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ABSTRACT

Nonlinear ultrasonic waves in solids have shown good sensitivity to quasi-static stresses. The stress
sensitivity of elastic waves is typically associated to finite strains (e.g. theory of acoustoelasticity).
In the case of waveguides, classical nonlinear theories for guided waves are still based on the
assumption of finite strains. In the case of constrained solids subjected to thermal excursions,
however, there are theoretically no finite strains (for perfectly-constrained solids) associated with
thermal stresses. A new model is therefore needed to justify the existence of wave nonlinearities in
this case of stress without strain. This problem is solved on the basis of the interatomic potential of
the solid that indicates a “residual” strain energy, due to the prevented thermal expansion, that is at
least cubic as a function of strain. The cubic relationship between strain energy and strain produces
second-harmonic generation of propagating elastic waves. Consequently, a nonlinear wave equation
can be derived. The solution to this equation leads to a new nonlinear parameter for double
harmonic generation that is directly related to the thermal stresses in the structure. The present study
finds applications in the monitoring of thermal stresses in buckling-prone structures, such as
continuously-welded railroad tracks and pipelines.

KEYWORDS : Nonlinear Guided Waves, Higher-Harmonics, Interatomic Potential, Constrained
Thermal Expansion.

1 INTRODUCTION

Different mechanisms can give rise to nonlinear effects in elastic wave propagation within nonlinear
solids. First, the amplitude of the elastic wave may be sufficiently large so that finite deformations
arise. Second, a material which behaves in a linear manner when undeformed may respond
nonlinearly when infinitesimal ultrasonic waves are propagated, provided that a sufficient amount
of external static stress is superimposed. In a third instance, the material itself may exhibit various
energy absorbing mechanisms or particular forms of strain energy potentials that, under specific
boundary conditions and external excitations, lead to a nonlinear response. This is the case of a
constrained thermal expansion of a solid that develops thermal stresses without quasi-static strains.

Higher-harmonic generation is one of the possible manifestations of nonlinearity and is
considered in this paper. According to this phenomenon, a sinusoidal stress wave of a given
frequency distorts as it propagates through the nonlinear waveguide, and energy is transferred from
the fundamental frequency, w, to the higher harmonics, 2w, 3w, and so on. This particular effect has
been exploited in recent years to detect macroscopic cracks [1], material degradation [2], fatigue
damage in metallic structures [3, 4], bonding defects in adhesive joints [5], thermal fatigue in
composites [6], and damage in concrete structures [7].

A much less investigated application of nonlinearity-driven higher-harmonic generation is the
measurement of quasi-static stresses/loads in structures. In this area an attractive application is the
measurement of thermal stresses arising from constrained thermal expansions of solids in order to
prevent thermal buckling of structures. A specific case of interest is the management of the thermal

Copyright © Inria (2014) 1662



EWSHM 2014 - Nantes, France

stresses arising in Continuous-Welded Rail (CWR) during temperature excursion [8, 9]. Generally,
these thermal stresses are unknown, and they are the cause of several accidents worldwide.
According to U.S. Safety Statistics data [10] in 2010 irregular track alignment from buckling or
sunkink was the first cause of train accidents in the U.S. within the categories of track, roadbed and
structures, responsible for the highest cost of $17M or 15% of the total damage cost from these
categories. A system that is able to determine the level of thermal stress in a rail track, or even just
the temperature at which the thermal stresses are zero (known as the rail “Neutral Temperature”),
has long been desired by the railroad industry. The proposed model could be very beneficial for this
case.

2  PROPOSED NONLINER WAVEGUIDE MODEL

Nonlinear phenomena arising in wave propagation have been classically treated using
acoustoelasticity [11] or Finite Amplitude Wave theory [12]. According to these frameworks,
applied finite strains (or, similarly, finite amplitude waves) constitute a requirement for the
occurrence of nonlinearity. However, the generation of nonlinear effects in solids (higher harmonics
in particular) subjected to constrained thermal expansion requires a different theoretical perspective.
When the constrained structure experiences temperature changes, it cannot globally deform because
of the boundaries while, at the same time, the lattice particles acquire an increased energy of
vibration (proportional to temperature) in agreement with classical material science theories [13].
The absence of quasi-static strains makes this case different from classical sources of nonlinear
wave propagation.

2.1 Interatomic Potential

The concept of interatomic potential allows to find the relationship between elastic potential energy
and deformations at the atomistic level. The general form for the interatomic potential of a solid for
a pair of lattice particles can be written as [14]:

{22 Y] ®

where r is the Interatomic Distance, w is the Potential Well Depth, ¢ is the Van Der Waals Radius, »
and m are material coefficient parameters. The interatomic force is given by the first derivative of

the potential, therefore:
V ( jn " (f j (’ )
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Eq. (2) contains a steep “repulsive” part (first term in the square brackets), and a smoother
“attractive” part (second term in the square brackets). The minimum of the V() curve is the position
of equilibrium of the atoms, ry, where the repulsive force is equilibrated by the attractive force and
the net force is zero. A specific form of the interatomic potential most often used for its
computational efficiency was proposed by Lennard-Jones [15-17], where n = 12 and m = 6. From
Eq. (1), the Lennard-Jones potential is therefore:

o8] ®

2.2 Potential Energy for Constrained Thermal Expansion

Assuming that the solid is free to expand, an increase in temperature produces a stretch of the
atoms’ equilibrium distance 7,, following the dashed curve in Fig. 1. This curve is the so-called
Average Bonding Distance (ABD), or the loci of midpoints between repulsive and attractive
branches of the potential. The ABD curve represents the well-known thermal expansion of the
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material, which directly results from the “anharmonicity” of the interatomic potential curve. The
analytical form of the ABD curve, rapp(¥), can be easily obtained from a general Mie potential with
n = 2m by equating the repulsive force to the attractive force:

Fisp =2[%_qu (1— /1+K]m+(1+ /1+K}m (4)

Following conventional linearized thermal expansion theory, the rapp curve can be also simply
written as a function of temperature as:

o (T) =1 [ 1+a(T-T,)] (5)
where « is the thermal expansion coefficient of the material, and AT = 7-7, is the temperature
change from the initial interatomic distance r. For free thermal expansion, the minima of the
interatomic potential curve at the various temperatures lie on the rapp curve, and the Potential Well
depth rises to reflect the additional kinetic energy imparted by the temperature increase. In this case,
the new positions of the atoms at all temperatures are still at zero net force (strain without stress).
If, instead, the solid is prevented from thermally expanding due to external constrains, it is known
that it develops thermal stresses. This fact, in turn, implies that the interatomic potential at 7 does
not have a minimum point (zero force), but it assumes a value that corresponds to the V() curve for
the original T, temperature, calculated at the current “free expansion” position rgp( 7) (see Fig. 1).
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Fig. 1 — ABD curve for free expansion and residual potential for perfectly-constrained thermal expansion.

For such case of constrained thermal expansion, the general form of the current interatomic
potential at 7 can be found by expanding Eq. (1) around the »app( 7) value. The result is:

oV 1 0%V
A= R ey IR e
1V 3
—— ~(r—rABD (T)) +..= (6)
6 8/’ ”:"ABIJ(T)

= A(T)+B(T)-(r=ry, (T))+%C(T)~(r—rABD (7)) +%D(T)-(r—rABD (7)) +...

where A(T) is an initial energy, B(T) = 0V/or, C(T) = &’V/or’, and D(T) = &’V/or’ , with the
derivatives calculated at 7 = r,5p(T). The Taylor expansion is limited the cubic order O(’) since the
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interest in this work is the study of second-harmonic wave generation (the expansion could be easily
extended further to study higher-order harmonics generation). The terms C(7) and D(7T) in the above
equation are analogous to the elastic constants of classical nonlinear elasticity caused by finite
quasi-static deformations or finite-amplitude waves [18]. For example, the term C is equivalent to
the second-order elastic stiffness, and the term D is equivalent to the third-order elastic stiffness.
The difference with classical finite-deformation nonlinear -elasticity, however, is that the
nonlinearity (arising from the O@”) term in the potential, or the term D) , in this case does not arise
from applied finite deformations (these are ideally zero for perfectly constrained thermal
expansion), but rather from the “residual” strain energy stored as internal forces from the prevented
thermal expansion.

2.3 Nonlinear Wave Equation for Constrained Thermal Expansion

Classical equilibrium considerations lead to the derivation of the nonlinear wave equation for the
case under investigation. Extending Eq. (6) to a 1-D lattice comprising p particles, and assuming an
infinitesimal deformation of the system Au from an initial equilibrium state, the overall elastic
potential of the p particles can be expressed as:

V=AT)+Y B(T)-Au +%ZC(T)-Au2 +éZD(T)-Au3 +... (7)

Applying Newton’s second law to the nth particle, the differential equation governing its motion
reads:

d zu” 1 2 2

= OO [(u, —u, )= (w, —u,., )]+ED(T>-[(uM ) =, =u ) [+ (®)
Eq. (8) can be reformulated in order to highlight the force exerted on the generic nth particle by
adjacent particles n+1/ and n-1:

d*u

2
u, ., —u 1 u. . —u
— - F - F :BT“FCTMI’!'F—DT n+l n h2_
m dtz n,n+l n,n—1 l: ( ) ( )( h j 2 ( )[ h j :|

_|:B(T)+C(T)(%jh+%D(T)[u" _hunlj h2:|+...

where the term 4 indicates the original undeformed distance between adjacent particles.

The extension to the 3D case simply follows transferring all the concepts applied for the nth
particle to the nth plane. In order to simplify the treatment without any loss in generality, the
resulting equation of motion will be derived for the case of 1D longitudinal bulk waves propagating
along direction x;. Introducing the unit surface S;, perpendicular to axis x;, the equation of motion
for the nth plane becomes:

ﬂ dzul,n _ Fn,n+1 _ F;z,nfl — C(T)hl ul,n+l _ul,n _ ul,n _ul,nfl +
S df S, S S, h h

2 _ 2 _ 2
+ 1 D(T)h'[ Z/l],rH-] Z/l],n _ ul,n ul,n—] +..
2 5 h, h,

where the term /4, indicates the original undeformed distance along direction x; between adjacent
particles. The transition from the discrete system to its continuum counterpart is simply
accomplished letting the term /4; tend to zero in Eq. (10). Exploiting the definition of derivative, in
the continuum limit Eq. (10) can be rearranged as:

mdu, F(x) F(x-h)
S, dtzl = ]S1] - ‘191 :O-ll(‘xl)_o—ll(xl_hl):

_omh|(aw) (aw) | 1pMK|(aw) () |,
S, ox, ). o ) 2 S ox, ) o ),
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By dividing Eq. (11) by 4;, letting 4, tend to zero for the continuum limit, and letting m/(S;h;) =
p (the mass density of the material in the initial configuration), one can derive:

62u1 —2 —( 0u, \|6%u
=V 11 1 1 12
o ] { 4 (ax j:| 6x12 ( )

where the new temperature- dependent elastic coefficients of second-order and third-order are:
C,=C(T)h /S, and C,=D(T)h’/S,. The terms C, and C, combine the influence of the classical
elastic potential with the new nonlinear effects caused by the prevented thermal expansion.

The result in Eq. (12) represents the nonlinear partial differential equation governing the
propagation of longitudinal bulk waves for solids subjected to constrained thermal expansion. In
light of the above result, the two new definitions for longitudinal bulk wave velocity and nonlinear

parameter are:
¢ (T ) hy
LONGITUDINAL WAVE SPEED

¢, __DMh

n=-==

oG C(T) (14)
A dimensional analysis confirms the nature of these parameters. Since, from Eq. (7), C(7T) has units
of Joule/m’, and D(T) has units of Joule/m’, Eqs. (13) and (14) indicate that ¥ has units of velocity

NONLINEAR PARAMETER

(m/sec), and y, is dimensionless.

As expected, Eq. (13) shows that the wave speed depends on the quadratic term O(+*) of the
interatomic potential, C(7). This term reflects the curvature of the interatomic potential, which is
changing with interatomic distance. In classical linear Hooke’s theory, this curvature (hence
material stiffness) is approximated constant through the deformation range, hence the wave velocity
is a constant. By considering the full asymmetric potential as a function of the prevented thermal
expansion, the wave velocity is found to change with accumulating thermal stresses. Trends of
V. from Eq. (13) are plotted in Fig. 2 assuming a Lennard-Jones interatomic potential (n = 12, n = 6)
and sample values of Van Der Waals Radius ¢ = 4 Angstroms, and Potential Well Depth w = 40

kJ/mol, without loss of generality for the trends. The material density is assumed that of steel, p=
7800 kg/m’.
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Fig. 2 - Relative change in longitudinal wave velocity as a function of: (a) “prevented” thermal expansion of
interatomic distance, and (b) temperature change from stress-free position (Lennard-Jones potential, n = 12, n
=6, g =4 Angstroms, w =40 klJ/mol, a=11x10"/°C, p= 7800 kg/m’).

Specifically, Fig. 2a plots the relative change in wave speed, as a function of interatomic
distance rapp. The temperature T, is the stress-free value (corresponding to equilibrium distance 7,
= 4.489 Angstroms - minimum of the assumed Lennard-Jones potential). The trend in Fig. 2a
clearly indicates a decrease in wave speed with increasing (prevented) thermal expansion. Therefore
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a material “softening” effect takes place, consistently with the decrease in curvature of the
interatomic potential, C(7), when moving slightly to the right of the equilibrium position 7, (see, for
example, Fig. 1). Fig. 2b plots the same velocity change as a direct function of the temperature
change, AT=T-T,. This plot was obtained from the previous values in Fig. 2a by simply using the
linear thermal expansion relation in Eq. (5), and assuming a thermal expansion coefficient for steel
of = 11x10°7°C. The range of temperature excursion considered in Fig. 2b was arbitrarily chosen
as 100 °C. For the case considered, for example, the longitudinal wave velocity is expected to
decrease by about 1% for a temperature increase of 100°C in the fully-constrained solid.

Regarding the nonlinear parameter of Eq. (14), it contains the nonlinear portion of the
interatomic potential through the cubic term O(°), D(T). Again, the difference from classical
nonlinear wave theory is that the cubic O(’) energy term arises from the prevented thermal
expansion due to the asymmetry of the interatomic potential, rather than from applied finite
deformations. The nonlinear parameter is discussed more in depth in the next Section.

2.4 Solution of the Nonlinear Wave Equation : Second-Harmonic Wave Generation for
Constrained Thermal Expansion

Eq. (12) can be solved by using perturbation analysis [12], thereby decomposing the displacement
field into the linear portion, u ,V and the nonlinear portion, u 2 , with u <<y,
The final solution to the nonlinear wave equation can be written in the classical form as:

u, =" +u”) = 4 cos (kx, —wt)—%ZkZAlle sin 2 (kx, — o) (15)

where x; is the wave propagation distance, and £ is the wavenumber.

It can be seen that the nonlinearity generates a second-harmonic contribution at 2@ under a
fundamental excitation at @. The magnitude of the second-harmonic is proportional to the nonlinear
parameter given in Eq. (14), and also proportional to the wave propagation distance, x;
(“cumulative” behavior). As in classical nonlinear wave theory, Eq. (15) only holds for a limited
propagation distance that satisfies the perturbation condition u,"” << u,”.

Experimentally, it is common to directly measure the amplitudes of the second-harmonic, A,
and that of the fundamental frequency, 4;. Therefore, an “experimental” nonlinear parameter can be
defined from the “theoretical” nonlinear parameter in Eq. (14) as:

4 o L)
= |A_22| = %]/1 kle = %71 £—2x1 EXPER. NONLINEAR PARAMETER (16)
| V,

1

B

where f'is the excitation wave frequency (fundamental), ¥, is the longitudinal bulk wave speed, and

x1 is the wave propagation distance. Substituting Eqs. (13) and (14) into Eq. (16), the experimental
nonlinear parameter can be also written in terms of the second-order and third-order energy terms,
C(T) and D(T), as:

2 2
B(T) =@= - DZ(T ) ZPS %) pYpER. NONLINEAR PARAMETER (17)
4 Cc(T) 2
where C(T) = &’V/0r, D(T)=&’V/dr’, and the derivatives are calculated at r = r45p(T)

Trends of the nonlinear parameter £ from Eq. (17) are plotted in Fig. 3 assuming a Lennard-
Jones interatomic potential (n = 12, n = 6) and sample values of ¢ = 4 Angstroms, and w = 40
kJ/mol, without loss of generality for the nonlinear trends. The £ values in this figure have been
normalized to all terms independent of temperature, to highlight the effect of the temperature-
dependent terms C(7) and D(7).

Fig. 3a plots £ as a function of interatomic distance rspp. The nonlinear parameter increases
monotonically with increasing “prevented” thermal expansion, i.e. increasing thermal stress
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absorbed by the constrained solid. This trend is the combined effect of a decreasing curvature of the
interatomic potential, C(7) (that is also responsible for the wave velocity decrease discussed in the
previous Section), and an increasing cubic term D(T). Fig. 3b plots the same nonlinear parameter 3
as a direct function of the temperature change, AT=T-T, from the initial, stress-free temperature T
(corresponding to equilibrium distance 7). This plot was obtained directly from the previous values
in Fig. 3a by simply using the linear thermal expansion relation Eq. (5) and assuming, again, o=
11-10°/°C (steel) and a fully-constrained case. The range of temperature excursion considered in
Fig. 3b was arbitrarily chosen as 100 °C. It is clear that the nonlinear parameter monotonically
increases with increasing temperature, as the constrained thermal expansion builds nonlinear effects
through thermal stresses. The slope of the <@ vs. T> curve will, of course, depend on the coefficient
of thermal expansion of the material, with larger slopes expected for larger o's.
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Fig. 3 - Normalized nonlinear parameter £ as a function of: (a) “prevented” thermal expansion of interatomic
distance, and (b) temperature change from stress-free position (Lennard-Jones potential, n =12, n =6, g = 4
Angstroms, w = 40 kJ/mol, = 11x10°/°C).
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CONCLUSION

This work has investigated the generation of nonlinearities in ultrasonic longitudinal bulk waves
propagating in constrained solids subjected to temperature increase. One potential application of
this research is the possibility to detect thermal stresses caused by constrained thermal expansion in
continuous-welded rail tracks and in other structures that are prone to buckling failures at high
temperatures (pipes). In contrast with the classical treatment of nonlinearity in elastic wave
propagation (e.g. acoustoelasticity), the present work theoretically explains nonlinear effects via the
anharmonicity of the interatomic potential and the “residual” energy that is stored in the solid when
it is prevented from expanding. These considerations result in an interatomic potential expression
that is at least cubic, O(), as a function of interatomic distance. This leads to a nonlinear wave
equation that can be readily solved using perturbation techniques.

Closed-form solutions for the longitudinal wave velocity and second-harmonic nonlinear
parameter are presented. They are explicitly dependent on the interatomic potential parameters and
on temperature. The theoretical results indicate that the longitudinal wave speed decreases with
increasing temperature for a constrained solid, as a result of the resulting thermal stresses. In
addition, the theory concludes that the second-harmonic nonlinear parameter increases with
increasing temperature for the constrained solid.

This study suggests the potential of measuring the absolute values of thermal stresses from
prevented thermal expansion by tracking the ultrasonic nonlinear parameter. However, careful
calibration of all material properties involved in Eq. (17) would be required in this case.
Furthermore, as in any nonlinear ultrasonic test, the nonlinearity of the instrumentation and that of
the transducer/structure coupling will affect the absolute measurements. However, what would be
certainly easier to determine is the point of zero thermal stress under a temperature fluctuation that
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corresponds to a minimum of the nonlinear parameter. For example, the zero thermal stress point is
a key factor in the maintenance of continuous-welded rail tracks (the well-known “neutral
temperature” point of rails). The model developed is limited to longitudinal bulk waves and does
not include wave attenuation/damping effects. The extension of this study to other wave modes,
including dispersive guided waves propagating in prismatic structures, is underway.
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