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ABSTRACT 

Structural Health Monitoring (SHM) based on Lamb waves, a type of ultrasonic guided 

waves, is a promising method for in-service inspection of composite structures. In this 

study mode selective actuators and sensors are investigated to excite a particular Lamb 

wave mode in composite plates. The actuator and sensor exhibit an interdigital 

transducer design. In order to describe the complex displacement fields of 𝐴0 and 𝑆0 

mode and to characterize the mode selectivity of the transducers a two dimensional 

analytical model based on higher order laminated plate theory is developed.  

KEYWORDS : Structural health monitoring, Lamb waves, higher order plate theory, 

actuator-sensor system, CFRP plates. 

INTRODUCTION 

Structural Health Monitoring (SHM) based on Lamb waves, a type of ultrasonic guided waves, is a 

promising technique for in-service inspection of composite structures. However, the presence of at 

least two Lamb wave modes (symmetric modes, 𝑆0, 𝑆1, 𝑆2,…, and anti-symmetric modes, 𝐴0, 𝐴1, 

𝐴2,…) at any given frequency, their dispersive characteristic and their interference at structural 

discontinuities produce complex wave propagation fields and sensor signals which are difficult to 

evaluate. In order to reduce the complexity of the wave propagation field mode selective actuator-

sensor systems are investigated. These actuator-sensor systems are able to generate and receive a 

particular Lamb wave mode in CFRP plates (carbon fibre-reinforced plastic). 

In the present study a two dimensional analytical model using higher order laminated plate theory is 

developed. The plate theory is based on second and third order displacement functions to 

approximate the complex displacement fields of 𝐴0 and 𝑆0 mode. The plate theory is solved under 

the boundary conditions of an actuator in order to obtain the strain distribution of the Lamb wave 

propagation field. On the sensor side the strain distribution is converted into electrical voltage using 

the constitutive relations of piezoelectric material. The actuator and sensor exhibit an interdigital 

transducer design. With this type of transducer a particular Lamb wave mode can be amplified 

because the frequency as well as the wavelength can be controlled. With the analytical model 

different configurations of the transducers are analysed with respect to the amplitude ratio of 𝐴0 and 

𝑆0 mode.  

1 ANALYTICAL MODEL 

In order to amplify a specific Lamb wave mode and to simultaneously attenuate the other modes an 

actuator sensor configuration based on interdigital transducer design is used. As proposed in [1], 

[2], [3], interdigital transducers are a promising mode selective method. With these transducers it is 

possible to control the frequency as well as the wavelength of the desired mode within the 

excitation in order to amplify a particular Lamb wave mode. The electrode configuration is made of 

two comb-like electrodes with opposite polarity. The electrode distance corresponds to the half-
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wavelength of the desired Lamb wave mode which will be excited at a frequency in the plate 

structure. The aim of the analytical model is to evaluate the amplitudes of 𝑆0 and 𝐴0 mode between 

actuator sensor configurations in CFRP plates. With the model the mode selective characteristics 

can be estimated and optimized. The main effects, that influence the amplitudes of Lamb waves as 

well as the mode selectivity, are summarized in the following:  

- Dispersion and attenuation in the plate structure 

- Design and configuration of transducers 

- Shear-lag between transducers and structure 

- Resonances of the transducers 

- Excitation signal and frequency filter 

All these effects, apart from the transducer resonances, are considered in the model to calculate 

realistic amplitudes of Lamb waves. The following Figure 1 shows the components as well as the 

setup of the model. The interdigital transducers are modelled as individual segments, which exhibit 

piezoelectric properties. 

 
Figure 1 : Components of the actuator sensor configuration based on interdigital transducers 

The amplitudes of 𝑆0 and 𝐴0 mode are calculated using higher order laminated plate theory. For 

Lamb wave applications the higher order plate theory is typically utilized to determine the 

dispersion and attenuation in composite plates [4], [5], [6]. In the present study the higher order 

plate theory is solved under the boundary condition of an actuator excitation to evaluate the strain 

distribution in the plate structure. Therefore the equation of motion can be derived from the 

Lagrange equation: 

 

  

  

  ̇
 

  

  
  ̃        (1) 

where  ̃ are the mechanical stresses on the upper surface of the plate structure: 

 ̃  ( ̃   ̃   ̃    ̃     ̃     ̃    ̃     ̃     ̃    ̃     ̃  )
 

 (2) 

The kinetic   and strain energy   are given by: 

  
 

 
 ̇    ̇            [   ]  

(3) 

  
 

 
               [               ]  

In order to describe attenuation effects of the plate structure the stiffness matrix 𝐶𝑖𝑗 of each CFRP 

layer is assumed to be a complex quantity. The real part relates to the elastic and the imaginary part 

to the viscous behaviour [5]: 

𝐶  
  𝐶  

   𝑖𝐶  
   𝐶  

        (4) 

EWSHM 2014 - Nantes, France

326



 

  

For the viscous behaviour the hysteretic model, where the viscosity coefficients  𝑖𝑗 are independent 

from frequency is assumed. As shown in [7], the attenuation of Lamb waves in CFRP plates can be 

well approximated with the hysteretic model. The displacement   and strain field   can be 

determined with the following higher order functions [6]: 

    (     )      (     )      (     )      (     )  (5) 

    (     )      (     )      (     )      (     )  (6) 

    (     )      (     )      (     ) (7) 

With these second and third order functions the 𝑆0 and 𝐴0 mode can be approximated over large 

frequency range. Considering harmonic solutions with respect to time and  -  direction, the 

assumption for the displacement field is in the form: 

    ̂  
 (          )    [                      ]  

(8) 
                                                       ̂  [ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂ ]

 
 

where 𝑘  = 𝑘·cos(𝜃𝑝) and 𝑘  = 𝑘·sin(𝜃𝑝) are complex wavenumbers in  -  direction. After the 

implementation of the displacement fields given by equation (8) into (3) and solving the Lagrange 

equation (1) the equation of motion for Lamb wave propagation are obtained in the form: 

 ̂ (𝑘  )      ̃   ̃  ( ̃      ̃      ̃      ̃  )
   (9) 

The formulation of the mechanical stresses  ̃ implicate, that the actuator produces only shear 

stresses on the upper surface of the plate and the model is reduced into a two-dimensional problem. 

In case of symmetric CFRP laminates the equation of motion can be derived into two independent 

solutions (left: symmetric modes, right: anti-symmetric modes): 
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The coefficients  𝑖𝑗 are given in the Appendix. The inverse matrix  -1
 can be expressed in form of 

its adjoint 𝑁 and determinant 𝐷. Applying the inverse Fourier transformation the solution can be 

converted into the spartial domain: 

 ̂ (   )  
 

  
∫

 (𝑘)

𝐷(𝑘)
 ̃    

 

  

 𝑘 (11) 

The integral can be calculated by Cauchy’s theorem of residues, as presented in [8]: 

∮ (𝑘)

 

 

     𝑖∑   [ (𝑘)]

 

       [ (𝑘)]  
 (𝑘)

𝐷 (𝑘)
   (12) 

where 𝐷‘ represents the derivative of 𝐷 with respect to 𝑘. The substitution of equations (5)-(7) 
leads to the displacement field   on the upper surface of the plate (  =  ). The strain 
distribution can be obtained by the derivative    =   /  : 
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The formulation of the shear stress    , which consider the shear-lag in the bonding layer, can be 

taken from [8]. This formulation can be extended for the case of interdigital transducers: 
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The Fourier transformation into the wavenumber domain is: 

 ̃  (𝑘)   𝑖       
    (𝑘 )       (  )    (𝑘 )

   𝑘 
∑(  )      

     

    

   

  (16) 

where 𝑁  is the number of actuator segments, 2  the length of each segment,   the segment distance 

and    the apodization function. With an apodization each segment can be driven with different 

amplitudes, so that the frequency response function of the transducer is modified and the mode 

selectivity can be enhanced. As shown in Figure 2, adjacent transducer segments are driven with 

opposite polarity, which takes the term (‒ ) into account.  

 
Figure 2 : Shear stress in the bonding layer 

The force of the transducer  0  and the shear-lag parameter 𝛤 are given by [8]: 

    (
 

   
)        

 

  
          

  

  

 

    
(
   

 
)           

    

    
  (17) 

with  𝑝, 2  and   ,    as Young's moduli and thicknesses of the plate structure and the 
actuator, 𝐺𝑘 and  𝑘 as shear modulus and thickness of the bonding layer,   and  31 as applied 
electrical voltage and piezoelectric constant. The value 𝛬 is varying between different Lamb 
wave modes and depends on the frequency. For the fundamental modes (𝑆0 and 𝐴0) and low 
frequencies the value 𝛬 can be approximated with 𝛬 = 4 [9]. On the sensor side the 
mechanical strains are converted into electrical voltage. According to [5], the voltage of each 
sensor segment can be calculated for the two-dimensional case in the form: 

   
       

  ̅ 
   (    )

∫        

 

  

  (18) 

where   ,   ,    are Young's modulus, thickness and Poisson ratio of the sensor,     the dielectric 
permittivity and   ,  the sensor strain. For interdigital transducer with 𝑁  segments this 
formulation becomes: 

  
       

  ̅ 
   (    )

∑(  )    ∫        

    

    

    

   

  (19) 

To consider the shear-lag in the bonding layer on the sensor side, the strain distribution between the 

plate structure and the sensor is given as follows [8]: 

         [  
    ( [    ])

    (  )
]                        𝑁     (20) 

Substitution of equation (20) into (19) yields: 
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where: 

𝐶  
𝑘𝑆 ̃  

𝑆

𝐷  (𝑁  
     𝑁  

    𝑁  
 )       𝐶  

𝑘𝐴 ̃  
𝐴

𝐷  (  𝑁  
     𝑁  

    𝑁  
 ) (22) 

The sensor voltage consists of solution for symmetric and anti-symmetric modes, which have to be 

individual determined by the wavenumbers 𝑘  and 𝑘 . The wavenumbers 𝑘 = 𝑘  -𝑖𝑘𝐼𝑚 are complex 

values in order to describe the dispersion as well as the attenuation characteristics of the plate 

structure. Accordingly, the phase velocities are determined by the real part 𝑐𝑝 =  /𝑘   and the 

attenuation factors by the imaginary part 𝑘𝐼𝑚 of the wave numbers The complex wavenumbers can 

be examined in such a way that the equation of motion (1) is solved without the mechanical stresses 

of the actuator. The substitution of equation (8) and (3) and solving the equation of motion (1), 

where the stresses are equal to zero ( ̃ = 0), leads to an eigenvalue problem in the following form: 

  ̂     (23) 

The eigenvalue problem needs to be numerically examined. The method as well as the coefficients 

 𝑖𝑗 is detailed described in [6] and [7]. 

As excitation signal a sinus burst is used. The frequency spectrum of a sinus burst is given by [9]: 

     ( )  
  

   
[    (

   

   
[    ])  (  )        (

   

   
[    ])]  (24) 

The bandwidth 𝐵  = 4 0/ 𝑝 can be calculated using the number of pulses  𝑝 and the centre 

frequency  0. To consider the frequency spectrum of the excitation signal  𝑆𝑖𝑔  within the sensor 

signal  𝑀𝑜 𝑜 of equation (21) the following formulation is utilized: 

     (  )  ∑      ( )       ( )

      ⁄

         ⁄

     (25) 

where ∆  describe the discrete frequency increments. In equation (25) only the main lope in the 

frequency spectrum of the excitation signal, which has the bandwidth 𝐵 , is taken into account. The 

last step is to transform the spectral sensor signals from the frequency-space domain into the time-

space domain. This can be done by an inverse Fourier transformation, which cannot be calculated 

analytically. Therefore a discrete Fourier transformation, especially a fast Fourier transform 

algorithm has to be used.  

2 RESULTS 

For the implementation of the model algorithms the commercial software MATLAB
® is used. The 

investigations on are carried out on a quasi-isotropic CFRP plate. This plate consist of 7 plies in a 

[(0/90)360/+45/-45/(0/90)¯¯¯¯ 220]S configuration. The mechanical properties of each ply are shown in the 

appendix. For the transducers the piezoceramic material PIC255 (PI Ceramic GmbH) is chosen 

[11]. The bonding layer is made from an epoxy adhesive which exhibits a shear modulus of 
𝐺𝑘 = 0.4 GPa. The transducers are applied in 0°-direction (𝜃𝑝 = 0) on the upper surface of the plate. 

The distance between actuator and sensor is set to 𝑙 = 200 mm. All further parameters are 
summarized in the following Table 1. 
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[mm] 

2  
[mm] 

𝑁  
[-] 

𝑁  
[-] 

  ,    
[mm] 

 𝑘 
[µm] 

𝐺𝑘 

[GPa] 
𝑙 

[mm] 
𝜃𝑝 
[°] 

 𝑝 
[-] 

𝐵  
[-] 

5 0.8·  10 1 0.2 50 0.4 200 0 10 4/ 𝑝 

Table 1: Standard parameters of the analytical model 

The Figure 3 shows the sensor voltage over frequency for an unapodized actuator and an apodized 

actuator which is weighted with the Blackman-Nuttall function. 

 
Figure 3 : Sensor voltage without apodization (left) and with apodization (right), 

black: spectral excitation signal, grey: mono-frequent excitation signal 

The frequency response function is characterized by main and side lopes. The maximums of the 

main lopes occur when the segment distance correspond to the wavelength of the desired mode:  

  (    )
 

 
                   (26) 

The maximum of the 𝐴0 mode can be observed at 109 kHz, whereas the maximum of the 𝑆0 mode is 

at 487 kHz. Due to the bandwidth of the spectral excitation signal the maximums and minimums are 

varying. With increasing frequency the signal bandwidth grows and therefore the amplitudes rise. 

Regarding the mode selectivity it is important that the main lope of the desired mode correspond to 

a minimum within the side lopes of the undesired mode. If this is the case, the mode selectivity is 

maximized. The location of the side lopes as well as their minimums can be controlled by the 

number of segments. The amplitudes of the side lopes can also be reduce by applying an 

apodization function to the transducer. Investigations on the model have shown that an apodization 

with the Blachman-Nuttall function produces the best results. As shown in Figure 3 (right) the 

amplitudes of the side lopes can be sufficient reduced. But on the other hand the bandwidth of the 

main lope increases due to the apodization. The following Figure 4 shows the sensor signal for 

different actuator configurations regarding number of segments and apodization.  

 
Figure 4 : Sensor signal at a centre frequency of   = 109 kHz, left: unapodized actuator (𝑁  = 1),  

centre: unapodized actuator (𝑁  = 10), right: apodized actuator (𝑁  = 10) 
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A centre frequency of 109 kHz is chosen at which the 𝐴0 mode shows a maximum in its frequency 

response function. The sensor signals are normalized to the maximum of the 𝐴0 mode (  = 1). It can 

be seen that the amplitude of the 𝑆0 mode can be reduces from 0.63 to 0.017 when the number of 

segments will be increased from 1 to 10. But in this case the 𝑆0 mode is still observable in the 

sensor signal. If an apodization is applied to the transducer the 𝑆0 mode is not anymore observable 

in the signal because its amplitude is reduces to 2.18·10
-5

. 

CONCLUSION 

In this paper a method of modelling the propagation of Lamb wave modes between actuators and 

sensors in composite plate is presented. A two dimensional analytical model is developed which is 

based on higher order laminated plate theory. The actuators and sensors are realized within the 

modelling in form of interdigital transducers. This kind of transducer is able to excite a particular 

Lamb wave mode and as a result to reduce the complexity of multimodal Lamb wave field. The 

results of the analytical model show that mode selective excitation and receiving of 𝑆0 or 𝐴0 mode 

can be achieved by interdigital transducers. 

APPENDIX 

The coefficients  𝑖𝑗 for symmetric modes of equation (10) are given by: 

   
  𝐴  𝑘 

   𝐴  𝑘 𝑘  𝐴  𝑘 
    𝐼      

   𝑖  [𝐴  𝑘  𝐴  𝑘 ] 

   
  𝐷  𝑘 

   𝐷  𝑘 𝑘  𝐷  𝑘 
    𝐼     

   
   [  

 𝐷  𝑘 
       𝐷  𝑘 𝑘    

 𝐷  𝑘 
    

 𝐴     𝐼 ] 

   
   𝑖[  𝐷      

 𝐷  ]𝑘  𝑖[  𝐷        𝐷  ]𝑘  

   
     𝑘 

      𝑘 𝑘     𝑘 
     

 𝐷     𝐼  

The coefficients  𝑖𝑗 for anti-symmetric modes of equation (10) are given by: 

   
   [  

 𝐴  𝑘 
       𝐴  𝑘 𝑘    

 𝐴  𝑘 
    𝐼 ]           

  𝑖  [  𝐴  𝑘    𝐴  𝑘 ] 

   
   [    𝐷  𝑘 

  (         )𝐷  𝑘 𝑘      𝐷  𝑘 
    𝐼 ] 

   
   𝑖[    𝐷  𝑘      𝐷  𝑘 ]     

  𝐷  𝑘 
   𝐷  𝑘 𝑘  𝐷  𝑘 

    
 𝐴     𝐼  

   
  𝑖[    𝐷  𝑘     (𝐷  𝑘  𝐷  𝑘 )      𝐷  𝑘 ] 
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          𝑘 𝑘    
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       𝐼  

The stiffness coefficients and mass moment of inertia can be calculated as follows: 

(𝐴   𝐵   𝐷                  )  ∑ ∫ 𝐶     (                  )  

  

    

  

   

 

(𝐼  𝐼  𝐼  𝐼  𝐼  𝐼  𝐼 )  ∑ ∫    (                  )  
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where 𝑁  are the number of laminate plies, 𝐶𝑖𝑗,  the stiffness matrix and    the density of the  -th 

laminate ply. In case of symmetric laminates the coefficients 𝐵𝑖𝑗,  𝑖𝑗 and  𝑖𝑗 as well as 𝐼1, 𝐼3 and 𝐼5 are 

equal to zero. Within experimental investigation, presented in [7], the shear correction factors are 

chosen as  1 =  2 =  4 =  7 =  8 =  2/√11,  3 =  2/√12 and  5 =  6 =  2/√15. The following 

Tables 2 and 3 show the elastic and viscoelastic material properties of each ply of the CFRP plate, 

which are determined within experimental investigations [7]. 

Ply 
  

[mm] 
  

[kg/m³] 
𝐶  

   
[GPa] 

𝐶  
   

[GPa] 
𝐶  

   
[GPa] 

𝐶  
   

[GPa] 
𝐶  

   
[GPa] 

𝐶  
   

[GPa] 
𝐶  

   
[GPa] 

𝐶  
   

[GPa] 
𝐶  

   
[GPa] 

(0/90)220 0.20 1560 53.81 2.21 1.86 54.32 2.80 8.59 2.87 2.87 3.83 

(0/90)360 0.40 1520 50.08 2.09 1.81 50.58 2.73 8.32 2.67 2.67 3.56 

(45)250 0.25 1550 129.28 3.36 3.36 9.08 3.22 9.08 2.93 5.58 5.58 

Table 2: Ply thickness  , density   and elastic material properties of the laminate plies 

Ply 
   
  

[GPa] 

   
  

[GPa] 
   
  

[GPa] 
   
  

[GPa] 
   
  

[GPa] 
   
  

[GPa] 
   
  

[GPa] 
   
  

[GPa] 
   
  

[GPa] 

(0/90)220 1.10 0.04 0.03 1.00 0.004 0.01 0.03 0.05 0.10 

(0/90)360 1.10 0.04 0.03 1.00 0.004 0.01 0.06 0.03 0.10 

(45)250 2.00 0.05 0.05 0.90 0.84 0.90 0.03 0.25 0.25 

Table 3: Viscoelastic material properties of the laminate plies  
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