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ABSTRACT

To create a theoretical basis for guided wave detection and identification of corrosion
damages, a set of analytically based computer models of various complexity has been de-
veloped. The present paper is focused on the simplest and fastest beam model for stepped
and notched waveguides, which has exhibited a wide frequency range of reasonable coin-
cidence with the results obtained within more complex integral equation based model for
a 2D notched elastic strip.
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INTRODUCTION

Guided wave (GW) detection and identification of corrosion damages is still a challenging task for
SHM [1]. Corrosion areas are less contrast than “conventional” cracks, delaminations and disbond-
ings which give strongly localized response. Therefore, the extraction of corrosion indications from
received signals (both scattered by and getting through the corrosion area) requires more comprehen-
sive processing based on fast computer simulation of GW diffraction by surface irregularities. Com-
mercial FEM packages are rather time-consuming, especially with 3D scattering, so it is worthy to
select as simple models as possible, which, nevertheless, capture the characteristic diffraction features
of areas affected by corrosion.

Motivated by that idea, we have developed a hierarchy of 2D and 3D semi-analytical models of
varying complexity, comparing them with each other, with benchmark results of other authors and
with experimental measurements, estimating in this way the range of applicability of each model. In
descending order of complexity there are

1) laminate element method (LEM ) for 3D scattering by depressions and cavities [2] ;
2) LEM based models for GW diffraction by arbitrarily shaped notches in 2D elastic strip waveguides;
3) expansion in series in propagating and evanescent normal modes for 2D stepped waveguides [3];
4) eccentrically butted beams of different thickness as 1D stepped and notched waveguides.

The closest analogue of the first LEM based model is the approach developed by Moreau et
al [4]. Numerical comparisons with the GW scattering diagrams obtained by that method exhibit
a full coincidence. The second and third 2D models have been tested against the numerical and
experimental results by Lowe et al [5] as well as by checking the boundary conditions at the joint line
and the energy balance among the incident, reflected, transmitted and converted modes. In turn, these
models were used to estimate the range of applicability of the simplest and fastest beam models. The
latter has demonstrated an unexpectedly wide frequency range in which the reflection and transmission
coefficients reasonably coincide with those for the fundamental S0 and A0 modes in 2D stepped and
notched waveguides.
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The present paper is focused on this beam model: first, a mathematical model for GW propagation
in pristine and damaged Euler-Bernoulli beams is given and quantitative energy characteristics of
corresponding waves are introduced. After that a corresponding 2D LEM based approach for a notched
plate is briefly described to verify the applicability limits of the simplified model. Finally the results
obtained by the both approaches are compared and discussed.

1. BEAM MODEL

An elastic beam of width b and thickness h occupies the volume |x|< ∞, |y| ≤ b/2 and |z| ≤ h/2 in the
Cartesian coordinate system. Its deformation is independent of y, so it is specified by the independent
of y displacement vector u = (ux,0,uz) lying in the central plane (x,z) (2D plane-strain deformation,
Fig. 1a).
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Figure 1 : Geometry of problem: pristine beam (top) and notched waveguide (bottom).

Within the beam assumptions

ux(x,z) = u(x)− zw′(x) (1)
uz(x,z) = w(x), (2)

where u(x) and w(x) are 1D functions set on the beam axis −∞ < x < ∞, y = 0, z = 0. With a steady-
state time-harmonic oscillation ue−iωt , the vector u is a complex vector of displacement amplitude,
and the functions u(x) and w(x) obey the beam equations

u′′+ζ 2
1 u = 0 (3)

wIV −ζ 4
2 w = 0. (4)

Here ζ 2
1 = ρ

Y ω2 and ζ 4
2 = ρA

Y I ω2 = 12ρ
Y h2 ω2, Y is the modulus of elasticity (Young modulus), ρ is density,

A = bh is the area of beam’s cross-section, I =
∫∫
A

z2dydz = bh3/12 is the moment of inertia, ω = 2π f

is angular frequency, f is frequency.
The beam supports longitudinal and flexural guided waves S0 and A0, which are specified by the

eigensolutions of Eqs. (3) and (4), respectively:

S0 : u0(x) = S0eiζ1x (5)

A0 : w0(x) = A0eiζ2x (6)

The amplitudes S0 and A0 are arbitrary complex constants, ζ1 and ζ2 are the wavenumbers of these
waves. Besides, the evanescent terms Be±ζ2x also satisfy Eq. (4).
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Force resultants, e.g., longitudinal force N, moment M and shear force V are expressed in terms
of the displacement components:

N(x) =
∫∫
A

σxdydz = YAu ′(x), M(x) =
∫∫
A

zσxdydz =−Y Iw ′′(x) (7)

V (x) = M ′(x) =−Y Iw′′′(x). (8)

Here σx(x) = Y εx = Y (u′ − zw′′) is cross-sectional traction. The corresponding shear stress τxz is
estimated via the assumption of even distribution of the force V over the cross-section A:

τxz(x) =V/A =−Y
I
A

w′′′(x). (9)

2. WAVE ENERGY

In a time-harmonic wave field, the energy flux is estimated in terms of quantities averaged over the
period of oscillation T = 2π/ω = 1/ f . The averaged density and the direction of energy flux passing
through a spatial point x per unit time is specified by the energy density vector e(x) = (ex,ey,ez). The
total amount of energy E, carried by harmonic waves through a certain surface S per unit time (in fact,
the power of the energy flux), is determined via the integration of the energy density over S:

E =
∫∫
S

en(x)dS. (10)

Here en = (e,n) = ω
2 Im(τn,u) is the normal to S component of vector e; n(x) is the unit surface normal

at the current point x ∈ S; τn is the stress vector at a surface element specified by n; the scalar product
of complex vectors assumes the complex conjugation of the second factor hereinafter denoted with
asterisk: (a,b) = ∑

i
aib∗i .

For the calculation of wave energy carried by S0 and A0 guided waves along the beam, one has to
take its cross-section A as the surface S in Eq. (10). At that, the normal n = (1,0,0), τx = (σx,0,τxz),
and E can be obtained as follows

E(x) = b
∫

|z|<h/2
ex(x,z)dz = ω

2 bY Im
∫

|z|<h/2
[u′u∗+ z2w′′(w′)∗− I

A w′′′w∗]dz =

= ω
2 Y Im [Au′u∗+ Iw′′(w′)∗− Iw′′′w∗].

(11)

In view of the energy conservation law, E(x) must be constant in the segments of ideally elastic
waveguides free from wave sources and energy drains irrespective of their thickness variation.

For travelling waves (5) - (6)

u′0u∗0 = iζ1|S0|2 and w′′
0(w

′
0)

∗ =−w′′′
0 w∗

0 = iζ 3
2 |A0|2,

thus,
E = ES +EA =

ω
2

YAζ1|S0|2 +ωY Iζ 3
2 |A0|2. (12)

The parts ES and EA are energy of S0 and A0 modes, respectively. They independently contribute into
the the total amount of wave energy E transferred through the cross-section x = const per time unit.

Remark 1. In the case of waves propagating in opposite directions, they contribute into E with
opposite signs:

ES =
ω
2

YAζ1(|S+|2 −|S−|2) and EA = ωY Iζ 2
2 (|A+|2 −|A−|2)
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for u = S+eiζ1x +S−e−iζ1x and w = A+eiζ2x +A−e−iζ2x. Note that mixed terms such as S+(S−)∗e2iζ1x

appear as complex conjugate pairs. Their sums, being complex conjugate values, do not affect the
amount of energy E calculated via Eq. (11).

Remark 2. The evanescent terms also do not affect the amount of energy carried by GWs. For
example, with w = Aeiζ2x +Be−ζ2 , the mixed terms in w

′′
(w

′
)∗−w

′′′
w∗ in Eq. (11) are real values of

form 2ζ 3
2 [Im(iAB∗eiζ2x)−Re(A∗Be−iζ2x)]e−ζ2x.

3. BOUNDARY CONDITIONS IN THE DOCKING AREA

Let us consider a beam with a rectangular notch of length ∆x and depth ∆z. It may be treated as a
joint of three beams B1, B2 and B3 of, generally speaking, three different thicknesses h1, h2 and h3.
In the case under consideration h3 = h1, ∆x = x2 − x1, ∆z = h1 −h2, and the value e = ∆z/2 is called
“the eccentricity” of the non-coaxial beam B2 (Fig. 1b). The central axis of the latter goes through the
point O2(x1,−e) in the global coordinate system (x,z). Therefore, the displacements in B2 should be
written in the local coordinates (x,y,z2), where z2 = z+ e:

ux,2 = u2 − z2w
′
2

uz,2 = w2
(13)

In these coordinates the moment and shear force are

M̂2(x) =
∫∫
A2

z2σx,2dydz2 =−Y I2w
′′
2 and V2(x) = M̂

′
2(x) =−Y I2w

′′′
2 . (14)

It is necessary to consider that M̂2 is calculated with respect to the local center O2, while the calculation
of the moment M2 with respect to the same as in B1 center O1 leads to the additional, proportional to
the eccentricity e, term:

M2(x) =
∫∫
A2

(z2 − e)σx,2dydz2 = M̂2 − eN2, N2 = YA2u
′
2(x). (15)

Note that the force V2 is independent of coordinate system, it remains of form (14).
To formulate proper boundary conditions at the joining points x1 and x2, one should equate the

displacements, forces and moments at these points. The displacement equality at x = x1 entails three
equalities connecting u1 and w1 with u2 and w2:

u1 = u2 − ew′
2

w1 = w2
w ′

1 = w′
2

, x = x1, (16)

while the force and moment equalities N1 = N2, V1 =V2, and M1 = M2 at x = x1 yield more three links:

h1u′1 = h2u′2
h3

1w′′
1 = h3

2w′′
2 +12eh2u′2

h3
1w′′′

1 = h3
2w′′′

2

, at x = x1 (17)

The same way, the conditions at x = x2 are

u2 − ew
′
2 = u3

w2 = w3

w
′
2 = w

′
3

h2u
′
2 = h1u

′
3

h3
2w

′′
2 +12eh2u

′
2 = h3

1w
′′
3

h3
2w

′′′
2 = h3

1w
′′′
3

(18)

EWSHM 2014 - Nantes, France

60



Remark 3. Boundary conditions (16) - (17) and (18) assure the energy conservation in the course
of its transfer through the butt joints. This can make explicit, e.g., taking into account that in line with
the conditions at x = x1

A1u
′
1u∗1 = A2u

′
2u∗2 −A2eu

′
2(w

′
2)

∗ and I1w
′′
1(w

′
1)

∗ = I2w
′′
2u∗2 +A2eu

′
2(w

′
2)

∗.

The second terms with the eccentricity e are reduced in the sum of Eq. (11), hence, the expression for
the amount of energy E1 at the left of x1 becomes the same as E2 at the right side of the joint. Similarly
for x = x2.

4. REFLECTION AND TRANSMISSION COEFFICIENTS

The diffraction of an incident A0 or S0 wave by the notch gives rise to the reflected and transmitted
fields u−

1 and u+
3 . Thus the general solution of Eqs. (3), (4) in the whole domain B = B1∪B2∪B3 may

be represented in the following form

u1 = u0 +u−1 = u0 + c1e−iζ1(x−x1), x ∈ B1

u2 = c2eiζ1(x−x1)+ c3e−iζ1(x−x2), x ∈ B2

u3 = u+3 = c4eiζ1(x−x2), x ∈ B3

(19)

w1 = w0 +w−
1 = w0 + c5e−iζ2,1(x−x1)+ c6eζ2,1(x−x1), x ∈ B1

w2 = c7eiζ2,2(x−x1)+ c8e−ζ2,2(x−x1)+ c9e−iζ2,2(x−x2)+ c10eζ2,2(x−x2), x ∈ B2

w3 = w+
3 = c11eiζ2,3(x−x2)+ c12e−ζ2,3(x−x2), x ∈ B3

(20)

The 12 unknown constants c j, j = 1,2, ...,12, are obtained from the 12×12 system of linear equations
resulting from the 6+6 joining conditions (16) – (18).

The energy E− and E+ of the reflected and transmitted waves u− and u+ may be obtained using
the same formulas as Eqs. (12) but with the coefficients c1 and c5 substituted for A0 and S0 in the case
of reflected wave energy E− = E−

S +E−
A :

E−
S =

ω
2

YA1ζ1|c1|2, E−
A = ωY I1ζ 3

2,1|c5|2, (21)

and with the amplitude constants c4 and c11 for the transmitted wave energy E+ = E+
S +E+

A :

E+
S =

ω
2

YA2ζ1|c4|2, E+
A = ωY I2ζ 3

2,2|c11|2. (22)

The values E±
S and E±

A are energy transferred by transmitted and reflected S0 and A0 GWs. With an
ideally elastic waveguide structure, the energy balance is

κ−+κ+ = 1, (23)

where the transmission and reflection coefficients κ± = E±/E0 consist of specific coefficients for the
scattered S0 and A0 waves:

κ± = κ±
S +κ±

A = E±
S /E0 +E±

A /E0 (24)

If only S0 mode is taken as the incident field (A0 = 0), the values κ±
S may be treated as the

coefficients of its transmission and reflection (κ±
S ≡ κ±

SS), while κ±
A are the coefficients of its forward

and backward conversion into A0 modes (κ±
A ≡ κ±

SA). Similarly, with an A0 incidence (S0 = 0), κ±
A ≡

κ±
AA and κ±

S ≡ κ±
AS.
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5. 2D NOTCHED WAVEGUIDE

As a more complex model for GW diffraction by corrosion areas, a 2D notched elastic strip (Fig. 1b)
governed by the full system of elastodynamic equations

(λ +2µ)divu+µ∆u+ρω2u = 0 (25)

has been also considered; λ and µ are Lamé constants of elasticity. In this statement, the coupling
boundary conditions are different from those for the beams. They are the conditions of displacement
and stress field continuity at the joint interface lines

[u]m = 0, [τx]m = 0, x = xm, −h1/2 ≤ z ≤ h1/2−∆z, m = 1,2 (26)

and the stress-free conditions

τx = 0, x = xm, h1/2−∆z ≤ z ≤ h1/2, m = 1,2 (27)

at the rest of edges of the thicker strips B1 and B3, not contacting with the thinner intermediate domain
B2. Square brackets denote here the jump of related vector functions at the cross-sections x = xm. The
horizontal sides of the notched domain are also stress-free.

The diffraction of an incident guided wave u0(x) = a0(z)eiζkx gives rise to the scattered field
usc(x), so that the total wave field in the notched waveguide is u = u0 +usc. Here ζk, k = 1 or 2, is the
wavenumber of the fundamental S0 or A0 Lamb wave; these values tend to the beam’s wavenumbers
in Eqs. (3) – (4) as ωh

√
ρ/Y → 0; a0(z) is an eigenform of the corresponding Lamb wave.

The scattered field is derived using the LEM technique [2] in the form

usc(x) =
∫
S

l(x,ξ )c(ξ )dξ , (28)

where S is the boundary of the notch, c(x) is an unknown potential’s density and l(x,ξ ) = [l1
... l2

... l3]
is the matrix of fundamental solutions for the intact elastic layered structure under consideration. Its
columns l j, j = 1,2,3, are displacements generated by the point sources δ (x−ξ )i j, where i j are basic
coordinate vectors. They satisfy the governing equations and the homogeneous boundary conditions
at all plane-parallel surfaces (at the surfaces z=±h1/2 in the case). A substitution of relation (28) into
the boundary conditions on S yields a boundary integral equation with respect to the vector function c.
Its solution is obtained using boundary element method technique.

6. NUMERICAL EXAMPLES AND DISCUSSION

To estimate the range of practical applicability of the results obtained within the beam model, a sys-
tematic comparison of the transmission, reflection and conversion coefficients κ± obtained versus
frequency within beam and LEM models have been carried out. Preliminary the LEM model has been
validated against the known FEM and experimental results [5]. Figure 2 gives examples of such com-
parisons for the amplitude reflection coefficient µ− = |w−/w0| of A0 mode propagating in a steel plate
of thickness h1 = 3 mm. The left subplots show the frequency dependence of µ− for two notches of
width ∆x = h1 and depths h2 = 0.83h1 and 0.5h1. The right subplot illustrates the influence of the
notch width ∆x variation. The reflection coefficient µ− is shown here versus the ratio ∆x/λ , where
λ = 5.5 mm is the A0 wavelength at f = 450 kHz.

Figures 3 and 4 give examples of beam-to-LEM comparisons for two aluminium samples of
thickness h1 = 1 mm with the notches of length ∆x= 5 mm and depths ∆z= 0.5 and 0.75 mm (h2 = 0.5
and 0.25 mm); the material properties Y = 71 GPa, ρ = 2700 kg/m3 and Poisson’s ratio ν = 1/3.
The figures are for S0 and A0 incidence. To avoid cluttering the figures, only transmission (blue)
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Figure 2 : Examples of LEM validation against FEM and experimental results [5].

and reflection (red) coefficients κ+ and κ− are shown without the coefficients of mode conversion,
exhibiting similar rate of coincidence.

At relatively low frequencies h f/v << 1 (v is a characteristic wave velocity), the displacement
field u in an elastic strip exhibits linear dependence on the cross coordinate z, as it is formulated in
beam assumptions (1) - (2). The fundamental A0 and S0 Lamb waves are also well approximated by
beam’s guided waves (1), (2), (5) and (6).

On the other hand, linear behaviour of displacement and stress fields relative to z coordinate is
violated near the lines of butt junction even in the limit f → 0. Therefore, it is not clear how well
the conditions of beam coupling may substitute for conditions (26) - (27). One more factor differing
beam and strip models is that though the S0 and A0 modes of the latter become of form (1) - (2), (5)
- (6) at low frequencies, their wavenumbers are slightly different from ζ1 and ζ2 diverging from them
as frequency increases.

0

0.25

0.5

0.75

1

 κ
±

 

h2=0.5 mm h2=0.25 mmS0 incidence

200 400 600 800 1000 f, kHz 200 400 600 800 1000

Figure 3 : Transmission (blue) and reflection (red) coefficients κ+
S and κ−

S obtained within LEM and beam
models (solid and dashed lines, respectively) for the S0 mode in notched waveguides of web thicknesses h2 = 0.5
and 0.25 mm; h1 = 1 mm, ∆x = 5 mm.

Nevertheless, the comparison of transmission and reflection coefficients κ±
S and κ±

A obtained for
notched beams and strips has shown that at low frequencies the beam plots follow reasonably close to
the strip counterparts (Figs. 3, 4). The coincidence of results for the S0 incidence is visibly better then
in the A0 case. In the frequency range up to 300 kHz, it is very good. In the A0 case the coincidence
is not so good. Although, even with the most complicate curve behaviour at h2 = 0.25 (Fig. 4, right),
the beam curves catch the peaks and minima in the range f ≤ 100 kHz, following them with a certain
shift in a wider range as well.

One of the reasons for better beam model performance with S0 incidence is the much better
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Figure 4 : Same as in Fig. 3 for A0 incidence.

wavelength-to-thickness (λ/h) ratio than with A0 waves. For example, at the frequencies f = 100 kHz
and 500 kHz, these ratios for S0 are λS/h = 51.3 and 10.3, while for A0 they are λA/h = 9.6 and 2.9,
respectively.

CONCLUSION

In spite of apparent simplicity of the Bernoulli-Euler beam equations, it is quite acceptable to use
them for the simulation of GW diffraction by step and notch obstacles at low frequencies, at least
in the first quarter of the two-mode Lamb wave range. The crucial point here is the formulation of
coupling boundary conditions at eccentric butt joints. Only a proper accounting for the eccentricity
provides the wave energy conservation across the junction as well as correct energy partition among
the reflected and transmitted travelling waves.

The authors are grateful to Prof. W. Seemann, KIT, Karlsruhe, for the useful discussion of the
beam model. The work is partly supported by the Russian Foundation for Basic Research (RFBR)
(projects No. 12-01-00320 and 14-08-00370).
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