., Gupta, A., Efros, A.: Ensemble of exemplar-svms for object de-
tection and beyond. In: ICCV (2011)

Matthews, 1., Ishikawa, T., Baker, S.: The template update problem. PAMI 26(6),
810-815 (2004)

Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse rep-
resentation. PAMI 33(11), 2259-2272 (2011)

Moreno-Noguer, F., Sanfeliu, A., Samaras, D.: Dependent multiple cue integration
for robust tracking. PAMI 30(4), 670685 (2008)

Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video
analysis. PAMI 36(6), 1187-1200 (2014)

Pang, Y., Ling, H.: Finding the best from the second bests - inhibiting subjective
bias in evaluation of visual tracking algorithms. In: ICCV (2013)

Park, D.W., Kwon, J., Lee, K.M.: Robust visual tracking using autoregressive
hidden Markov model. In: CVPR (2012)

Pérez, P. Vermaak, J., Blake, A.: Data fusion for visual tracking with particles.
Proc. IEEE 92(3), 495-513 (2004)

Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In: NIPS (1999)

Ramanan, D., Forsyth, D., Zisserman, A.: Tracking people by learning their ap-
pearance. PAMI 29(1), 65-81 (2007)

Ross, D.A., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual
tracking. IJCV 77(1), 125-141 (2008)

Song, S., Xiao, J.: Tracking revisited using RGBD camera: Unified benchmark and
baselines. In: ICCV (2013)

Spengler, M., Schiele, B.: Towards robust multi-cue integration for visual tracking.
Machine Vis. App. 14, 50-58 (2003)

Stenger, B., Woodley, T., Cipolla, R.: Learning to track with multiple observers.
In: CVPR (2009)

Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated
large displacement optical flow. In: ECCV (2010)

Supancic, J.S., Ramanan, D.: Self-paced learning for long-term tracking. In: CVPR
(2013)

Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans
by Bayesian combination of edgelet based part detectors. IJCV (2007)

Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: CVPR
(2013)

Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv.
38(4) (2006)

