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ABSTRACT

Condition monitoring of wind turbine gearboxes is an important practice in order to de-
termine the state of the wind turbine drivetrain. In this way reparative actions could be
taken whenever needed, resulting in reduction of maintenance costs. In this paper, time-
frequency analysis is performed on real wind turbine gearbox datasets using the empirical
mode decomposition method. Then, the outlier analysis method is applied to the power of
certain intrinsic mode functions of the decomposed - using the empirical mode decompo-
sition method - gearbox experimental datasets. These intrinsic mode functions are chosen
according to their frequency content. They are related to the harmonics of the meshing
frequency of the damaged stage of the gearbox examined. The outlier analysis method
is a well- established method in the structural health monitoring field that computes dis-
cordancy measures for data and compares them with a threshold. Here, it is used as a
standard approach whose results can be used for comparison. Finally, a novel threshold-
ing method is proposed for feature discrimination - the phase space thresholding method.
It is shown that for the particular case of gear tooth damage, because of the way it man-
ifests in the vibration signals, the phase space thresholding method proves to be a very
satisfactory method that can be used for an enhanced condition monitoring strategy.

KEYWORDS : condition monitoring, empirical mode decomposition, outlier analysis,
phase space thresholding method, adaptive threshold

INTRODUCTION

The condition monitoring field aims at the health assessment of rotating machinery examined through
the monitoring of parameters indicative of their condition. In order to perform condition monitoring
based on the collection of vibration signals most of the times advanced signal processing and ma-
chine learning algorithms are needed for the feature extraction and feature discrimination steps of this
process.

Feature discrimination can be achieved by two different approaches, the supervised and the un-
supervised learning approaches. Unsupervised learning methods for damage detection do not require
all the class labels of the acquired data. This is an advantage over the supervised learning methods,
since it is the most common case that data describing all damage classes of a structure, cannot be
provided. A good tutorial overview of such techniques can be found in reference [1]. Some of the su-
pervised learning approaches used in the structural health monitoring and condition monitoring field
include: Bayesian classification methods, nearest-neighbour algorithms, artificial neural network clas-
sifiers [2, 3] and more recently support vector machines [4]. Unsupervised learning approaches have
received less attention [5]; it is not easy however to apply in practice supervised learning techniques
due to the lack of training data required for the models corresponding to damaged systems. For this
reason, in the current study the authors propose an unsupervised learning approach.

Novelty detection belongs to the unsupervised learning approaches and in statistics is also known
as outlier detection and it can be achieved by assuming that selected features defining a normal condi-
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tion follow the Gaussian distribution [6]. In [6] the Mahalanobis squared-distance measure is used as
a discordancy measure and the threshold value is estimated through the employment of a Monte Carlo
method.

Here, a different outlier detection method will be proposed. It is based on the idea of spatial
adaptation, a term that exists in the statistical literature and describes methods that can be used for
regression and classification and operate without an initially pre-defined fixed basis, but rather create
this basis during their application, according to the data being analysed.

The method proposed in this paper was developed originally in reference [7] where it was used for
acoustic-Doppler velocimetry data analysis. Spike detection in this case was achieved by exploiting
the three following concepts [7, 8]: a) that differentiation enhances the high frequency portion of the
signal, b) that the expected maximum of a random series is given by the universal threshold, and c)
the idea of a “good” data cluster in a dense cloud in phase space or Poincaré maps. In this paper, it
will be shown that the method can be successfully applied for the purposes of condition monitoring
when one follows the steps described here.

1. BACKGROUND THEORY

1.1 Outlier analysis

Outlier analysis is already known in the structural health monitoring field since the publication of
reference [6]. For his reason the authors will just summarise the basic theory of the method in this
section.

In general, the outlier analysis method computes discordancy measures for data and compares
them with a threshold. In the case of multivariate data, the discordancy measure is the Mahalanobis
squared-distance:

D2
ζ
= ({x}ζ −{x})T [Σ]−1({x}ζ −{x}) (1)

where {x}ζ is the feature vector corresponding to the candidate outlier, {x} is the sample mean of the
normal condition features and [Σ] is the normal condition feature sample covariance matrix.

The threshold value that labels the inlier and outlier observations can be estimated through the
employment of a Monte Carlo method. Briefly, a p×n matrix (p-observations, n-dimensions, in order
that the matrix dimensions match the dimensions of the extracted features) is generated and populated
with elements randomly drawn from a zero-mean, unit standard deviation Gaussian distribution. Then
the Mahalanobis squared-distance is calculated for all elements and the largest value stored. This is
repeated a large number of times, each time storing the largest Mahalanobis squared-distance, which
are then sorted in order of magnitude. The threshold is assigned as a percentile of the resulting array
of Mahalanobis squared-distances.

1.2 Phase-space thresholding method

The alternative method proposed in this paper is known as the phase-space thresholding method.
This method constructs an ellipsoid in three- dimensional phase space and points lying outside the
ellipsoid are designated as spikes. In [7], a three-dimensional Poincaré map or a phase space map
is a plot in which a variable and its derivatives are plotted against each other. The threshold used
in this case is defined by the Universal criterion and an ellipsoid is formed in this way in the three-
dimensional space that separates inliers from outliers. The universal threshold arises from a theoretical
result from normal probability distribution theory that was introduced in the landmark paper given in
reference [10]. For n independent, identically distributed, standard, normal random variables ξi the
expected absolute maximum is:
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E(|ξi|max) =
√

2logn = λU (2)

where λU is termed the universal threshold. For a normal, random variable sample, that consists of n
data points and whose standard deviation is estimated by σ and the mean is zero, the expected absolute
maximum is:

λU σ =
√

2lognσ (3)

The algorithm consists of a number of sequential iterations that stop when the number of good
data becomes constant (or, equivalently the number of new points identified as outliers, peaks in the
power diagrams in this case, falls to zero). If ui is the dataset being analysed, then each iteration has
the following steps:

• Calculate ∆ui and ∆2ui for the first and second derivatives from:

∆ui = (ui+1−ui−1)/2 (4)

∆
2ui = (∆ui+1−∆ui−1)/2 (5)

• Calculate the standard deviations of all three variables σu, σ∆u and σ∆2u, and then the expected
maxima using the universal criterion.
• Calculate the rotation angle of the principal axis of the ∆2ui versus ui using the cross correlation:

θ = tan−1(
∑ui∆

2ui

∑u2
i

) (6)

• Each set of variables {ui,∆ui,∆
2ui}, determines a point in spherical coordinates. For each pair

of these variables, an ellipse can be calculated. Therefore, for ∆ui versus ui the major axis is
λU σu and the minor axis is λU σ∆u; for ∆2ui versus ∆ui the major axis is λU σ∆u and the minor
axis is λU σ∆2u; and for ∆2ui versus ui the major and minor axes a and b respectively, can be
shown by geometry to be the solution of:

(λU σu)
2 = a2cos2

θ +b2sin2
θ (7)

(λU σ∆2u)
2 = a2sin2

θ +b2cos2
θ (8)

• For each projection in space the points that lie outside of the ellipse are identified and replaced
with a smoothed estimate in order to perform the next iteration.

At each iteration, replacement of the outliers reduces the standard deviations calculated in two
and thus the size of the ellipsoid reduces until further outlier replacement has no effect.
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2. EXPERIMENTAL DATASETS

The experimental gearbox vibration data analysed in this study comes from an NEG Micon NM
1000/60 wind turbine in Germany. The measurements of the experimental data have been taken by
members of the company EC Grupa, a Polish engineering company that maintains the wind turbine
system from which the gearbox vibration datasets were obtained. The gearbox consists of three gear
stages: one planetary gear stage and two spur gear stages. The measurements come from a single
accelerometer chosen by EC Grupa to be carrying more information concerning the damage of the
gearbox. The sampling frequency of the measurements was 25000 Hz.

Acceleration signals from this gearbox were obtained at three different dates: 31/10/2009,
11/2/2010 and 4/4/2010. The first dataset was described as the one to be used as a reference. This
is sensible because one expects damage to increase. If it transpired that the system was undamaged at
the first test, then one would see clear signatures of damage in the later data. If it transpired that dam-
age was already present during the first test, one can still use it as a reference and look for increased
signatures of damage. The second dataset was considered to be one describing an early tooth damage
of the gearbox and the third one was the dataset of the vibration signal with progressed tooth damage
in the gearbox.

Generally, it is known that it is in the harmonics of the meshing frequency of the damaged gear
pair that damage features occur.

The frequency components of the signal are the following:

• 15.07, 30.14 Hz: relative meshing frequency and second harmonic of the planetary gear,
• 89.535, 179.07 Hz: relative meshing frequency and second harmonic of the 1st parallel gear

stage,
• 352, 705, 1056, 1410, 2115, 2820 Hz: relative meshing frequency and harmonics of the 2nd

parallel gear stage.

In order to perform time-frequency analysis, the signals were decomposed using the empirical
mode decomposition method (EMD) into a set of signal components (oscillatory functions) in the
time-domain called intrinsic mode functions (IMFs). The EMD is now relatively known in the signal
processing field. The procedure for extracting the IMFs from the signal analysed is known as the
sifting process and is an empirical algorithm (not mathematically proven), as suggested by the name
of the method, that is described thoroughly in [11]. Each extracted IMF (decomposed signal com-
ponent in the time-domain) represents a frequency region in the frequency domain with the first IMF
representing the highest frequencies of the signal and the sequential IMFs representing corresponding
sequential lower frequency regions of the signal. Figure 1 shows the EMD results of only the first four
out of thirteen IMFS produced for each case.

In this example the second IMF produced by the decomposition proved to be the one most sensi-
tive to damage since it described in the frequency domain a harmonic of the meshing frequency of the
damaged gear stage, making the impulses known to be related in the condition monitoring field to such
damages as gear tooth faults [12] more visible (Figure 1). Envelope analysis can then be performed in
order to enhance the impulsive nature of the damage features. Envelope analysis is most commonly
performed using the Hilbert Transform (HT), in this study though an alternative approach is used ex-
ploiting the use of the Teager Kaiser energy operator and an energy separation algorithm, which for
certain signals and under the appropriate circumstances is known to improve the results [13]. This
approach has only been used very few times in the condition monitoring field [14, 15]. The power of
the envelope of the second IMF is finally the signal chosen in order to perform outlier analysis (Figure
2).
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Figure 1 : First four IMFs of the wind turbine gearbox data: (a) 31/10/2009, (b) 11/2/2010, and (c) 4/4/2010.
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Figure 2 : Power (TKEO/ Desa-1) of the 2nd IMF: (a) 31/10/2009 (b) 11/02/2010 and (c) 4/04/2010.
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3. RESULTS AND DISCUSSION

Concerning the outlier analysis results and the way the features were selected in the power diagrams,
a 10-dimensional feature was defined as a 10-point time window. One series of 200 features was
defined as reference and used for the training data. The training data were chosen carefully in order
that no peaks (of the power measure) would be included in them. Whenever a fault appears, the outlier
statistics diagram should show a peak that is distinct from the normal condition data.
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Figure 3 : Outlier statistics for the power of the 2nd IMF for the 31/10/2009 dataset (training data 280-480).
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Figure 4 : Outlier statistics for the power of the 2nd IMF for the 11/2/2010 dataset (training data 200-400).
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Figure 5 : Outlier statistics for the power of the 2nd IMF for the 4/4/2009 dataset (training data 350-550).

The results of the outlier analysis using the Mahalanobis squared-distance measure, presented
here in Figures 3, 4 and 5 show that the method manages to detect the peaks in the power. The results
are presented in a log scale in the figure. A significant amount of outliers at areas where the damaged
gear rotation degrees don’t coincide with the expected period of damage.

In order to eliminate the additional alarms detected and continue in an adaptive signal processing
framework, the spatially adaptive thresholding method proposed will be used and its results on the
same dataset will be presented at this point.

Finally Figures 6,7 and 8 show the final estimation of outliers using the phase space method. The
diagrams are very satisfying, since all of the power peaks have been detected and it is shown that in this
particular case the method indeed manages to detect particularly the points where there is an increase
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of power known to be related to tooth damage while at the same time labels the points that do not have
such a dramatic power increase as inliers. Therefore it seems that in this case the results are indeed
improved and that the application of the phase-space thresholding technique is a very promising and
straightforward strategy for condition monitoring, especially when the faults observed are gear tooth
faults or bearing faults, known to produce impulses in the vibration signals.
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Figure 6 : Estimated outliers using the spatially adaptive threshold for the power of the 2nd IMF for the
31/10/2009 dataset.
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Figure 7 : Estimated outliers using the spatially adaptive threshold for the power of the 2nd IMF for the
11/2/2010 dataset.
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Figure 8 : Estimated outliers using the spatially adaptive threshold for the power of the 2nd IMF for the4/4/2009
dataset.
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CONCLUSION

In this study, two different novelty detection methods are applied to the features obtained from a time-
frequency analysis of real wind turbine gearbox data, based on the empirical mode decomposition
method. The first one has been used many times for damage detection and therefore, here, is treated
as a standard approach. The use the Mahalanobis squared-distance for outlier analysis produced satis-
fying results that suggest that the method could be a simple choice for the specific application.

The second method presented is an adaptive thresholding method (phase space thresholding)
that has not been used before in the condition monitoring field. Since the kind of features examined
here are peaks in the power diagrams of the Hilbert or Teager spectra (and generally any kind of
time-frequency analysis spectra), the method proved quite effective, identifying all the points in the
diagrams related to damage.
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