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ABSTRACT

This paper is focused on the development of a damage deteotaator that combines
a data driven baseline model (reference pattern obtaioedtiie healthy structure) based
on principal component analysis (PCA) and multivariatedikipsis testing. More pre-
cisely, a test for the plausibility of a value for a normal plation mean vector is per-
formed. The results indicate that the test is able to acelyratasify random samples as
healthy or not.

KEYWORDS : damage detection, PCA, multivariate statistical infeesrnsHM.

1. INTRODUCTION

Among all the elements that integrate a structural healthitoong (SHM) system, methods or strate-
gies for damage detection are nowadays playing a key rolarfproving the operational reliability
of critical structures in several industrial sectors [LheTessential paradigm is that a self-diagnosis
and some level of detection and classi cation of damage &side through the comparison of the
in-service dynamic time responses of a structure with iegpebaseline reference responses recorded
in ideal healthy operating conditions [2]. These dynanmaetiresponses recorded in each test, even
in stable environmental and operational conditions, priedee main characteristic that they are not
repeatable. It means that always exist variation betweeasurements. Such variability may be
caused by random measurement errors: measure instruntendften not perfectly calibrated and
thus generating discordant interpretation and reportefésults.

Since the dynamic response of a structure can be consideradamdom variable a set of
dynamic responses gathered from several experiments cde hed as asample variableand, all
possible values of the dynamic response aspthigulation variable Therefore, the process to draw
conclusions about the state of the structure from sevep@ré@nents by using statistical methods is
usually named as statistical inference for damage diagndsiSHM eld, statistical inference can
be considered as one of the emerging technologies that avi#t An impact on the damage prognosis
process [3,4].

In general, there are two kinds of statistical inferencg:eétimation,which uses sample vari-
ables to predict an unknown parameter of the populatioralbgiand, (iihypothesis testingyvhich
uses sample variables to determine whether a parametés fukpeci ¢ condition and to test a hy-
potheses about a population variable. In this last contdssical hypothesis test is used to compare
extracted statistical quantities from statistical timeesemodels like mean, normalized autocovari-
ance function, cross covariance function, power spectasidy, cross spectral density, frequency re-
sponse function, squared coherence, residual variakeéhbod function, residual sequences, among
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others [5]. A hypothesis testing technique called a sedalgmtobability ratio test (SPRT) has been
combined with time series analysis and neural networks donabe classi cation in [6]. The useful-

ness of the proposed approach is demonstrated using a aimexample of a computer hard disk
and an experimental study of an eight degree-of-freedonimgpnass system. Afterwards, the per-
formance of the SPRT is improved by integrating extremeaahtatistics, which speci cally models

behavior in the tails of the distribution of interest int@tBPRT. A three-story building model was
constructed in a laboratory environment to assess the agipf@]. Recently, a generalized likelihood
ratio test (GLRT) is used to compare the t of minimum meanaguerror MMSE model parameters
in order to detect damages in a scaled wooden model brid§¢ [8,

In previous works, the authors have been investigating Imouéti-actuator piezoelectric systems
for detection and localization of damages. These appreaabmabine: (i) the dynamic response of the
structure at different exciting and receiving points; (iig correlation of dynamical responses when
some damage appear in the structure by using principal coempanalysis (PCA) and statistical
measures that are used as damage indices; and (iii) thebcaioin of each sensor to the indices, what
is used to localize the damage [10, 11].

Following the same framework and considering dynamic nesp® as random variables as in
[12], this paper is focused on the development of a damagetilen indicator that combines a data
driven baseline model (reference pattern obtained fronmétadthy structure) based on principal com-
ponent analysis (PCA) and multivariate hypothesis testiAg said before, the use of hypothesis
testing is not new in this eld. The novelty of the previousnk§12] is based on (i) the nature of the
data used in the test since we are using scores instead oftheuned response of the structure [5] or
the coef cients of an AutoRegressive model [13]; (ii) thenmoer of data used since our test is based
on two random samples instead of two characteristic quesfit4]. The proposed development starts
obtaining the baseline PCA model and the subsequent prjsatising the healthy structure. When
the structure needs to be inspected, new experiments gerped and they are projected onto the
baseline PCA model. Each experiment is considered as amapdacess and the projections onto a
predetermined number of principal component is a multtarrandom variable. The objective is to
analyse whether the distribution of the variable assogiatigh the current structure is related to the
healthy one.

2. DATA DRIVEN BASELINE MODEL BASED ON PCA

In this work a particular experimental set-up based on tlayars of vibrational changes is used as
an exemplifying con guration in order to justify, validand test the methodology. The proposed
methodology can also be applied to a more general structure.

2.1 Experimental set-up

Some experiments were performed in order to test the meth@dented on this paper. In these ex-
periments, four piezoelectric transducer discs (PZTspvatiached to the surface of a thin aluminum
plate, with dimensions 250 mm x 250 mm x 1 mm. Those PZTs formeduare with 144 mm per
side. The plate was suspended by two elastic ropes, beifajgddrom environmental in uences.
Figure 1 (left) shows the plate hanging on the elastic ropes.

As a response to an electrical excitation, a PZT producescaanécal vibration, propagating, in
this case, across the plate (forming Lamb waves, since glhia has been used). PZTs are also able
to generate an electrical signal as a response to a mechébiedion. In every excitation phase of an
experiment, one PZT were used as actuator and the otherREE®were used as sensors, recording
the dynamical response of the plate.

500 experiments were performed over the healthy structureé,another 500 experiments were
performed over the damaged structure with 5 damage typ@sfieriments per damage type). Figure
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Figure 1 : Aluminium plate (left). Dimensions and piezo#liedransducers location (right).

1 (right) shows the position of damages 1 to 5 (D1 to D5). Astation, a 50kHz sinusoidal signal
modulated by a hamming window were used. Figure 2 shows ttieaégn signal and an example of
the signal collected by PZT 1.

2.2 Principal component analysis (PCA): theoretical backgpund

Let us initiate the analysis of a physical process by meagudifferent variables (sensors) at a nite
number of time instants. In this work, the collected dataaaranged in@ (N L) matrix as follows:

1
10U 102 2 N N
X1 X XL X1 X X11 XL
_ 11 12 2 N N
X=8B X1 X XL X3 XL X1 XL 1)

o Xi oL Xht XA XNy XL
Matrix X 2 M, (ny(R) —whereM , (v y(R) is the vector space of (N L) matrices oveR—
contains data fronN sensors ak discretization instants with respect ieexperimental trials. Con-

in the whole set of experimental trials.

The main objective of principal component analysis (PCAbidistinguish which dynamics are
more relevant in the system, which are redundant and whictbeaconsidered as a noise [11]. This
objective is essentially accomplished by de ning a new damate space to re-express the original.
This new coordinate space is used to Iter noise and reduridarmaccording to the variance-covariance
matrix of the original data. In other words, the objectivéaisnd a linear transformation orthogonal
matrixP2 M () (v)(R) that will be used to transform the original data maiiaccording to the
following matrix multiplication

T=XP2M, np(R): (2
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Figure 2 : Excitation signal (above) and, dynamic respoaserded by PZT 1 (below).

Matrix P is usually called the principal components of the data s&aiting matrix and matriX is
the transformed or projected matrix to the principal congdrspace, also called score matrix. Using
all theN L principal components, that is, in the full dimensional ¢ake orthogonality oP implies
PP = |. Therefore, the projection can be inverted to recover tigral data aX = TP':

Matrix P can be computed by means of the singular value decompo&8MD) of the covariance
matrix de ned equation (3). Then, the principal componeats de ned by the eigenvectors and
eigenvalues of the covariance matrix as follows:

_ T .
Cx = N L 1X X2Mny vy(R); 3

CxP=PL; 4
where the columns d? are the eigenvectors Qfx. The diagonal terms of matrix are the eigenvalues

representing the columns of the transformation marace classi ed according to the eigenvalues in
descending order and they are called phi@cipal componentsf the data set. The eigenvector with
the highest eigenvalue, called thist principal component represents the most important pattern in
the data with the largest quantity of information.

However, the objective of PCA is, as said before, to reduealtmensionality of the data skt
by selecting only a limited numbéx N L of principal components, that is, only the eigenvectors re-
lated to the highest eigenvalues. Thus, given the reduced m&tEx pijpsi  jpr) 2 M o (R);
matrix T is de ned asT = XP2 M, -(R): Note that opposite t&, T is no longer invertible. Con-
sequently, it is not possible to fully recovir althoughT can be projected back onto the original
(N L) dimensional space to get a data makiasX = TP' 2 M, w0 (R):

The difference between the original data ma¥iandX is de ned as theesidual error matrixe
as follows:E= X X; or, equivalentyX = X+ E= TP' + E: The residual error matrii describes
the variability not represented by the data makix

Even though the real measures obtained from the sensorsiastih of time represent physical
magnitudes, when these measures are projected and the scerebtained, these scores no longer
represent any physical magnitude [12]. The key point indbpisroach is that the scores from different
experiments can be compared with the reference pattery to tretect a contrasting behavior.

2.3 PCA modelling

For the PCA modelling stage, we carry out a set of experimasitstated in Section 2.1. For each
different phase (PZT1 will act as an actuator in phase 1, R&illact as an actuator in phase 2 and
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so on) and considering the signals measured by the senBergdtrix Xy, is de ned and arranged
as in equation (1) and scaled as stated in [11]. PCA modetiagically consists of computing the
projection matrixP for each phase as in equation (2). MatixenamedPoqe, Provides an improved
and dimensionally limited representation of the originafladX,. PmogeliS considered as the model of
the healthy structure to be used to detect structural damage

3. DETECTION OF STRUCTURAL CHANGES BASED ON MULTIVARIATE STATI STICAL INFER -
ENCE

A predetermined number of experiments is performed in thektre to be diagnosed and a new data
matrix X is constructed with the recorded data, as in equation (1 Atmber of experiments is
not limiteda priori. However, the number of sensors and recorded samples nmusspond with the
number of sensors and recorded samples in the PCA modeligg;smore precisely, the number of
columns ofX. and Xy must agree. MatrixX will be projected onto the PCA model as speci ed in
Section 3.1. The projections onto the rst components —thealedscores- are used for the con-
struction of the multivariate random samples to be comparetconsequently to obtain the structural
damage indicator.

3.1 Multivariate random variables and multivariate random samples

Let us start this section by specifying what we consider @aoan variable and how a multivariate
random variable is built. Assume that for a speci c actugibase (for instance, PZ&s actuator,

i = 1,2;3;4) and using the signals measured by the sensorgutlyahealthy stateéhe baseline PCA
model (identi ed asP!, ) is built as in sections 2.2 and 2.3. Assume also that an ewpat as
detailed in section 2.1 is further performed. The time resps recorded by the sensors are rst
discretized and then arranged in a row vectd2 RNL, whereN is the number of sensork, is the
number of discretization instants anafers to the current actuator phase. The number of sensdrs a
discretization instants must be equal to those that were wsen de ningP! ... Besides, the size
of each column i L. Selecting thejth principal componentj(= 1;:::;7), Proge(i 1) = :v'j 2 RNL:
the projection of the recorded data onto this principal congmt is the dot produd:'} = v‘j 2 R;as

in equation (2).

Since the dynamic behaviour of a structure depends on saleteiminacy, its dynamic response
can be considered as a stochastic process and the meastsrémiéare also stochastic. On the one
hand,t} acquires this stochastic nature and it will be regarded andom variable to construct the
stochastic approach in this paper. On the other hand;damensional random vector can be de ned
by considering the projections onto several principal congmts as follows
= t}l t}z t}s TZRS;SZ N; ji;::0js2F 1500070 (5)

By reiterating this experiment several times on the undadagjructure and using equations

(3.1)-(5) we have a multivariate random sample of the végidh....; that can be viewed as a base-
line. When structural changes on the structure have to lextet, a new set of experiments should
be performed to create the multivariate random sample tilab& compared with the multivariate
baseline sample. As an example, in Figure 3 two three-dimealssamples are represented; one is
the three-dimensional baseline sample (left) and the asheaferred to damages 1 to 3 (right). This
illustrating example refers to actuator phase 1 and the gstond and third principal components.
More precisely, Figure 3 depicts the values of the multatgrirandom variable};z;g.The diagnosis

sample is made by 20 experiments and the baseline samplistsarfsL00 experiments.
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Figure 3 : Baseline sample (left) and sample from the stredtube diagnosed (right).

3.2 Detection phase

In this work, the framework of multivariate statistical éménce is used with the objective of the clas-
si cation of structures in healthy or damaged. With this g@atest for multivariate normality is rst
performed. A test for the plausibility of a value for a normpapulation mean vector is then performed.

3.2.1 Testing a multivariate mean vector

The objecctive of this paper is to determine whether theridigttion of the multivariate random
samples that are obtained from the structure to be diagrnesethmaged or not) is connected to the
distribution of the baseline. To this end, a test for the gilaility of a value for a normal population
mean vector will be performed. We will consider that: (a) baseline projection is a multivariate
random sample of a multivariate random variable followingualtivariate normal distribution with
known population mean vectan, 2 R® and known variance-covariance mat82 M s s(R); and (b)
the multivariate random sample of the structure to be disgdalso follows a multivariate normal
distribution with unknown multivariate mean vectoy, 2 R® and known variance-covariance matrix
S2 M «(R).

As said previously, the problem that we will consider is tdedmine whether a givels-
dimensional vectom, is a plausible value for the mean of a multivariate normatitistion Ns(m;; S).
This statement leads immediately to a test of the hypotl&sism. = m, versusH;: m. 6 m,; thatis,
the null hypothesis is "the multivariate random sample efgtiucture to be diagnosed is distributed
as the baseline projection' and the alternative hypothiesithe multivariate random sample of the
structure to be diagnosed is not distributed as the basptimjection’. In other words, if the result
of the test is that the null hypothesis is not rejected, theect structure is categorized as healthy.
Otherwise, if the null hypothesis is rejected in favor of #fiernative, this would indicate the presence
of some structural changes in the structure.

The test is based on the statistié —also called Hotelling'sT?— and it is summarized below.
When a multivariate random sample of siz& N is taken from a multivariate normal distribution
Ns(m,; S), the random variabld2=n X m, Tstx m, is distributed ag? | (’; 1)SFS,,n, S
whereFs,, sdenotes a random variable with &rdistribution withsandn s degrees of freedom,
X is the sample vector mean as a multivariate random variani@:S is the estimated covariance
matrix of X.
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At the a level of signicance, we rejectHy in favor of H; if the observedt?, =

n(x n‘h)TS Y(x m) is greater thar{r;,—ls)st;,, s(a), whereFs, ¢(a) is the upper(100a)th per-
centile of theFs, s distribution. In other words, the quantity . is the damage indicator and the test
is summarized as follows:

1 . .
s (nn S)SFs;n sa) =) Failto rejectHy (6)
n 1)s ,
tgbs> ( S) Fsn (@) =) RejectHp; (7)

whereFs, s(a) is such thatP(Fs, s> Fsp s(@)) = a: More precisely, we fail to reject the null

hypothesis ift3, (”n—ls)st;,, s(a), thus indicating that no structural changes in the strechave

been found. Otherwise, the null hypothesis is rejectedvarfaf the alternative hypothesistﬁbs>

(’7,, 1S)SFS;,7 s(@), thus indicating the existence of some structural chang#ei structure.

4. EXPERIMENTAL RESULTS

As said in Section 2.1, the experiments are performed indgaddent phases: (i) piezoelectric trans-
ducer 1 (PZT1) is con gured as actuator and the rest of PZT&easors; (i) PZT2 as actuator; (iii)
PZT3 as actuator; and (iv) PZT4 as actuator. In order to apdalye in uence of each set of projec-
tions to the PCA model (score), the results of scores 1 toibtjdp and scores 1 to 10 (jointly) have
been considered. In this way, a total of 8 scenarios were ieesin For each scenario, a total of 50
samples of 20 experiments each one (25 for the undamagetuseand 5 for the damaged structure
with respect to each of the 5 different types of damages)tplibaseline are used to test for the plau-
sibility of a value for a normal population mean vector, wattevel of signi cancea = 0:60. Each
set of 50 testing samples are categorized as follows: ()bmuraf samples from the healthy structure
(undamaged sample) which were classi ed by the hypothesisas “healthy' (fail to rejedtl); (ii)
undamaged sample classi ed by the test as "damaged' (refg¢t(iii) samples from the damaged
structure (damaged sample) classi ed as “healthy'; anddamaged sample classi ed as "damaged'.
The results for the 8 different scenarios presented in T2laee organized according to the scheme
in Table 1. It can be stressed from each scenario in Tablet2tthasum of the columns is constant:
25 samples in the rst column (undamaged structure) and 2Eersamples in the second column
(damaged structure). It is worth noting that Type | erroads@ alarms) appear only when we consider
scores 1 to 5 (jointly), while in the second case (scores D}pdll the decisions are correct.

5. CONCLUDING REMARKS

This paper has been focused on the development of a damagtialetindicator that combines a
data driven baseline model (reference pattern obtained fne healthy structure) based on principal
component analysis (PCA) and multivariate hypothesisnigstA test for the plausibility of a value
for a normal population mean vector has been performed. &hdts indicate that the test is able to
accurately clasify random samples as healthy or not.

Table 1 : Scheme for the presentation of the results in Table 2

undamaged samplé&lg) damaged sampléHf)

Fail to rejectHg
RejectHq

Correct decision
Type | error (false alarm)

Type Il error (missing fault)
Correct decision
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Table 2 : Categorization of the samples with respect to pieser absence of damage and the result of the test,
for each of the four phases and considering scores 1 to 8l¢jpand scores 1 to 10 (jointly).

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

Ho Hi Hy Hi Ho Hi Ho Hy

Scoreslto 5

Fail to rejectHy 21 0 23 0 21 0 20 0
RejectHp, 4 25 2 25 4 25 5 25
Scoreslto 10
Fail to rejectHy 25 0 25 0 25 0 25 0
RejectHp, 0 25 0 25 0 25 0 25
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