Establishing a Wear-Related Deterioration Model Based on Experimental Data

Abstract : System modeling with respect to reliability function is of increasing importance, since knowledge about reliability function enables its integration in control affecting the control strategies. Suitable operating strategies will lead not only to extended lifetime, but also give a possibility for predictive maintenance. The assessment of reliability function relies often on probabilistic theory. From probabilistic point of view it consequently involves mathematical assumptions, but physically mainly relies on knowledge about systemÕs state-of-deterioration. This implies that statements about the state-of-deterioration, about predictive maintenance, as well as the ability to control the systemÕs extended lifetime assume knowledge about the relation between systemÕs load (applied to the system), systemÕs stress (appearing within the system), and the resulting behavior of systems to the loads applied. This contribution establishes a parametric model from the experimental data generated from wear experiments, and compares the results to those results obtained for individual system generating data.
Type de document :
Communication dans un congrès
Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01021048
Contributeur : Anne Jaigu <>
Soumis le : mercredi 9 juillet 2014 - 08:41:53
Dernière modification le : mardi 20 mars 2018 - 14:48:45
Document(s) archivé(s) le : jeudi 9 octobre 2014 - 10:54:57

Fichier

0340.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01021048, version 1

Collections

Citation

Nejra Beganovic, Sandra Rothe, Dirk Söffker. Establishing a Wear-Related Deterioration Model Based on Experimental Data. Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014. 〈hal-01021048〉

Partager

Métriques

Consultations de la notice

734

Téléchargements de fichiers

613