Wind Turbine Structural Health Monitoring: A Short Investigation Based on SCADA Data

Abstract : The use of offshore wind farms has been growing in recent years, as steadier and higher wind speeds can be generally found over water compared to land. Moreover, as human activities tend to complicate the construction of land wind farms, offshore locations, which can be found more easily near densely populated areas, can be seen as an attractive choice. However, the cost of an offshore wind farm is relatively high, and therefore their reliability is crucial if they ever need to be fully integrated into the energy arena. As wind turbines have become more complex, efficient, and expensive structures, they require more sophisticated monitoring systems, especially in offshore sites where the financial losses due to failure could be substantial. This paper presents the preliminary analysis of supervisor control and data acquisition (SCADA) extracts from the Lillgrund wind farm for the purposes of structural health monitoring. A machine learning approach is applied in order to produce individual power curves, and then predict measurements of the power produced of each wind turbine from the measurements of the other wind turbines in the farm. A comparison between neural network and Gaussian process regression is also made.
Type de document :
Communication dans un congrès
Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01020389
Contributeur : Anne Jaigu <>
Soumis le : mardi 8 juillet 2014 - 10:04:20
Dernière modification le : mercredi 31 janvier 2018 - 15:14:02
Document(s) archivé(s) le : mercredi 8 octobre 2014 - 11:51:03

Fichier

0394.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01020389, version 1

Collections

Citation

Evangelos Papatheou, Nikolaos Dervilis, Eoghan Maguire, Keith Worden. Wind Turbine Structural Health Monitoring: A Short Investigation Based on SCADA Data. Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014. 〈hal-01020389〉

Partager

Métriques

Consultations de la notice

473

Téléchargements de fichiers

586