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ABSTRACT

This paper is focused on the development of a damage detection indicator that combines
a data driven baseline model (reference pattern obtained from the healthy structure) based
on principal component analysis (PCA) and multivariate hypothesis testing. More pre-
cisely, a test for the plausibility of a value for a normal population mean vector is per-
formed. The results indicate that the test is able to accurately clasify random samples as
healthy or not.
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1. INTRODUCTION

Among all the elements that integrate a structural health monitoring (SHM) system, methods or strate-
gies for damage detection are nowadays playing a key role forimproving the operational reliability
of critical structures in several industrial sectors [1]. The essential paradigm is that a self-diagnosis
and some level of detection and classi�cation of damage is possible through the comparison of the
in-service dynamic time responses of a structure with respect to baseline reference responses recorded
in ideal healthy operating conditions [2]. These dynamic time responses recorded in each test, even
in stable environmental and operational conditions, present the main characteristic that they are not
repeatable. It means that always exist variation between measurements. Such variability may be
caused by random measurement errors: measure instruments are often not perfectly calibrated and
thus generating discordant interpretation and report of the results.

Since the dynamic response of a structure can be considered as a random variable, a set of
dynamic responses gathered from several experiments can bede�ned as asample variableand, all
possible values of the dynamic response as thepopulation variable. Therefore, the process to draw
conclusions about the state of the structure from several experiments by using statistical methods is
usually named as statistical inference for damage diagnosis. In SHM �eld, statistical inference can
be considered as one of the emerging technologies that will have an impact on the damage prognosis
process [3,4].

In general, there are two kinds of statistical inference: (i) estimation,which uses sample vari-
ables to predict an unknown parameter of the population variable and, (ii)hypothesis testing,which
uses sample variables to determine whether a parameter ful�ls a speci�c condition and to test a hy-
potheses about a population variable. In this last context,classical hypothesis test is used to compare
extracted statistical quantities from statistical time series models like mean, normalized autocovari-
ance function, cross covariance function, power spectral density, cross spectral density, frequency re-
sponse function, squared coherence, residual variance, likelihood function, residual sequences, among
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others [5]. A hypothesis testing technique called a sequential probability ratio test (SPRT) has been
combined with time series analysis and neural networks for damage classi�cation in [6]. The useful-
ness of the proposed approach is demonstrated using a numerical example of a computer hard disk
and an experimental study of an eight degree-of-freedom spring-mass system. Afterwards, the per-
formance of the SPRT is improved by integrating extreme values statistics, which speci�cally models
behavior in the tails of the distribution of interest into the SPRT. A three-story building model was
constructed in a laboratory environment to assess the approach [7]. Recently, a generalized likelihood
ratio test (GLRT) is used to compare the �t of minimum mean square error MMSE model parameters
in order to detect damages in a scaled wooden model bridge [8,9].

In previous works, the authors have been investigating novel multi-actuator piezoelectric systems
for detection and localization of damages. These approaches combine: (i) the dynamic response of the
structure at different exciting and receiving points; (ii)the correlation of dynamical responses when
some damage appear in the structure by using principal component analysis (PCA) and statistical
measures that are used as damage indices; and (iii) the contribution of each sensor to the indices, what
is used to localize the damage [10,11].

Following the same framework and considering dynamic responses as random variables as in
[12], this paper is focused on the development of a damage detection indicator that combines a data
driven baseline model (reference pattern obtained from thehealthy structure) based on principal com-
ponent analysis (PCA) and multivariate hypothesis testing. As said before, the use of hypothesis
testing is not new in this �eld. The novelty of the previous work [12] is based on (i) the nature of the
data used in the test since we are using scores instead of the measured response of the structure [5] or
the coef�cients of an AutoRegressive model [13]; (ii) the number of data used since our test is based
on two random samples instead of two characteristic quantities [14]. The proposed development starts
obtaining the baseline PCA model and the subsequent projections using the healthy structure. When
the structure needs to be inspected, new experiments are performed and they are projected onto the
baseline PCA model. Each experiment is considered as a random process and the projections onto a
predetermined number of principal component is a multivariate random variable. The objective is to
analyse whether the distribution of the variable associated with the current structure is related to the
healthy one.

2. DATA DRIVEN BASELINE MODEL BASED ON PCA

In this work a particular experimental set-up based on the analysis of vibrational changes is used as
an exemplifying con�guration in order to justify, validateand test the methodology. The proposed
methodology can also be applied to a more general structure.

2.1 Experimental set-up

Some experiments were performed in order to test the methodspresented on this paper. In these ex-
periments, four piezoelectric transducer discs (PZTs) were attached to the surface of a thin aluminum
plate, with dimensions 250 mm x 250 mm x 1 mm. Those PZTs formeda square with 144 mm per
side. The plate was suspended by two elastic ropes, being isolated from environmental in�uences.
Figure 1 (left) shows the plate hanging on the elastic ropes.

As a response to an electrical excitation, a PZT produces a mechanical vibration, propagating, in
this case, across the plate (forming Lamb waves, since a thinplate has been used). PZTs are also able
to generate an electrical signal as a response to a mechanical vibration. In every excitation phase of an
experiment, one PZT were used as actuator and the other threePZTs were used as sensors, recording
the dynamical response of the plate.

500 experiments were performed over the healthy structure,and another 500 experiments were
performed over the damaged structure with 5 damage types (100 experiments per damage type). Figure
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Figure 1 : Aluminium plate (left). Dimensions and piezoelectric transducers location (right).

1 (right) shows the position of damages 1 to 5 (D1 to D5). As excitation, a 50kHz sinusoidal signal
modulated by a hamming window were used. Figure 2 shows the excitation signal and an example of
the signal collected by PZT 1.

2.2 Principal component analysis (PCA): theoretical background

Let us initiate the analysis of a physical process by measuring different variables (sensors) at a �nite
number of time instants. In this work, the collected data arearranged in an� (N�L) matrix as follows:
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Matrix X 2 M n� (N�L)(R) –whereM n� (N�L)(R) is the vector space ofn � (N � L) matrices overR–
contains data fromN sensors atL discretization instants with respect ton experimental trials. Con-
sequently, each row vectorX(i; :) 2 RN�L; i = 1; : : : ;n represents, for a speci�c experimental trial, the
measurements from all the sensors at every speci�c time instant. Equivalently, each column vector
X(:; j) 2 Rn; j = 1; : : : ;N � L represents measurements from one sensor at one particular time instant
in the whole set of experimental trials.

The main objective of principal component analysis (PCA) isto distinguish which dynamics are
more relevant in the system, which are redundant and which can be considered as a noise [11]. This
objective is essentially accomplished by de�ning a new coordinate space to re-express the original.
This new coordinate space is used to �lter noise and redundancies according to the variance-covariance
matrix of the original data. In other words, the objective isto �nd a linear transformation orthogonal
matrix P 2 M (N�L)� (N�L)(R) that will be used to transform the original data matrixX according to the
following matrix multiplication

T = XP 2 M n� (N�L)(R): (2)
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Figure 2 : Excitation signal (above) and, dynamic response recorded by PZT 1 (below).

Matrix P is usually called the principal components of the data set orloading matrix and matrixT is
the transformed or projected matrix to the principal component space, also called score matrix. Using
all theN � L principal components, that is, in the full dimensional case, the orthogonality ofP implies
PPT = I . Therefore, the projection can be inverted to recover the original data asX = TPT :

Matrix P can be computed by means of the singular value decomposition(SVD) of the covariance
matrix de�ned equation (3). Then, the principal componentsare de�ned by the eigenvectors and
eigenvalues of the covariance matrix as follows:

CX =
1

N � L � 1
XTX 2 M (N�L)� (N�L)(R); (3)

CXP = PL; (4)

where the columns ofP are the eigenvectors ofCX . The diagonal terms of matrixL are the eigenvalues
l i; i = 1; : : : ;N � L of CX whereas the off-diagonal terms are zero.The eigenvectorsp j ; j = 1; : : : ;N � L
representing the columns of the transformation matrixP are classi�ed according to the eigenvalues in
descending order and they are called theprincipal componentsof the data set. The eigenvector with
the highest eigenvalue, called the�rst principal component, represents the most important pattern in
the data with the largest quantity of information.

However, the objective of PCA is, as said before, to reduce the dimensionality of the data setX
by selecting only a limited number` < N� L of principal components, that is, only the eigenvectors re-
lated to thè highest eigenvalues. Thus, given the reduced matrixP̂ = ( p1j p2j � � � j pr ) 2 M (N�L)� `(R);
matrix T̂ is de�ned asT̂ = XP̂ 2 M n� ` (R): Note that opposite toT, T̂ is no longer invertible. Con-
sequently, it is not possible to fully recoverX althoughT̂ can be projected back onto the original
(N � L)� dimensional space to get a data matrixX̂ asX̂ = T̂P̂

T
2 M n� (N�L)(R):

The difference between the original data matrixX andX̂ is de�ned as theresidual error matrixE
as follows:E = X � X̂; or, equivalenty,X = X̂ + E = T̂P̂

T
+ E: The residual error matrixE describes

the variability not represented by the data matrixX̂.
Even though the real measures obtained from the sensors as a function of time represent physical

magnitudes, when these measures are projected and the scores are obtained, these scores no longer
represent any physical magnitude [12]. The key point in thisapproach is that the scores from different
experiments can be compared with the reference pattern to try to detect a contrasting behavior.

2.3 PCA modelling

For the PCA modelling stage, we carry out a set of experimentsas stated in Section 2.1. For each
different phase (PZT1 will act as an actuator in phase 1, PZT2will act as an actuator in phase 2 and
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so on) and considering the signals measured by the sensors, the matrixXh is de�ned and arranged
as in equation (1) and scaled as stated in [11]. PCA modellingbasically consists of computing the
projection matrixP for each phase as in equation (2). MatrixP, renamedPmodel, provides an improved
and dimensionally limited representation of the original dataXh. Pmodel is considered as the model of
the healthy structure to be used to detect structural damage.

3. DETECTION OF STRUCTURAL CHANGES BASED ON MULTIVARIATE STATI STICAL INFER -
ENCE

A predetermined number of experiments is performed in the structure to be diagnosed and a new data
matrix Xc is constructed with the recorded data, as in equation (1). The number of experiments is
not limiteda priori. However, the number of sensors and recorded samples must correspond with the
number of sensors and recorded samples in the PCA modelling stage; more precisely, the number of
columns ofXc andXh must agree. MatrixXc will be projected onto the PCA model as speci�ed in
Section 3.1. The projections onto the �rst components –the so-calledscores– are used for the con-
struction of the multivariate random samples to be comparedand consequently to obtain the structural
damage indicator.

3.1 Multivariate random variables and multivariate random samples

Let us start this section by specifying what we consider a random variable and how a multivariate
random variable is built. Assume that for a speci�c actuatorphase (for instance, PZTi as actuator,
i = 1;2;3;4) and using the signals measured by the sensors in afully healthy statethe baseline PCA
model (identi�ed asPi

model) is built as in sections 2.2 and 2.3. Assume also that an experiment as
detailed in section 2.1 is further performed. The time responses recorded by the sensors are �rst
discretized and then arranged in a row vectorr i 2 RN�L, whereN is the number of sensors,L is the
number of discretization instants andi refers to the current actuator phase. The number of sensors and
discretization instants must be equal to those that were used when de�ningPi

model. Besides, the size
of each column isN� L. Selecting thejth principal component (j = 1; : : : ; `), Pi

model(:; j) = : vi
j 2 RN�L;

the projection of the recorded data onto this principal component is the dot productt i
j = r i � vi

j 2 R; as
in equation (2).

Since the dynamic behaviour of a structure depends on some indeterminacy, its dynamic response
can be considered as a stochastic process and the measurements in r i are also stochastic. On the one
hand,t i

j acquires this stochastic nature and it will be regarded as a random variable to construct the
stochastic approach in this paper. On the other hand, ans-dimensional random vector can be de�ned
by considering the projections onto several principal components as follows

t i
j1;:::; js =

�
t i
j1 t i

j2 � � � t i
js

� T
2 Rs; s2 N; j1; : : : ; js 2 f 1; : : : ; `g: (5)

By reiterating this experiment several times on the undamaged structure and using equations
(3.1)-(5) we have a multivariate random sample of the variable t i

j1;:::; js that can be viewed as a base-
line. When structural changes on the structure have to be detected, a new set of experiments should
be performed to create the multivariate random sample that will be compared with the multivariate
baseline sample. As an example, in Figure 3 two three-dimensional samples are represented; one is
the three-dimensional baseline sample (left) and the otheris referred to damages 1 to 3 (right). This
illustrating example refers to actuator phase 1 and the �rst, second and third principal components.
More precisely, Figure 3 depicts the values of the multivariate random variablet1

1;2;3.The diagnosis
sample is made by 20 experiments and the baseline sample consists of 100 experiments.
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Figure 3 : Baseline sample (left) and sample from the structure to be diagnosed (right).

3.2 Detection phase

In this work, the framework of multivariate statistical inference is used with the objective of the clas-
si�cation of structures in healthy or damaged. With this goal, a test for multivariate normality is �rst
performed. A test for the plausibility of a value for a normalpopulation mean vector is then performed.

3.2.1 Testing a multivariate mean vector

The objecctive of this paper is to determine whether the distribuction of the multivariate random
samples that are obtained from the structure to be diagnosed(undamaged or not) is connected to the
distribution of the baseline. To this end, a test for the plausibility of a value for a normal population
mean vector will be performed. We will consider that: (a) thebaseline projection is a multivariate
random sample of a multivariate random variable following amultivariate normal distribution with
known population mean vectormmmh 2 Rs and known variance-covariance matrixSSS2 M s� s(R); and (b)
the multivariate random sample of the structure to be diagnosed also follows a multivariate normal
distribution with unknown multivariate mean vectormmmc 2 Rs and known variance-covariance matrix
SSS 2 M s� s(R).

As said previously, the problem that we will consider is to determine whether a givens-
dimensional vectormmmc is a plausible value for the mean of a multivariate normal distributionNs(mmmh;SSS).
This statement leads immediately to a test of the hypothesisH0 : mmmc = mmmh versusH1 : mmmc 6= mmmh; that is,
the null hypothesis is `the multivariate random sample of the structure to be diagnosed is distributed
as the baseline projection' and the alternative hypothesisis `the multivariate random sample of the
structure to be diagnosed is not distributed as the baselineprojection'. In other words, if the result
of the test is that the null hypothesis is not rejected, the current structure is categorized as healthy.
Otherwise, if the null hypothesis is rejected in favor of thealternative, this would indicate the presence
of some structural changes in the structure.

The test is based on the statisticT2 –also called Hotelling'sT2– and it is summarized below.
When a multivariate random sample of sizen 2 N is taken from a multivariate normal distribution
Ns(mmmh;SSS), the random variableT2 = n

�
X̄ � mmmh

� T S� 1
�
X̄ � mmmh

�
is distributed asT2 ,! (n� 1)s

n� s Fs;n� s;
whereFs;n� s denotes a random variable with anF-distribution withs andn � s degrees of freedom,
X̄ is the sample vector mean as a multivariate random variable;and 1

nS is the estimated covariance
matrix of X̄.
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At the a level of signi�cance, we rejectH0 in favor of H1 if the observedt2
obs =

n (x̄ � mmmh)T S� 1 (x̄ � mmmh) is greater than(n� 1)s
n� s Fs;n� s(a ), whereFs;n� s(a ) is the upper(100a )th per-

centile of theFs;n� s distribution. In other words, the quantityt2
obs is the damage indicator and the test

is summarized as follows:

t2
obs �

(n � 1)s
n � s

Fs;n� s(a ) =) Fail to rejectH0 (6)

t2
obs>

(n � 1)s
n � s

Fs;n� s(a ) =) RejectH0; (7)

whereFs;n� s(a ) is such thatP(Fs;n� s > Fs;n� s(a )) = a : More precisely, we fail to reject the null
hypothesis ift2

obs � (n� 1)s
n� s Fs;n� s(a ), thus indicating that no structural changes in the structure have

been found. Otherwise, the null hypothesis is rejected in favor of the alternative hypothesis ift2
obs >

(n� 1)s
n� s Fs;n� s(a ), thus indicating the existence of some structural changes in the structure.

4. EXPERIMENTAL RESULTS

As said in Section 2.1, the experiments are performed in 4 independent phases: (i) piezoelectric trans-
ducer 1 (PZT1) is con�gured as actuator and the rest of PZTs assensors; (ii) PZT2 as actuator; (iii)
PZT3 as actuator; and (iv) PZT4 as actuator. In order to analyze the in�uence of each set of projec-
tions to the PCA model (score), the results of scores 1 to 5 (jointly) and scores 1 to 10 (jointly) have
been considered. In this way, a total of 8 scenarios were examined. For each scenario, a total of 50
samples of 20 experiments each one (25 for the undamaged structure and 5 for the damaged structure
with respect to each of the 5 different types of damages) plusthe baseline are used to test for the plau-
sibility of a value for a normal population mean vector, witha level of signi�cancea = 0:60. Each
set of 50 testing samples are categorized as follows: (i) number of samples from the healthy structure
(undamaged sample) which were classi�ed by the hypothesis test as `healthy' (fail to rejectH0); (ii)
undamaged sample classi�ed by the test as `damaged' (rejectH0); (iii) samples from the damaged
structure (damaged sample) classi�ed as `healthy'; and (iv) damaged sample classi�ed as `damaged'.
The results for the 8 different scenarios presented in Table2 are organized according to the scheme
in Table 1. It can be stressed from each scenario in Table 2 that the sum of the columns is constant:
25 samples in the �rst column (undamaged structure) and 25 more samples in the second column
(damaged structure). It is worth noting that Type I errors (false alarms) appear only when we consider
scores 1 to 5 (jointly), while in the second case (scores 1 to 10), all the decisions are correct.

5. CONCLUDING REMARKS

This paper has been focused on the development of a damage detection indicator that combines a
data driven baseline model (reference pattern obtained from the healthy structure) based on principal
component analysis (PCA) and multivariate hypothesis testing. A test for the plausibility of a value
for a normal population mean vector has been performed. The results indicate that the test is able to
accurately clasify random samples as healthy or not.

Table 1 : Scheme for the presentation of the results in Table 2.

undamaged sample (H0) damaged sample (H1)

Fail to rejectH0 Correct decision Type II error (missing fault)

RejectH0 Type I error (false alarm) Correct decision
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Table 2 : Categorization of the samples with respect to presence or absence of damage and the result of the test,
for each of the four phases and considering scores 1 to 5 (jointly) and scores 1 to 10 (jointly).

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Scores1 to 5

Fail to rejectH0 21 0 23 0 21 0 20 0

RejectH0 4 25 2 25 4 25 5 25

Scores1 to 10

Fail to rejectH0 25 0 25 0 25 0 25 0

RejectH0 0 25 0 25 0 25 0 25
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