R. D. Patton and P. C. Marks, A rod wavelet finite element, a new type of finite element, 36th Structures, Structural Dynamics and Materials Conference, pp.1948-1954, 1995.
DOI : 10.2514/6.1995-1393

R. D. Patton and P. C. Marks, Applications of the Rod Wavelet Finite Element to Dynamic Systmes, AIAA 36th Structures, Structural Dynamics and Materials Conference, pp.2499-2507, 1995.

P. Monasse and V. Perrier, Orthonormal Wavelet Bases Adapted for Partial Differential Equations with Boundary Conditions, SIAM Journal on Mathematical Analysis, vol.29, issue.4, pp.1040-1065, 1998.
DOI : 10.1137/S0036141095295127

S. Qian and J. Weiss, Wavelets and the numerical solution of boundary value problems, Applied Mathematics Letters, vol.6, issue.1, pp.47-52, 1993.
DOI : 10.1016/0893-9659(93)90147-F

M. A. Dempster and A. Eswaran, Solution of PDEs by Wavelet Methods, 2001.

J. W. Xiang, X. E. Chen, Z. J. He, and H. B. Dong, The construction of 1D wavelet finite elements for structural analysis, Computational Mechanics, vol.188, issue.2, pp.325-339, 2007.
DOI : 10.1007/s00466-006-0102-5

J. Ko, A. J. Kurdila, and M. S. Pilant, A class of finite element methods based on orthonormal, compactly supported wavelets, Computational Mechanics, vol.58, issue.4, pp.235-244, 1995.
DOI : 10.1007/BF00369868

L. A. Diaz, M. T. Martin, and V. Vampa, Daubechies Wavelet Beam and Plate Finite Elements. Finite Elements in Analysis and Design, pp.200-209, 2009.

S. Gopalkrishnan and M. Mitra, Wavelet Methods for Dynamical Problems. Taylor and Francis Group, 2010.

L. Pahlavan, C. Kassapoglou, and Z. , Spectral formulation of finite element methods using Daubechies compactly-supported wavelets for elastic wave propagation simulation, Wave Motion, vol.50, issue.3, pp.558-578, 2013.
DOI : 10.1016/j.wavemoti.2012.12.006

M. Junxing and W. Jin, Research of the Selection of the Order of Daubechies Wavelet-Based Elements, International Conference on E-Product E-Service and E-Entertainment (ICEEE), 2010.

I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992.

W. Lin, N. Kovvali, and L. Carin, Direct algorithm for computation of derivatives of the Daubechies basis functions, Applied Mathematics and Computation, vol.170, issue.2, pp.1006-1013, 2005.
DOI : 10.1016/j.amc.2004.12.038

G. Beylkin, On the Representation of Operators in Bases of Compactly Supported Wavelets, SIAM Journal on Numerical Analysis, vol.29, issue.6, pp.1716-1740, 1992.
DOI : 10.1137/0729097

URL : https://hal.archives-ouvertes.fr/hal-01322928

M. Chen, C. Hwang, and Y. Shih, THE COMPUTATION OF WAVELET-GALERKIN APPROXIMATION ON A BOUNDED INTERVAL, International Journal for Numerical Methods in Engineering, vol.311, issue.17, pp.2921-2944, 1996.
DOI : 10.1002/(SICI)1097-0207(19960915)39:17<2921::AID-NME983>3.0.CO;2-D

URL : https://hal.archives-ouvertes.fr/hal-01330583

T. Zhang, Y. Tian, M. O. Tade, and J. Utomo, Comments on ???The computation of wavelet-Galerkin approximation on a bounded interval???, International Journal for Numerical Methods in Engineering, vol.29, issue.2, pp.244-251, 2007.
DOI : 10.1002/nme.2022

URL : https://hal.archives-ouvertes.fr/hal-01330597

X. Chen, Z. He, J. Xiang, and B. Li, A dynamic multiscale lifting computation method using Daubechies wavelet, Journal of Computational and Applied Mathematics, vol.188, issue.2, pp.228-245, 2006.
DOI : 10.1016/j.cam.2005.04.015

C. Rekatsinas, C. Nastos, T. Theodosiou, and D. Saravanos, A Time-Domain High-Order Spectral Finite Element for the Simulation of Symmetric and Anti-symmetric Guided Waves in Laminated Composite Strips with Active Piezoelectric Sensors, EWSHM2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01021224