
HAL Id: hal-01020255
https://inria.hal.science/hal-01020255

Submitted on 8 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blind suppression of nonstationary diffuse noise based
on spatial covariance matrix decomposition

Nobutaka Ito, Emmanuel Vincent, Tomohiro Nakatani, Nobutaka Ono, Shoko
Araki, Shigeki Sagayama

To cite this version:
Nobutaka Ito, Emmanuel Vincent, Tomohiro Nakatani, Nobutaka Ono, Shoko Araki, et al.. Blind
suppression of nonstationary diffuse noise based on spatial covariance matrix decomposition. Journal
of Signal Processing Systems, 2015, 79 (2), pp.145-157. �10.1007/s11265-014-0922-z�. �hal-01020255�

https://inria.hal.science/hal-01020255
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Blind suppression of nonstationary diffuse noise based on
spatial covariance matrix decomposition

Nobutaka Ito · Emmanuel Vincent · Tomohiro Nakatani · Nobutaka

Ono · Shoko Araki · Shigeki Sagayama

Received: date / Accepted: date

Abstract We propose methods for blind suppression
of nonstationary diffuse noise based on decomposition
of the observed spatial covariance matrix into signal

and noise parts. In modeling noise to regularize the
ill-posed decomposition problem, we exploit spatial in-
variance (isotropy) instead of temporal invariance (sta-

tionarity). The isotropy assumption is that the spatial
cross-spectrum of noise is dependent on the distance
between microphones and independent of the direction

between them. We propose methods for spatial covari-
ance matrix decomposition based on least squares and
maximum likelihood estimation. The methods are val-

idated on real-world recordings.

1 Introduction

Noise suppression is the task of estimating a desired
signal from its noisy observations by microphones. The
difficulty of the noise suppression problem depends on

the temporal and the spatial properties of noise. We can
distinguish four categories of noise based on two inde-
pendent axes: stationary or nonstationary noise, and

point-source or diffuse noise. Here, diffuse noise is de-
fined as noise from numerous directions caused by many
point sources (e.g., many interfering speakers) or by a
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continuous source (e.g., the vibrating body of a vehi-
cle).

Most of the conventional approaches to noise sup-
pression have assumed either stationary or point-source
noise. The spectral approach [1–3] can suppress station-

ary noise. Under the assumption of stationary noise, the
signal power spectrum and/or the noise power spec-
trum are estimated and used to design spectral filters.

On the other hand, the spatial approach [4,5] can sup-
press point-source noise by controlling the directivity,
but cannot suppress diffuse noise sufficiently. This is

because the number of spatial nulls is limited to the
number of microphones minus one. These conventional
approaches do not cover the remaining category: non-

stationary, diffuse noise, which is omnipresent in the
real world. Indeed, such noise is encountered in many
environments, such as stations, airports, vehicles, facto-

ries, cafeterias, bars, streets, etc. This has significantly
limited the application area of noise suppression tech-
niques to the real world.

In principle, even nonstationary diffuse noise can be

suppressed with a spectral filter, provided that the sig-
nal is sufficiently sparse in the time-frequency domain.
Indeed, if we attenuate energy at the time-frequency

points where the signal is inactive, the signal-to-noise
ratio is expected to improve significantly. The question
is how we can design such a filter without assuming

noise stationarity. Since this is a highly ill-posed in-
verse problem, we need to restrict the search space by
modeling the signal and noise appropriately.

To this end, we model noise based on spatial in-
variance (isotropy) instead of temporal invariance (sta-

tionarity). The isotropy assumption is that the spatial
cross-spectrum of noise is dependent on the distance be-
tween microphones and independent of the direction be-

tween them. We propose methods for spatial covariance
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matrix decomposition based on least squares (LS) and

maximum likelihood (ML) estimation. The estimated
spatial covariance matrices of the signal and noise are
used to design a time-varying multichannel Wiener fil-

ter for diffuse noise suppression. We discuss several vari-
ants of the isotropic noise model that correspond to
additional assumptions about the noise properties or

the array geometry. We also propose a general linear
algebraic framework for treating these models in a uni-
fied manner. This allows us to derive general algorithms

each to all noise models, instead of different algorithms
for each noise model.

Both the LS and the ML methods have pros and
cons. First, as shown later, ML is equivalent to the min-
imization of the Itakura-Saito divergence, which has

proven to be effective for audio signal processing [6].
Second, based on a probabilistic generative model, the
ML method can be combined 1) with other signal pro-

cessing techniques based on a generative model [7–9]
to deal with more general environments, and 2) with
prior distributions to improve performance using our

prior knowledge. Third, in terms of the computational
time, the ML method is more expensive than the LS
method, because the former employs matrix inversion

at each iteration.

The rest of this paper is structured as follows. In
Section 2, we describe our observation model and the
multichannel Wiener filter for diffuse noise suppression.

In Section 3, we describe our framework for model-
ing the signal and the diffuse noise. Section 4 proposes
methods for spatial covariance matrix decomposition

based on least squares estimation. Section 5 proposes
a method for spatial covariance matrix decomposition
based on maximum likelihood estimation. We evaluate

the proposed methods experimentally in Section 6, and
conclude in Section 7.

2 Background

In this section, we first describe our observation model.
We then derive the time-varying multichannel Wiener
filter for diffuse noise suppression, and point out that

the design of the filter boils down to the estimation of
the spatial covariance matrices of the signal and diffuse
noise.

2.1 Observation model

In this paper, we focus on blind enhancement of a single
desired signal in the presence of diffuse noise. We as-

sume that the source location is stationary. Extension

to the case of multiple and/or moving sources is part

of future work.

In this paper, unless we note otherwise, we rep-
resent signals in the time-frequency domain (e.g., in

the short-time Fourier transform domain). We denote
the number of frames by T , and the frame index by
t ∈ {1, . . . , T}. We omit the frequency bin index for

brevity. This should not cause confusion, since each fre-
quency bin is processed independently in this paper.
The observed signal can be modeled by

yt = xt + vt, (1)

where the variables are defined as follows:

– yt ∈ CM : M -channel observed signal,

– xt ∈ CM : M -channel target signal,

– vt ∈ CM : M -channel diffuse noise.

The problem of diffuse noise suppression considered in
this paper is formally defined as the estimation of X ,
{xt}1≤t≤T from Y , {yt}1≤t≤T . Here, the notation

{yt}1≤t≤T stands for {yt|1 ≤ t ≤ T}, for example.

For simplicity, we make the following assumptions

on xt and vt:

– Temporal independence: {xt}1≤t≤T is an indepen-

dent series. That is, for different t, u, xt and xu are
independent. {vt}1≤t≤T is also an independent se-
ries.

– Mutual independence: {xt}1≤t≤T and {vt}1≤t≤T are
mutually independent. That is, for any t, u, xt and
vu are independent.

– Gaussianity: xt and vt are zero-mean complex-valued
Gaussian variables with covariance matrices Φx

t ,
E [xtx

H
t ] and Φv

t , E [vtv
H
t ].

Here, the probability density function of the complex-
valued Gaussian distribution with mean µ ∈ CM and

covariance matrix Σ ∈ CM×M is given by

NC(x;µ,Σ) , 1

πM detΣ
exp
[
−(x− µ)HΣ−1(x− µ)

]
.

(2)

Modeling temporal correlation due to reverberation and
more complex distributions are part of future work.

2.2 Time-variant multichannel Wiener filter for diffuse

noise suppression

Here we review the time-varying multichannel Wiener

filter for diffuse noise suppression. The filter is a time-
varying spatiotemporal filter that is optimal in the sense
of linear minimum mean square error (LMMSE). De-

signed properly, it can suppress diffuse noise effectively,
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by attenuating energy at the time-frequency points at

which the signal is inactive.

The LMMSE estimator is defined as the linear esti-

mator of the form

x̂t = W H
t yt (3)

that minimizes the mean square error

E [∥xt − x̂t∥2]. (4)

In this paper, we denote the Frobenius/Euclidean norm

of a matrix/vector by ∥·∥, and the Hermitian transpose
by the superscript H. Partial differentiation of (4) w.r.t.
W ∗

t reveals that the optimum estimator is given by [7,
10,11]

x̂t = Φx
t (Φ

x
t +Φv

t )
−1yt, (5)

where ∗ denotes complex conjugation.

The time-varying multichannel Wiener filter (5) is
also optimal in the senses of maximum a posteriori

(MAP) and minimummean square error (MMSE), when
the signal and noise are modeled as zero-mean Gaussian
random variables (see (37)).

2.3 Spatial covariance matrix decomposition

To design the time-varying multichannel Wiener filter
(5), we need to know the spatial covariance matrices of
the signal and the noise, Φx

t and Φv
t . However, we are

not given these matrices, but only the spatial covari-
ance matrix of the observed noisy data, Φy

t , E [yty
H
t ].

Therefore, to suppress diffuse noise effectively, it is cru-

cial to estimate Φx
t and Φv

t accurately from Φy
t . Under

the assumption that the signal and the noise are mutu-
ally uncorrelated, these matrices are related as

Φy
t = Φx

t +Φv
t . (6)

Hence, we call the estimation of Φx
t and Φv

t spatial co-
variance matrix decomposition, which is the main focus

of the paper.

Spatial covariance matrix decomposition is a highly

ill-posed inverse problem. Indeed, we need to estimate
both Φx

t and Φv
t given Φy

t only. Without any con-
straints on Φx

t and Φv
t , there would be infinitely many

decompositions. Therefore, to obtain a reliable decom-
position, it is important to restrict the search space by
modeling Φx

t and Φv
t appropriately.

Regarding the target signal, the assumption that it
is emitted from a stationary (i.e., not moving) point

source implies that its spatial characteristics do not

change over time. Therefore, we can consider the fol-

lowing model of Φx
t [7]:

Φx
t = ϕx

tB
x. (7)

Here, ϕx
t ∈ R is a time-varying parameter representing

the power spectrum, and Bx ∈ CM×M is a constant
parameter called the coherence matrix representing the
spatial characteristics. Especially, for low reverberation,

Bx can be approximated as a rank-one matrix

Bx = hhH, (8)

where h is called the steering vector. More generally,
we can model the eigenvalues of Bx to be sparse.

3 Matrix linear subspace for unified treatment
of diffuse noise models

In contrast to the target signal, diffuse noise originates
from many sources or from a continuous source, and
therefore its spatial characteristics vary over time. For

the case of many sources, for example, even if they
are not moving, the spatial characteristics of the whole
noise vary over time, since different sources are active

at different time-frequency points. Furthermore, diffuse
noise is also spectrally nonstationary in general (e.g.,
consider many concurrent speakers at a cocktail party).

To this issue, in [12,13], we have proposed diffuse noise
modeling based on isotropy. The isotropy assumption
is that the spatial cross-spectrum of noise is dependent

on the distance between microphones and independent
of the direction between them. Under this assumption,
we can show that Φv

t belongs to a low-dimensional sub-

space V of the vector spaceH over R spanned byM×M
Hermitian matrices [12,13]. We call V a matrix linear
subspace because it is a subspace of the space of matri-

ces, H.
There are several choices of V depending on addi-

tional assumptions regarding the array geometry or the

noise field. Firstly, the most general choice with no ad-
ditional assumptions is the real-valued noise covariance
model. The isotropy assumption implies that Φv

t is sym-

metric, and covariance matrices are Hermitian by defi-
nition. Therefore, it follows that Φv

t is real-valued:

Vreal =
{
Φv

t ∈ H
∣∣Φv

t ∈ RM×M
}
. (9)

Secondly, for spatial class of array geometries called
crystal arrays, the blind noise decorrelation (BND) model
can be applied [12,14]:

VBND =
{
Φv

t ∈ H
∣∣UHΦv

t U is diagonal
}
. (10)

Here, U is a known constant unitary matrix. Thirdly,

if we assume that diffuse noise is uncorrelated between
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two points in the limit of a large distance between them,

the following spatially uncorrelated noise model holds
for large arrays [15]:

Vuncor =
{
Φv

t ∈ H
∣∣Φv

t is diagonal
}
. (11)

Finally, assuming that the microphone coordinates are

known and that noise planewaves with the same power
spectrum arrive from all directions, the following fixed
noise coherence model holds [16]:

Vcoh =
{
ϕv
tB

v
∣∣ϕv

t ∈ R
}
. (12)

Here, Bv is called a noise coherence matrix, and its
(m,n)th entry is given by

bvmn = sinc

(
2πfLmn

c

)
. (13)

Here, sinc(·) denotes the sine cardinal function, Lmn

the distance between themth and the nth microphones,

and c the sound velocity.

Each of these noise models was applied to non-blind

diffuse noise suppression with a known target steering
vector [14–17], and to noise-robust multiple source lo-
calization [18]. In [14], we proposed the first method

for blind diffuse noise suppression, which was limited to
the blind noise decorrelation model. In this paper, we
propose general blind diffuse noise suppression methods

applicable to all the above noise models.

4 Spatial covariance matrix decomposition
based on least squares estimation

4.1 Cost function: square error

In this section, we propose two methods for spatial co-
variance matrix decomposition based on the minimiza-

tion of the following Euclidean error subject to Φv
t ∈ V:

JLS(Θ) ,
∑
t

∥Φy
t − (Φx

t +Φv
t )∥2 (14)

=
∑
t

∥Φy
t − (ϕx

tB
x +Φv

t )∥2. (15)

Θ denotes the parameter set given by

Θ , {{Φx
t }1≤t≤T , {Φv

t }1≤t≤T } (16)

= {{ϕx
t }1≤t≤T ,B

x, {Φv
t }1≤t≤T }. (17)

The minimizers of (15) are not unique, and so an ad-

ditional constraint is necessary. To see this, note that

(15) is decomposed into V and V⊥ components as fol-

lows:

JLS(Θ) =

T∑
t=1

∥P[Φy
t ]− ϕx

tP[Bx]−Φv
t ∥2 (18)

+

T∑
t=1

∥P⊥[Φy
t ]− ϕx

tP⊥[Bx]∥2.

Here, V⊥ denotes the orthogonal complement of V, and
P and P⊥ the orthogonal projection operators onto V
and V⊥, respectively. We can eliminate Φv

t from (18) by
replacing it with the maximizer Φv

t = P[Φy
t ]−ϕx

tP[Bx]

of (18). Therefore, the minimization of JLS(Θ) w.r.t. Θ
is equivalent to the minimization of

T∑
t=1

∥P⊥[Φy
t ]− ϕx

tP⊥[Bx]∥2 (19)

w.r.t. {ϕx
t }1≤t≤T and Bx. Since (19) does not depend

on P[Bx], it has infinitely many optimal solutions. This
indeterminacy is resolved by exploiting the sparseness

of the eigenvalues of Φx
t [12]. In Section 4.2, we propose

first estimating the V⊥-component, and then complet-
ing the missing V-component through matrix comple-

tion techniques. In Section 4.3, on the other hand, we
propose minimizing JLS(Θ) directly subject to a rank-
one constraint on Bx.

4.2 Optimization algorithm based on low-rank matrix
completion

Based on the observation in Section 4.1, the first algo-
rithm for least squares estimation follows the following
procedure:

1. estimate Z , P⊥[Bx] and {ϕx
t }1≤t≤T by minimiz-

ing
∑T

t=1 ∥P⊥[Φy
t ]− ϕx

tP⊥[Bx]∥2,
2. estimateBx through low-rank matrix completion [19]

of Z,
3. reestimate {ϕx

t }1≤t≤T using Bx.

The algorithm eliminates {Φv
t }1≤t≤T as a nuisance pa-

rameters, and it estimates the rest. We denote the pa-
rameter set in this method by Ω , {{ϕx

t }1≤t≤T ,h}.
In the first step, if we eliminate the nuisance param-

eter Φv
t by replacing it with its optimal value

Φv
t ← P[Φ

y
t ]−P[Φx

t ], (20)

the cost function reduces to

T∑
t=1

∥P⊥[Φy
t ]− ϕx

tP⊥[Bx]∥2 =

T∑
t=1

∥P⊥[Φy
t ]− ϕx

tZ∥2.

(21)
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This can be minimized w.r.t. ϕx
t and Z by alternately

applying the following update rules

ϕx
t ←

⟨P⊥[Φy
t ],Z⟩

∥Z∥2
, (22)

Z ←
∑

t ϕ
x
tP⊥[Φy

t ]∑
t(ϕ

x
t )

2
, (23)

which is based on coordinate descent. Prior to the iter-
ations, Z can be initialized roughly, e.g., by eigenvalue

truncation of Φy
t .

In the second step, we estimate Bx using Z =
P⊥[Bx] obtained in the first step, by low-rank matrix

completion techniques [12,19,20]. The low-rank matrix
completion techniques are originally techniques for com-
pleting missing entries of a low-rank matrix, and we

have extended them to the completion of a missing sub-
space [12]. Here, we apply this technique to the comple-
tion of the missing matrix subspace V. As an example,

we consider here the following optimization problem un-
der a low-rank constraint:

min
Bx
∥P⊥[Bx]−Z∥2 (24)

s.t. Bx : Hermitian positive semidefinite, rank(Bx) ≤ R.

That is, we seek for the matrixBx with a rank no larger

than R (a predetermined upper bound of the rank), for
which P⊥[Bx] is closest to Z obtained in the first step.
Other techniques for low-rank matrix completion such

as trace norm minimization [12,20] can also be applied.

The criterion (24) can be optimized by alternately
iterating the following update rules [12,19]:

1. Y ← P[Bx] +Z

2. (λr,µr)←the rth largest eigenvalue and the corre-
sponding eigenvector of Y

3. Bx ←
∑R

r=1 max{λr, 0}µrµ
H
r

It is guaranteed that the above procedure decreases the
cost function in (24) monotonically. Bx can be initial-

ized by

Bx ←
∑

t ϕ
x
tΦ

y
t∑

t(ϕ
x
t )

2
, (25)

which can be computed using ϕx
t estimated in the first

step. (25) is derived by the minimization of
∑

t ∥Φ
y
t −

ϕx
tB

x∥2 obtained by neglecting the noise contribution
in the cost function (15).

In the final step, Z = P⊥[Bx] is updated using Bx

estimated in the second step, and ϕx
t is reestimated by

(22).

The algorithm is summarized as follows, with iter num

denoting the number of iterations:

Algorithm 1

Initialize Z by rank-one approximation of Φy
t

for cnt = 1 to iter num do
for t = 1 to T do

ϕx
t ←

⟨P⊥[Φy
t ],Z⟩

∥Z∥2
end for

Z ←
∑

t ϕ
x
tP⊥[Φy

t ]∑
t(ϕ

x
t )

2

end for

Initialize Bx by Bx ←
∑

t ϕ
x
tΦ

y
t∑

t(ϕ
x
t )

2

for cnt = 1 to iter num do
Y ← P[Bx] +Z

(λr,µr)←the rth largest eigenvalue and the corre-
sponding eigenvector of Y
Bx ←

∑R
r=1 max{λr, 0}µrµ

H
r

end for
for t = 1 to T do

ϕx
t ←

⟨P⊥[Φy
t ],P⊥[Bx]⟩

∥P⊥[Bx]∥2
ϕx
t ← max{ϕx

t , 0}
end for

4.3 Optimization algorithm based on a rank-one
constraint

The second method minimizes the cost function (15),
subject to the rank-one constraint

Bx = hhH. (26)

Furthermore, we pose a unit norm constraint ∥h∥ = 1
on h, which simplifies the cost function and leads to a
closed-form update rule of h. Based on coordinate de-

scent, we can can derive the following algorithm, which
alternately minimizes (15) w.r.t. {ϕx

t }1≤t≤T , h, and
{Φv

t }1≤t≤T . Our preliminary experiments have shown

that the algorithm in Section 4.2 gives good initial val-
ues of {ϕx

t }1≤t≤T and h.

Algorithm 2

Initialize {ϕx
t }1≤t≤T and h by Algorithm 1

for cnt = 1 to iter num do
for t = 1 to T do
Φv

t ← P[Φ
y
t ]− ϕx

tP[hhH]

ϕx
t ← max

{
hH(Φy

t −Φv
t )h, 0

}
end for
h← unit principal eigenvector of

∑
t ϕ

x
t (Φ

y
t −Φv

t )

end for
for t = 1 to T do
ϕx
t ← |h1|2ϕx

t

end for
h← h/h1
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5 Spatial covariance matrix decomposition

based on maximum likelihood

In this section, we propose a method for spatial covari-

ance matrix decomposition based on maximum likeli-
hood estimation.

5.1 Probabilistic generative model of the observed

signals

Based on the assumptions in Section 2.1, we can derive

a probabilistic generative model of the oberved signals.
The joint distribution p(xt,yt;Θ) of the observed sig-
nals and the target signal is calculated as follows:

log p(xt,yt;Θ)

= log p(xt;Θ) + log p(yt|xt;Θ) (27)

= −2M log π − log detΦx
t − xH

t (Φ
x
t )

−1xt (28)

− log detΦv
t − (yt − xt)

H(Φv
t )

−1(yt − xt).

Marginalizing this w.r.t. xt, we have the following marginal
distribution of the observed signals yt:

p(yt;Θ) = NC(yt; 0,Φ
x
t +Φv

t ). (29)

5.2 Objective function: likelihood

We estimate the parameters by maximizing the follow-
ing log-likelihood function subject to Φv

t ∈ V:

JML(Θ) =
T∑

t=1

log p(yt;Θ) (30)

=
T∑

t=1

logNC(yt; 0,Φ
x
t +Φv

t ). (31)

Here, Θ is the parameter set defined by

Θ ,
{
{ϕx

t }1≤t≤T ,B
x, {Φv

t }1≤t≤T

}
. (32)

The maximization of the likelihood can also be viewed
as the minimization of a matrix Itakura-Saito diver-
gence [21,22]. Indeed, JML(Θ) can be rewritten as

JML(Θ) = −
T∑

t=1

DIS

(
Φy

t ;Φ
x
t +Φv

t

)
+ const., (33)

where DIS denotes the following matrix Itakura-Saito
divergence:

DIS

(
Φy

t ;Φ
x
t +Φv

t

)
, Tr

{
Φy

t (Φ
x
t +Φv

t )
−1
}

(34)

− log det
{
Φy

t (Φ
x
t +Φv

t )
−1
}
−M.

Since DIS

(
kA, kB

)
= DIS

(
A,B

)
holds for any positive

scalar k, we see that DIS is suitable for audio signals,
which have logarithmic characteristics. The divergence
is a generalization of the Itakura-Saito divergence [6],

which has proven to be effective for speech processing.

5.3 Optimization algorithm based on

expectation-maximization

Since J(Θ) contains the term log det(Φx
t + Φv

t ) and

(Φx
t + Φv

t )
−1, it is difficult to obtain a close-form ex-

pression of the optimal solution. On the other hand,
regarding {xt}1≤t≤T as hidden variable, and based on

the expectation-maximization (EM) algorithm [26], we
can derive an efficient optimization algorithm. The EM
algorithm iterates the following E-step and M-step al-

ternately, and it is guaranteed to converge to a local
optimum.

– E-step: Update the posterior distribution p(xt|yt;Θ
′)

of xt, using the current estimate of Θ′.
– M-step: Update Θ by maximizing the Q-function

Q(Θ;Θ′) =
T∑

t=1

⟨
log p(xt,yt;Θ)

⟩
p(xt|yt;Θ′)

. (35)

Here, ⟨·⟩p(xt|yt;Θ′) denotes the expectation w.r.t. to
the current posterior probability p(xt|yt;Θ

′) of the

hidden variable xt.

In the E-step, we update the posterior distribution,

which can be derived as follows. From (28) and the
Bayes rule,

log p(xt|yt;Θ)
c
= log p(xt,yt;Θ) (36)

c
= −

(
xt − µ

x|y
t

)H(
Φ

x|y
t

)−1(
xt − µ

x|y
t

)
. (37)

Here,

µ
x|y
t , Φx

t (Φ
x
t +Φv

t )
−1yt, (38)

Φ
x|y
t , Φx

t (Φ
x
t +Φv

t )
−1Φv

t , (39)

and
c
= means the equality up to a difference of a con-

stant independent of xt. Therefore, the posterior prob-
ability is given by

p(xt|yt;Θ) = NC
(
xt;µ

x|y
t ,Φ

x|y
t

)
. (40)

Because the Gaussian distribution (40) is completely

determined by its mean µ
x|y
t and covariance matrix

Φ
x|y
t , in the E-step it suffices to update them.
In the M-step, we update the parameters so that

the Q-function is maximized. The explicit form of Q-

function is given by the following expression:

Q(Θ;Θ′) = −
T∑

t=1

log detΦx
t (41)

−
T∑

t=1

Tr

[
(Φx

t )
−1
⟨
xtx

H
t

⟩]
−

T∑
t=1

log detΦv
t

−
T∑

t=1

Tr

[
(Φv

t )
−1
⟨
(yt − xt)(yt − xt)

H
⟩]
.
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Here, we omitted a constant, and abbreviated ⟨·⟩p(xt|yt;Θ′)

as ⟨·⟩. The expectations
⟨
xtx

H
t

⟩
and

⟨
(yt − xt)(yt −

xt)
H
⟩
in (41) can be computed using the current mean

and covariance matrix
(
µ

x|y
t

)′
and

(
Φ

x|y
t

)′
as follows:

⟨
xtx

H
t

⟩
p(xt|yt;Θ′)

=

⟨{
xt −

(
µ

x|y
t

)′
+
(
µ

x|y
t

)′}
(42)

×
{
xt −

(
µ

x|y
t

)′
+
(
µ

x|y
t

)′}H⟩
p(xt|yt;Θ′)

=
(
Φ

x|y
t

)′
+
(
µ

x|y
t

)′(
µ

x|y
t

)′H
, (43)

⟨
(yt − xt)(yt − xt)

H
⟩
p(xt|yt;Θ′)

=

⟨{
yt −

(
µ

x|y
t

)′
+
(
µ

x|y
t

)′ − xt

}
(44)

×
{
yt −

(
µ

x|y
t

)′
+
(
µ

x|y
t

)′ − xt

}H⟩
p(xt|yt;Θ′)

=
(
Φ

x|y
t

)′
+
{
yt −

(
µ

x|y
t

)′}{
yt −

(
µ

x|y
t

)′}H
. (45)

The update rules for the M-step can be derived by

maximizing the Q-function (41) w.r.t. the parameters
(see Appendix A). The following summarizes one iter-
ation of the algorithm derived in the above:

Algorithm 3
for t = 1 to T do
µ

x|y
t ← Φx

t (Φ
x
t +Φv

t )
−1yt

Φ
x|y
t ← Φx

t (Φ
x
t +Φv

t )
−1Φv

t

Φ̂x
t ← Φ

x|y
t + µ

x|y
t

(
µ

x|y
t

)H
Φ̂v

t ← Φ
x|y
t +

(
yt − µ

x|y
t

)(
yt − µ

x|y
t

)H
end for

Bx ← 1

T

T∑
t=1

1

ϕx
t

Φ̂x
t

for t = 1 to T do

ϕx
t ←

1

M
Tr
[
(Bx)−1Φ̂x

t

]
Φx

t ← ϕx
tB

x

Φv
t ←

P
[
Φ̂v

t

]
, V = Vuncor,VBND,Vreal

1

M
Tr
[
(Bv)−1Φ̂v

t

]
Bv, V = Vcoh

end for

5.4 Comparison between least squares and maximum
likelihood estimation

Compared to the least squares estimation, the Itakura-
Saito divergence in the maximum likelihood estimation
has the advantage of scale invariance, and it is expected

to be more suitable for audio signals, which have a
logarithmic nature. Furthermore, maximum likelihood
estimation is based on a generative model of the ob-

served signal, and therefore it can be integrated with

Fig. 1 Fabricated 12-element spherical microphone array of
diameter 15 cm. The microphones are mounted on a rigid
spherical shell.

other speech enhancement techniques (e.g., source sep-
aration [7,23,9], dereverberation [8]) based on a gen-

erative model. This is a great advantage in extending
the proposed methods to a versatile method that can
be applied to various real-world environments.

6 Experimental performance evaluation on

real-world data

We experimentally validated the proposed methods on
real-world data.

6.1 Experimental conditions

We fabricated a 12-channel spherical microphone ar-

ray with microphones at the vertices of an icosahe-
dron of diameter 15 cm (see Fig. 1). The microphones
were mounted on a rigid spherical shell. With the ar-

ray, we recorded the signal and noise images in a room
at the University of Tokyo (Fig. 2). The signal im-
age was recorded while the loudspeaker played female

speech [27], and the noise image while the windows were
open. They were mixed to generate the observed sig-
nals.

We compared the following four methods for spatial

covariance matrix decomposition:

– conv-LS: conventional least squares method pro-
posed in [14],

– prop-LS1: proposed least squares method with low-
rank matrix completion in Section 4.2,

– prop-LS2: proposed least squares method with a

rank-1 constraint in Section 4.3,
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Table 1 Detailed experimental conditions

– D/A board: M-AUDIO Fast track pro (4-channel)
– Loudspeaker: BOSE 101MM
– Loudspeaker amplifier: BOSE 1705II
– Microphones: SONY ECM-C10 (electret-type; omnidirec-

tional)
– A/D board: Tokyo Electron Device TD-BD-16ADUSB

(16-channel; with microphone amplifiers)
– Data length: 2 s
– Sampling frequency: 16 kHz
– Frame length: 2048 samples
– Frame shift: 64 samples
– Window: Hamming window
– Number of iterations: iter num = 20

Fig. 2 The room layout in the experiment.

– prop-ML: proposed maximum-likelihood method in

Section 5.

Each method was combined with the following four
noise models (see Section 3):

– coh: fixed noise coherence model,
– uncor: spatially uncorrelated noise model,
– BND: blind noise decorrelation model,

– real: real-valued noise covariance model.

The observed signals were analyzed by the short-time
Fourier transform (STFT). The lowest 14 frequency
bins (below 100Hz) were discarded, which contained

only noise. The observed spatial covariance matrix for
the least squares methods was computed locally by av-
eraging yty

H
t over 48 consecutive frames. The other con-

ditions are summarized in Table 1.

6.2 Experimental results

Fig. 3 shows the spectrograms and the output SNR
of the observed, enhanced, and reference signals (noise

model: BND). The maximum-likelihood method (”prop-ML”)
has resulted in a larger SNR than the least squares
methods (”prop-LS1” and ”prop-LS2”), mainly because

of less signal distortion. Furthermore, plotted in the

logarithmic scale, the spectrogram of the ML method

resembles the reference signal more, which can be ex-
plained by the logarithmic nature of the Itakura-Saito
divergence. Especially, the LS methods attenuated some

frequency components, while the ML method avoided
this issue because the logarithmic measure strongly pe-
nalizes zeros in the estimated spectra.

Table 2 shows the output SNRs (dB) [14] of the

observed and the enhanced signals. We show results
obtained with oracle initialization (calculated with the
reference signal) to examine the sensitivity of the noise

suppression performance to initialization. The maximum-
likelihood method with the BND model yielded the
highest output SNR of 8.6 dB. Comparing prop-LS1,

prop-LS2, and prop-ML, prop-ML gave the highest SNR
for all noise models except coh. For coh, the SNR of
prop-LS2 was the highest (5.2 dB), while that of prop-ML

was −0.9 dB. The algorithm prop-ML did not work well
for coh. This is because the sine cardinal noise coher-
ence matrix approaches a rank-one (hence, singular)

matrix at low frequencies, and hence the update of Φv
t ,

which includes inversion of the matrix, diverges.

7 Conclusion

In this paper, we have proposed a blind method for
suppressing nonstationary diffuse noise. Based on the
isotropic noise models, we proposed methods for spa-
tial covariance matrix decomposition. The decomposi-

tion algorithms are based on least squares or maximum-
likelihood estimation. In the experimental evaluation,
the maximum likelihood estimation has resulted in a

superior performance to the least squares estimation.
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A Derivation of the update rules in the M-step

of maximum likelihood estimation

By setting the partial derivative of the Q-function (41)
to zero, we have

−UM
1

ϕx
t

+Tr

[
(Bx)−1

⟨
xtx

H
t

⟩] 1

(ϕx
t )

2
= 0. (46)

By solving this w.r.t. ϕx
t , we get [7]

ϕx
t =

1

M
Tr
[
(Bx)−1Φ̂x

t

]
. (47)

Here, we defined

Φ̂x
t ,

⟨
xtx

H
t

⟩
p(xt|yt;Θ′)

(48)

=
(
Φ

x|y
t

)′
+
(
µ

x|y
t

)′(
µ

x|y
t

)′H
. (49)

Next, partial differentiation w.r.t. Bx gives

−UT (Bx)−1 + (Bx)−1

(
T∑

t=1

1

ϕx
t

⟨
xtx

H
t

⟩)
(Bx)−1 = 0.

(50)

Solving this w.r.t. Bx, we have [7]

Bx =
1

T

T∑
t=1

1

ϕx
t

Φ̂x
t . (51)

The update rule for Φv
t depends on the explicit form

of the matrix subspace V. In the following, we first show

that for the class of V satisfying

Φv
t ∈ V: positive definite⇒ (Φv

t )
−1 ∈ V, (52)

we can derive a unified update rule. Clearly, the sub-
spaces Vuncor,VBND,Vreal defined in Section 3 belong

to the class. We then derive the update rule for Vcoh,
which does not belong to the class.

When V satisfies (52), the terms of (41) depending

on Φv
t can be rewritten as

− U log detΦv
t

− Tr

{
(Φv

t )
−1P

[⟨
(yt − xt)(yt − xt)

H
⟩]}

. (53)

Here, P[·] denotes the orthogonal projection onto V
defined using the standard inner product ⟨A,B⟩ ,
Tr[AB] of H:

P
[
A
]
=

D∑
d=1

Tr
[
AQd

]
Qd. (54)

Here, {Qd}1≤d≤D is an orthonormal basis of V, and
D denotes the dimension of V. The explicit form of
Qd depends on the choice of V, for which the readers

are referred to [12,13]. The term in P[·] in (53) gen-
erally has both components parallel and orthogonal to
V. However, the latter vanishes owing to (Φv

t )
−1 ∈ V,

and hence (53). To derive Φv
t ∈ V that maximizes (53),

we forget the constraint Φv
t ∈ V for the moment, and

differentiate (53) w.r.t. Φv
t . We have

Φv
t = P

[
Φ̂v

t

]
, (55)

where

Φ̂v
t ,

⟨
(yt − xt)(yt − xt)

H
⟩
p(xt|yt;Θ′)

(56)

=
(
Φ

x|y
t

)′
+
{
yt −

(
µ

x|y
t

)′}{
yt −

(
µ

x|y
t

)′}H
. (57)

As is clear from the definition of P[·], (55) certainly

satisfies Φv
t ∈ V.

Although we have derived (55) through partial dif-
ferentiation, we can also derive it more intuitively as

follows. Inverting the sign and ignoring a constant in-
dependent of Φv

t , (53) becomes the following matrix
Itakura-Saito divergence:

DIS

(
P
[
Φ̂v

t

]
;Φv

t

)
, Tr

{
P
[
Φ̂v

t

]
(Φv

t )
−1
}

(58)

− log det
{
P
[
Φ̂v

t

]
(Φv

t )
−1
}
−M.

Therefore, the maximization of (53) is equivalent to the

minimization of (58). DIS(·, ·) is nonnegative, and equal
to zero if and only if the two arguments are equal. Since
P
[
Φ̂v

t

]
belong to the feasible set V of Φv

t , (58) is mini-

mized when Φv
t = P

[
Φ̂v

t

]
.

Next we consider the case V = Vcoh. Substituting

Φv
t = ϕv

tB
v (59)

into the Q-function (41), and differentiating it w.r.t. ϕv
t ,

we have, as in the derivation of (47),

ϕv
t =

1

M
Tr
[
(Bv)−1Φ̂v

t

]
. (60)


