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ABSTRACT 

It is well known that when cointegration is used for the analysis of data in structural 

health monitoring applications, the choice of lag length has strong influence on damage 

detection results. The paper demonstrates how this problem could be solved. The 

solution utilizes the inversely proportional relationship between damage severity and 

stationarity of cointegration residuals. The method is validated using Lamb wave data 

from a structure exposed to temperature variations. The experimental results show that 

the proper lag length selection is essential and this can be achieved with the 

appropriate statistical analysis. 

KEYWORDS : structural damage detection, Lamb waves, temperature variations, 

stationarity, cointegration analysis, lag length selection. 

INTRODUCTION 

Lamb waves are widely used for damage detection, particularly in smart structures with integrated, 

low-profile piezoceramic transducers. Various methods based on Lamb waves have been developed 

since the early 1960s, as discussed in [1–5]. However, despite considerable research effort, practical 

engineering applications of this technique are still limited. This is not only due to the complex wave 

propagation mechanism associated with Lamb waves but also due to operational and environmental 

conditions that can contaminate Lamb wave responses collected from real engineering structures 

[6]. Temperature variability (instantaneous, daily or seasonal) is one of the major problems [7] since  

Lamb wave features – used for damage detection – can be modified by temperature [8]. Therefore, 

compensation for this effect is important to develop methods that are sensitive only to damage but 

insensitive to operational-environmental conditions. 

Various approaches were developed to deal with the undesired effect of temperature variability 

in data used for damage detection, as discussed in [6]. The cointegration approach – developed 

originally in the field of econometrics [9] – has been recently proposed as a new methodology for 

dealing with the problem of operational/environmental variability in Process Engineering [10] and 

Structural Health Monitoring [11–13]. The major idea used in these investigations is based on the 

concept of stationarity. Monitored variables are cointegrated to create a stationary residual whose 

stationarity represents intact condition. Then any departure from stationarity can indicate that 

monitored processes, objects or structures are no longer operating under normal condition. The 

work presented in [10, 11] shows that if some variables from a process under investigation are 

cointegrated, the stationary linear combinations of these variables during the cointegration process 

are purged of all common trends in the original data, leaving residuals equivalent to the long-run 

dynamic equilibriums of the process. This work has been extended to the concept of multiple 

cointegration analysis in [12], which demonstrates a non-conventional approach to cointegration for 

temperature effect compensation (i.e. data normalisation) and damage detection in Lamb wave 

based damage detection of aluminium structures. More recently this approach has been used for 

multiple temperature trend removal [13]. 
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There are two major issues that one has to consider when using cointegration analysis [14]. 

Firstly, the number of lags to include in the model must be determined. Different criteria used for 

lag length selection often lead to different decisions regarding the optimal lag order that should be 

used in the model [14–18]. Secondly, the choice of lag length can drastically affect the results of the 

cointegration analysis. This is due to the fact that the cointegration procedure gives different 

estimates of cointegrating vectors depending on the number of lags included in the cointegration 

test [14–16]. Hence, the proper selection of lag length for cointegration analysis is very important. 

This paper aims to address the problem of optimal lag length selection in cointegration analysis 

used for Lamb wave based damage detection. A new approach – based on stationarity analysis – is 

proposed. Cointegration residuals from undamaged data are analysed for various lag lengths. The 

lag length that produces the most negative statistics (or in other words the most stationary residuals) 

is then used for damage detection based on the cointegration analysis. The method is illustrated 

using Lamb wave data from a damaged metallic plate exposed to temperature variations. 

The paper is organized as follows. Section 1 introduces the cointegration method and ADF unit 

root test. Section 2 presents a stationarity-based approach proposed for lag length selection in 

cointegration analysis used for structural damage detection. The Lamb wave experimental data used 

to illustrate the method are presented in Section 3. Damage detection results based on the optimal 

lag length selection are presented and discussed in Section 4. Finally, some conclusions are given. 

1 COINTEGRATION ANALYSIS 

A set of non-stationary time series, T

ntttt yyy ),,,( 21  , are cointegrated if there exists (at least) a 

vector T

n ),,,( 21    such that it results in a linear combination of them that is stationary, i.e. 

 ntnttt

T
yyy   2211 . (1) 

The stationary linear combination t

T
  is referred to as a cointegration residual or a long-run 

equilibrium relationship between time series [17]. The vector   is called a cointegrating vector. It 

is important to note that the work presented in this paper considers the action of creating the 

cointegration residual ( t

T

tu   ) as the action of projecting the (non-stationary) time series tY  on 

the cointegrating vector  . A non-stationary time series iy  in tY  is integrated order d, denoted 

)(~ dIy i , if after differencing the series d times it becomes stationary. The number of differences 

required to achieve stationarity is called the order of integration. 

In essence, testing for cointegration is testing for the existence of stationary linear 

combinations among all elements of t  [17]. Such tests have two important requirements. Firstly, 

any analysed time series must exhibit at least a common trend. Secondly, the analysed time series 

must have the same degree of non-stationarity, i.e. must be integrated of the same order. 

When there are only two variables in t , a two-step residual-based test procedure – developed 

in [9] – can be used. This procedure is based on regression techniques for determining if the vector 

  is a cointegrating vector. The first step is to form the cointegration residual t

T

tu   . The 

second step is to perform a unit root test on tu  to determine if it is a stationary time series. The 

Augmented Dickey-Fuller (ADF) test – described in [19] – is the most widely used unit root test in 

practice. The ADF test checks the null hypothesis that a time series is a non-stationary type series 

against the alternative hypothesis that it is a stationary type series, assuming that the dynamics in 

the data have an Auto-Regressive Moving Average (ARMA) structure [17]. The ADF test is based on 

estimating the following regression formula 

 


 

p

j

tjtjttt yyTDy

1

1  . (2) 
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where tTD  is a deterministic linear trend. In Equation (2), the p  lagged difference terms or lag 

length (  
p

j jtj y
1
 ) are used for approximating the ARMA structure of the errors. The value of 

the lag length p  is set to a value, so that the error t  is a white noise process [17]. 

When t  includes more than two variables, a sequential procedure for determining the 

existence of cointegration – developed in [20] and known as the Johansen’s cointegration method – 

is widely used. This procedure is a combination of cointegration and error correction models in a 

Vector Error Correction Model (VECM) that takes the form 

 tptptt

T

tt D   11111  . (3) 

where   and   are )( rn   matrices with rrankrank  )()(  and the first term on the right-hand 

side – i.e. tD  – contains deterministic terms (e.g. constant only or constant plus time trend). The 

stationary linear combinations ( t

T

rtu  ) are referred to as the r  cointegration residuals that are 

formed through projecting the (non-stationary) time series tY  on the r  cointegrating vectors. The 

non-deterministic part on the right hand side of Equation (3), i.e. 1111   ptpt  , denotes 

the 1p  lagged difference terms (or the lag length
 

p ) used for approximating the VECM. 

The Johansen’s cointegration method is used in this study for cointegration analysis. The 

method is a quite complex sequential procedure and therefore it is not presented in this paper. For 

more detailed description of the entire procedure, potential readers are referred to [20]. 

2 ALGORITHM FOR LAG LENGTH SELECTION BASED ON STATIONARITY ANALYSIS 

The selection of lag length p  that should be included in the test regression models in Equation (2) 

and the VECM in Equation (3) is one of the most important practical issues for the implementation 

of the ADF test and cointegration analysis. However, this choice is not a trivial task. If p  is too 

small then the remaining serial correlation in the errors will bias the test. If p  is too large then the 

power of the test will suffer [17, 21]. The lag length can be determined by using model selection 

criteria. The general approach is to fit models with values of (e.g. max,,0 pp  ) and then to select 

the value of p  that minimizes some model selection criteria [17]. Several lag selection criteria have 

been proposed in the econometric and statistic literature for this purpose. The three most widely 

used information criteria are: the Akaike Information Criterion (AIC), the Schwarz-Bayesian 

Criterion (SBC) and the Hannan-Quinn Criterion (HQC). However, the choice of these information 

criteria for determining the number of lags is generally arbitrary in practice and sometimes these 

criteria are inconsistent in choosing the lag order [14–17]. Therefore, there are many arguments in 

the econometric and statistical literature with respect to the selection of lag length in cointegration 

analysis. However, these arguments give very little practical guidance that could be used in 

engineering applications. This is mainly due to the fact that the size of engineering data is usually 

much larger, if compared with the data used in the field of econometrics and statistics. 

This section presents a new approach that can be used for lag length selection in damage 

detection studies based on cointegration analysis. The method utilises the concept of stationarity. 

Previous applications of cointegration for damage detection show that the ADF test is firstly 

carried out to measure the degree of stationarity or non-stationarity (i.e. the order of integration) of 

the analysed data. In principle, the more negative the ADF t-statistic value obtained, the more 

stationary the data are, as illustrated in [12, 13]. Usually data representing undamaged condition of 

monitored structures are stationary time series. The assumption is that this stationarity can be 

potentially changed by damage. In addition, different severities of damage can lead to different 

stationary characteristics. Therefore, analysis of stationarity can be used for optimal lag selection in 

damage detection investigations. The algorithm proposed for lag length selection in cointegration 
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analysis used for damage detection is illustrated in Figure 1. The entire procedure can be described 

using four major steps: 

 Step 1: Determine the minp  and maxp  values. It is clear that 1min p  is the minimum value 

of lag length that could be used in cointegration analysis. The maximum lag length value 

maxp  can be calculated using the following equation [22]. 

 


























41

max
100

12
N

p . (4) 

where the square brackets denote the integer part of the result, and N  is the number of data  

samples. Equation (4) guarantees that maxp  grows with the number of data samples used. 

 Step 2: Cointegration analysis. After the minp  and maxp  values are established, N  sets of 

Lamb wave data representing undamaged condition are cointegrated using the Johansen’s 

cointegration procedure. This results in 1N  linearly independent cointegrating vectors. 

These vectors are then used to produce 1N  cointegration residuals by performing the so-

called “undamaged data on undamaged data” projection. This projection means that data 

representing undamaged condition are projected on cointegrating vectors obtained from data 

representing undamaged condition. The entire analysis is performed for all lag length values 

max,...,3,2,1 pp  , leading to a max)1( pN   matrix of cointegration residuals. 

 Step 3: ADT test. ADF t-statitics are calculated for all cointegartion residuals (i.e. 

max)1( pN   matrix of cointegration residuals) and lag lengths. As a result, 1N  ADF t-

statistics are obtained for each value of lag length. 

 Step 4: Averaged ADF t-statistics calculation. An averaged value of ADF t-statistics is 

calculated for each lag length max,...,3,2,1 pp  . The most negative value from all averaged 

ADF t-statistics indicates the value of lag length that produces the most stationary residuals 

obtained for the undamaged data. The assumption is that the selected lag length is the optimal 

value, leading to the best results when cointegration analysis is used for damage detection. 

 
Figure 1: Stationarity-based lag length selection procedure 
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3 LAMB WAVE DATA CONTAMINATED BY TEMPERATURE VARIATIONS 

Lamb wave experimental data [23] was used used in this paper to illustrated the lag length selection 

method for damage detection based on cointegration. The data were gathered from an aluminium 

plate (200 x 150 x 2 mm). The plate was instrumented with two low-profile, surface-bonded 

piezoceramic Sonox P155 transducers (diameter 10 mm and thickness 1 mm) that were used for  

Lamb wave generation and sensing. A five-cycle 75 kHz cosine burst signal of maximum peak-to-

peak amplitude equal to 10 V was enveloped using a half-cosine wave and then used for excitation. 

The excitation signal was generated using the TTi TGA 1230 arbitrary waveform generator. Lamb 

wave responses were acquired using a digital 4-channel LeCroy LT264 Waverunner oscilloscope. 

The plate was placed in a 100 liter LTE Scientific oven to obtain data for various temperatures. The 

temperature on the surface of the plate was monitored using a thermal probe. 

Firstly, the experimental tests were performed using the intact (or undamaged) plate that was 

firstly heated up (from 35
0
C to 70

0
C) and then cooled down (from 70

0
C to 35

0
C) with a step change 

of 5
0
C. The heating and cooling cycles were performed twice to address the problem of repeatability 

and check for possible hysteresis between cycles. Then, a hole was drilled the middle of the plate 

and the entire experimental work was repeated. The analysis presented in this paper utilised Lamb 

wave response data for four different damage conditions (i.e. the undamaged plate and the damaged 

plates with 1, 3 and 5 mm holes) and four different temperatures (i.e. 35, 45, 60 and 70
0
C). 

Altogether twenty (i.e. 20N ) Lamb wave responses were used for single combined damage-

temperature conditions. Each response measurement consisted of 5000 data points acquired using 

the sampling rate of 10 MHz. Strong influence of temperature on Lamb wave responses (amplitude 

and phase) was observed, as reported previously in [23]. 

4 RESULTS AND DISCUSSION 

Lamb wave experimental data – described in Section 3 – were used to illustrate the algorithm for 

optimal lag length selection in cointegration analysis applied for structural damage detection. 

Following the description given in Section 2, the maximum lag length value was computed using 

Equation (4) as 31max p . The minimum value was selected arbitrarily as 1min p . 

The cointegration analysis was first used for Lamb wave data representing the undamaged 

condition. This analysis – performed for all lag lengths investigated, i.e. 31,...,3,2,1p  – resulted in 

191 N  cointegration residuals for each value of lag length. The “undamaged data on 

undamaged data” projection was used in the analysis. Figures 2a and 2b show examples of the 

cointegration residuals calculated for 5p  and 30p , respectively. Then the ADF test was 

performed to obtain t-statistics for all cointegration residuals. The results – given in Figure 3 – 

display the variability of t-statistics for all values of lag length investigated. The values of t-

statistics were then averaged for each lag length. The results – given in Figure 4 – show that the 

minimum averaged value of t-statistics was obtained for 1p . However, this value of lag length is 

too small and therefore not considered in any further analysis, as explained in Section 2. The 

remaining averaged t-statistic values exhibit a clear “deep” for 6,5,4p  with the local minimum 

achieved for 6p . These three lag lengths are considered as the best values for the cointegration 

analysis. The assumption is that if one of these values of lag length is used, damage detection 

procedure will give much better results, if comparted with other lag lengths. 

In order to confirm the proposed approach, two of the best statistically lag lengths found (i.e. 

4p  and 6p ) and two arbitrarily chosen lag lengths (i.e. 17p  and 27p ) were selected for 

damage detection analysis. This time Lamb wave data for the damaged plates (i.e. the ones with 1, 3 

and 5 mm holes) that was exposed to different temperature conditions were used. The damage 

detection analysis involved the “damaged data on damaged data” projection. This projection 

EWSHM 2014 - Nantes, France

611



 

  

means that data representing damage conditions are projected on the cointegrating vectors obtained 

from data representing damage conditions. 

After the cointegration analysis was used, the ADF test was applied to cointegration residuals 

and ADF t-statistics were calculated. These statistics were used for damage detection to separate 

data representing damaged and undamaged conditions. 

 

(a) 

 
 

(b) 

 
 

Figure 2: Examples of cointegration residuals calculated from Lamb wave responses representing the 

undamaged condition. The “undamaged data on undamaged data” projection was used in the analysis:  

(a) lag length 5p ; (b) .lag length 30p .
 

 

 
 

Figure 3: ADF test results for Lamb wave data 

representing the undamaged condition. The t-statitics 

were calculated for all residuals and lag lengths. 

 
 

Figure 4: The same as Figure 4 but the averaged ADF 

t-statistics are given. For a given value of lag length 

averaging was performed over cointegration residuals. 

 

Figure 5 presents selected damage detection results calculated for the Lamb wave data 

representing the undamaged plate and the 3 mm hole damaged plate at 35
0
C. The results show that 

the average ADF t-statistics for the damaged plate with the 3 mm hole are very well separated from 

the relevant t-statistics calculated for the undamaged plate for all nineteen cointegration residuals, 

when the lag lengths are equal to 4p  and 6p . Thus the investigated seeded damage can be 

detected. In contrast, when the lag lengths 17p  and 27p  are used, the average ADF t-statistics 
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– for both undamaged and damaged plates – overlap for the majority of cointegration residuals. 

Damage detection is questionable this time and possible only for a handful of cointegretaion 

residuals that are difficult to select in practice when the specimen is undamaged. 

 

 
 

Figure 5: Damage detection based on Lamb wave data – average ADF t-statistics calculated for the 

cointegration residuals representing the undamaged plate and the plate with the 3 mm hole exposed to  35
0
C. 

The analysis was performed for the lag lengths: (a) 4p ; (b) 6p ; (c); 17p ; (d) 27p . 

CONCLUSION 

The problem of optimal selection of lag length in cointegration analysis – used for structural 

damage detection – has been addressed. A new approach – based on stationarity analysis – has been 

proposed. The method investigates various lag lengths for data representing undamaged condition. 

The lag length that produces the most negative statistics (or in other words, the most stationary 

residuals) is then used for damage detection based on the cointegration analysis. The method has 

been illustrated using Lamb wave data from damaged metallic plates exposed to temperature 

variations.  

The results show that that lag lengths that produce the most stationary cointegartion residuals 

for the data representing undamaged condition, give better damage detection results than arbitrarily 

selected lag lengths. Damage detection was successful when the value of lag length was selected 

following the proposed methodology. In contrast, damage detection was not possible when other lag 

length values were used. The work presented is a feasibility study. Therefore, further research work 

is required to confirm all findings. 
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