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ABSTRACT 

The recently constructed Newmarket Viaduct in Auckland is a critical link in the New 

Zealand state highway network. Newmarket Viaduct is a 12-span, pre-cast, post-

tensioned structure built using the balanced cantilever method. A continuous health 

monitoring system was designed and installed in the bridge. As a critical part in the 

SHM process, a baseline finite element (FE) model of Newmarket Viaduct was 

established. This paper describes the implementation of the FE model calibration using 

ambient vibration data. The initial model of the bridge was developed from the 

information provided in the design documentation, material testing data and site 

inspections. Two ambient vibration testing campaigns used some 60 wireless sensors in 

multiple setups to collect data to map with high density 3D mode shapes of the bridge. 

The output-only modal identification results obtained from the ambient vibration 

measurements of the bridge were used to update the FE bridge model. Different 

parameters of the model were calibrated using an automated procedure to improve the 

correlation between measured and calculated modal parameters. Careful attention was 

paid to the selection of the parameters to be modified during updating in order to 

ensure that the changes to the model were realistic and physically meaningful. The 

calibrated FE model reflecting the as-built structural condition and dynamic response 

mechanisms of Newmarket Viaduct will serve as a baseline model for assessment of 

structural health using continuous monitoring data.  

KEYWORDS : Bridge, model updating, baseline model, structural health monitoring, 

ambient vibration test  

INTRODUCTION 

Calibration of finite element (FE) models of large civil engineering structures has recently received 

a great deal of attention. Accurate FE models that are representative of the actual structures are 

indispensable for studies such as validation of innovative structural designs, structural health 

monitoring, evaluation of seismic response, assessing post-earthquake condition, and structural 

control [1]. However, the initial FE models constructed on the basis of engineering blueprints and 

design drawings and specifications do not usually match the experimental results measured in the 

field [2-4]. The discrepancies are usually related to the variation in the material properties, 

uncertainties in geometry and boundary conditions and inaccuracy in the FE model discretisation. 

Although some of the discrepancies and uncertainties can be minimised by developing more 

detailed FE models, it is not possible to obtain a highly accurate match between the analytical and 

measured responses before calibration of the FE model is conducted. 

Calibration of a FE model, also known as FE model updating, is a procedure to determine 

uncertain parameters in the initial model based on experimental results to achieve a model of the 

structure that better matches the experimental results [5]. Among the different types of field 

experiments, ambient vibration tests are a useful and popular approach to the identification of modal 
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properties (natural frequencies, damping ratios and mode shapes), which has been used and reported 

by several authors [6-8]. Thus, the model calibration gaol is normally formulated mathematically as 

the minimisation of an objective function based on the residuals between the measured and 

analytically computed frequencies and modes shapes. In the optimisation process, the parameters of 

the FE model are adjusted to obtain a better match between measured and analytical modal 

responses. A number of model updating techniques have been proposed during the past decades [9-

12]. There are basically two distinct FE model updating methodologies in structural dynamics: the 

direct methods [13] and the iterative methods [14]. The first approach directly updates the mass and 

stiffness matrices of the structure but it is very difficult to relate the changes inside the updated 

system matrices to physical properties of the FE model [5]. Furthermore, these methods can be very 

complicated for large structures with a detailed FE model and can result in ill-conditioned problems 

[9, 11]. Conversely, the iterative methods are more flexible and efficient in its application for large-

scale structures with detailed FE models as the physical properties behind the FE model, such as 

material and geometric properties, can be updated. Sensitivity-based model updating approaches are 

an efficient iterative way of updating the structural parameters of the FE model [15]. 

This paper presents the implementation of a sensitivity-based approach to FE model calibration 

of a 12-span, pre-cast, post-tensioned concrete bridge using ambient test data. The bridge under 

investigation, Newmarket Viaduct, is a critical link in the New Zealand state highway network. The 

initial FE model of the bridge is developed to represent the bridge as realistically as possible from 

the information provided in the design documentation, material testing data and site inspections. 

Two ambient vibration testing campaigns used some 60 wireless sensors in multiple setups to 

collect data to map with high density 3D mode shapes of the bridge. The output-only modal 

identification results obtained from ambient vibration measurements are used to update the FE 

bridge model. Different parameters of the model are calibrated using a sensitivity-based automated 

procedure to improve correlation between the measured and calculated modal parameters. Careful 

attention is paid to the selection of the parameters to be modified during updating in order to ensure 

that the changes to the model were realistic and physically meaningful. The modal properties of the 

updated FE model match well with the field-measured natural frequencies and mode shapes. 

1 SENSITIVITY-BASED MODEL CALIBRATION 

The model calibration approach used in this paper is based on a sensitivity-based model updating 

procedure that seeks to minimise the error between the experimental and FE-computed modal 

characteristics of the structure. The sensitivity based model updating procedure generally comprises 

of three stages: (i) selection of responses as reference data, (ii) selection of physical parameters to 

update, and (iii) an iterative model tuning [16]. Experimental responses (Re) are usually the natural 

frequencies and modes shapes measured on the real structure, whereas the updating parameters (P) 

are uncertain parameters in the FE model which can include geometric and material properties, and 

boundary and connectivity conditions related to stiffness and inertia. If accurate parameters (Pa) are 

not used as the input to the FE model, analytical responses (Ra) different from the measured 

responses will be obtained. The relationship between the actual and FE-computed modal frequencies 

can be expressed as a first order Taylor series with respect to the structural parameters and a 

sensitivity coefficient matrix [2] :  

 e a a
- R R S P P                                                   (1) 

or 

  R S P         (2) 

where R is the difference between the measured and FE-computed responses, P is the difference 

between the actual physical parameters and the parameter estimates used in the FE model, and S is 

the sensitivity matrix of the experimental responses with respect to the physical parameters: 
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Here Ra,i (i=1, 2,…,n) and Pj (i=1, 2,... … …,m) are the entries of the analytical structural response 

and the updating structural parameter vectors. In this research, an objective function related to the 

natural frequencies has been used. The sensitivity-based objective function to minimize the error 

between the measured and FE-computed modal frequencies (  f ) can be written as: 

   
1

2

T

J - -    f S P f S P                                                       (4) 

where superscript T denotes transposition. The first order optimization method and penalty function 

concept [5] is utilized to minimize the objective function. Equation (4) can be rewritten in term of a 

first order optimization function as 

1 1
( ) ( )

2 2

T T
J - -        f S P f S P P P                                          (5) 

where T
 P P represents the penalty on the constrained physics parameters and  is a weighting 

parameter (assumed 1 in the subsequent simulations). This method is known as the sensitivity-based 

penalty function method since the error due to the linear approximation by the Taylor series is 

penalized to find the smallest parameter changes P  at each iteration. The optimization process 

used to obtain the optimum values of the physical parameters, P, is set as an iterative process as 

shown in Figure 1, where k refers to the iteration step. The sensitivity matrices are calculated at each 

iteration in order to optimize the sensitivity-based objective function. Additional constraints are also 

applied to prevent physically unreasonable solutions for the physical parameters. These are the 

lower bounds (b1) and upper bounds (bu) of the parameters used for updating the FE model. Finally, 

the convergence of the iterative solution is checked by evaluating the following two criteria: (i) the 

maximum error between the measured and calculated modal frequencies should be less than 3%, 

and (ii) the maximum relative changes of updated frequencies between two consecutive iterations 

should be less than 0.1%. 

 

  
 

Figure 1: Sensitivity-based FE model updating procedure 

2 FE MODEL OF THE BRIDGE 

The bridge under investigation is the Newmarket Viaduct (Figure 2) located in Auckland, New 

Zealand. It is a curved 12-span post-tensioned concrete bridge, comprising two parallel, twin 

bridges (Northbound and Southbound). The bridge is supported by two abutments at both ends and 

11 concrete piers. The total length of the bridge is 690 m, with twelve different spans ranging in 
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length from 38.67 m to 62.65 m and average length of approximately 60 m. The superstructure of 

the bridge is a continuous twin-cell box girder of a total width of 30 m. The Northbound and 

Southbound Bridges are supported on independent pylons and only joined together via a cast in-situ 

concrete ‘stitch’ at the deck girder upper flange level. At the abutments and four interior supports, 

bridge deck is supported on bi-directional elastomeric seismic devices. For the other supports, the 

bridge bent bearings were fixed in all directions.  

A detailed three-dimensional (3D) FE model of the as-built bridge was developed using 

SAP2000 finite element software to simulate realistic responses of the bridge. A view of the FE 

model of the bridge is shown in Figure 2. The concrete deck and all the piers were represented using 

solid elements. The elastic modulus of the concrete solid elements was initially computed based on 

the compressive strength of 60 MPa, which was first determined by the authors by testing 

100×200 mm cylinder specimens that were cast during construction of deck slab and piers and then 

supplemented by the analogous tests conducted by the contractor. The bearings were modelled using 

link elements. The nominal value of the stiffness provided by the manufacturer was assigned to each 

link element. 

3 CALIBRATION OF THE FE MODEL 

3.1 Experimental results 

The ambient vibration testing reported herein was conducted on November 29 and 30, 2012 under 

operational conditions and did not interfere with the normal flow of traffic over the bridge as the 

testing personnel worked exclusively inside the box girder. The accelerometers used for the test 

were two models of wireless USB accelerometers produced by the Gulf Coast Design Concepts 

(www.gcdataconcepts.com): X6-1A and X6-2. A total of 288 measurements points (24 for each 

span) on both sides inside the box girders were chosen for placing accelerometers in order to map 

accurately mode shapes. The accelerometers were ‘lightly’ glued to the internal surface of the bridge 

deck using silicone adhesives (Figure 3). Six test setups were used to cover the planned testing 

locations of both bridges. The sampling frequency was 160Hz and corresponding recording times 

were all approximately 1 hour for each setup.  

The modal frequencies and mode shapes were identified using the Frequency Domain 

Decomposition (FDD) algorithm. The modal frequencies (f) were estimated at peak locations in the 

first singular value plots of spectral density functions (marked in Figure 3). This allowed the 

identification of 6 transverse, 6 torsional and 8 vertical modes. These first twenty extracted modal 

frequencies of the bridge are shown in Column 3 of Table 1. The standard deviations associated 

with the identified natural frequencies between the different setups are very small (between 0 and 

0.04 Hz). Figure 4 shows selected mode shapes and the calculated modal assurance criteria (MAC) 

[17] values between the experimental and numeral model shapes are also presented in Table 1. 

 

     
 

Figure 2: Newmarket Viaduct (left) and its 3D FE model (right). 
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Figure 3: Location of accelerometers inside bridge girder (left) and singular values of spectral density 

functions of accelerations (right). 
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Figure 4: Selected mode shapes identified by FDD. 
 

Table 1: Comparison of measured and FE computed results. 
 

Mode Type 
FDD FE Frequencies [Hz] MAC values 

f [Hz] Initial Model Updated Model Initial Model Updated Model 

(1) (2) (3) (4) (5) (6) (7) 

1 Transverse 1.25 1.18 1.23 0.959 0.950 

2 Transverse 1.56 1.47 1.54 0.828 0.892 

3 Vertical 2.03 2.14 2.09 0.964 0.971 

4 Transverse 2.15 2.01 2.13 0.752 0.790 

5 Vertical 2.15 2.22 2.19 0.971 0.942 

6 Vertical 2.34 2.43 2.40 0.875 0.887 

7 Vertical 2.55 2.63 2.59 0.851 0.862 

8 Transverse 2.81 2.68 2.76 0.619 0.713 

9 Vertical 2.82 2.85 2.84 0.907 0.917 

10 Vertical 3.09 3.15 3.16 0.550 0.921 

11 Torsion 3.17 3.16 3.15 0.863 0.802 

12 Torsion 3.34 3.38 3.34 0.895 0.872 

13 Vertical 3.67 3.69 3.66 0.692 0.713 

14 Torsion 3.71 3.78 3.73 0.694 0.682 

15 Transverse 3.94 3.67 3.83 0.692 0.710 

16 Torsion 3.94 3.97 3.92 0.563 0.836 

17 Torsion 4.06 4.17 4.11 0.853 0.942 

18 Torsion 4.27 4.40 4.38 0.879 0.858 

19 Transverse 4.77 4.71 4.79 0.683 0.971 

20 Vertical 6.73 6.66 6.64 0.775 0.824 
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Table 2: Parameters used for the FE model updating process  and their values before and after updating

 

Parameters Allowable bounds Initial values Updated values 

Elastic modulus of deck (GPa) 34.0-41.4 36.0 39.2 

Elastic modulus of piers (GPa) 34.0-41.4 36.0 38.5 

Thickness of the asphalt overlay (m) 0-0.050 0 0.042 

Mass density of deck (kg/m
3
) 2420-2680 2550 2433 

Mass density of piers (kg/m
3
) 2420-2680 2550 2420 

Stiffness of bearings (MN/m) 50-300 80 162 

3.2 Selection modal frequencies for calibration process 

Although it is ideal to calibrate the FE models of bridges using as many modal frequencies and 

mode shapes as possible, including more vibration modes in the model updating problem can make 

the optimisation problem more complex. Minimising the error between the measured and FE-

computed modal frequencies for higher modes may interfere with matching the lower modes of 

vibration. Therefore, it is important to identify which modes should be included and those that can 

be ignored during updating. Based on the approach proposed by Li etc. [18],  the modal contribution 

coefficient for the first identified 20 modal frequencies was computed and used to determine the 

number of modes that contribute most significantly to the structural response of the bridge. The 

frequencies used to compute the modal contribution coefficients were obtained using the initial FE 

model of the bridge. The modes that cumulatively give 90% of the total deformation are considered 

as the most important. This corresponds to the first 14 modes of vibration. However, only the first 

nine natural frequencies (five vertical and four transverse) did not overlap with other close modal 

frequencies, and were therefore used in the FE model updating process. The remaining modal 

frequencies and all mode shapes were reserved for the purpose of validation of the updated FE 

model. 

3.3 Selection of parameters 

The selection of parameters in the calibration process is critical for the success of any such exercise. 

An excessive number of parameters compared to the number of available responses, or 

overparametrization, will lead to a non-unique solution, whereas insufficient number of parameters 

will prevent reaching a good agreement between the experiment and numerical model [19]. The 

changes in the selected parameters should potentially have a considerable effect on the vibration 

response of the bridge. These parameters are those that contribute significantly to the mass or 

stiffness properties of the structure. Therefore, the material properties of the major structural 

components (mass density and Young’s modulus) and size/thickness of those structural components 

are potential parameters that can be selected for FE model calibration. Also, parameters are selected 

from among those whose exact values have high degrees of uncertainty. It is necessary, therefore, to 

select those parameters to which the numerical responses are sensitive and at the same time those 

whose values are uncertain in the initial model. After a careful consideration of the initial FE model 

and the available engineering drawings, the parameters selected for calibration in this study were the 

elastic modulus of concrete, thickness of the asphalt overlay, mass density of concrete and 

horizontal stiffness of the bearings. The selected parameters along with the allowable bounds of 

their values are listed in Table 2. Selecting the bounds on the allowable parameter variations during 

model updating is generally challenging and was done using engineering judgment. 

A sensitivity analysis using the FEM model was conducted to confirm the selected updating 

parameters can influence the computed responses. Sensitivities were calculated using a finite 

difference method by changing the parameters by 0.1% with respect to their initial values. Paper 

length limit makes it impossible to show the sensitivity results, but the calculated sensitivities of the 

modal frequencies to the selected updating parameters demonstrated that all the selected parameters 

have an appreciable influence.  
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4 DISCUSSION OF THE FE MODEL UPDATING RESULTS 

The initial estimates for the six selected model parameters were set to the average value between the 

lower and upper bounds listed in Table 1. The iterative algorithm in Figure 1 was implemented 

using a MATLAB script with MATLAB calling SAP2000 to determine the modal properties of the 

FE model. The modal frequencies computed from the SAP2000 model were then used to compute 

the new sensitivity matrices.  

The final updated FE modal frequencies are presented in Columns 4 and 5 of Table 1. As seen 

in the Table 1, the differences between the measured and initially calculated modal frequencies vary 

from 0.54% for the 13th mode to 6.85% for the 15th mode. These differences improved after the 

model updating process for all the modal frequencies. The most improvement occurred for the 

fourth mode while the least improvement occurred for the 16th mode. These differences also 

improved on average by more than 3% for the first four modes. Although the mode shapes were not 

used in the objective function for the purpose of model updating, these MAC values are also 

calculated using the FE-computed and measured mode shapes and can be used to validate the model 

updating. The MAC values, shown in Columns 6 and 7 of Table 1, did not improve significantly for 

all the nine modes.  

The updated values of the six parameters are shown in Table 2. The thickness of the asphalt 

overlay, the elastic modulus of concrete in the deck and piers nearly reached their upper limits. 

Mass density of concrete in the deck and piers reduced to their lower limits. In consultation with the 

bridge owner, the average thickness of asphalt overlay installed on is about 45 mm. As a result, this 

further confirmed the accuracy of the updated model parameters. 

CONCLUSIONS 

The paper presents the implementation of a sensitivity-based FE model updating process for a new 

twelve-span prestressed concrete bridge using ambient vibration data. The objective of the FE 

model updating process is to match the FE-computed and experimentally measured modal 

frequencies. The experimentally measured modal characteristics of the bridge were obtained using 

ambient vibration data measured using 60 wireless sensors. A FE model was developed in SAP2000 

to simulate the dynamic response of the bridge as realistically as possible. A few physical 

parameters inside the model are selected for the updating process after performing a comprehensive 

sensitivity analysis of all major model parameters. Furthermore, the number of modal frequencies 

used in the optimisation process is minimised by identifying the most important modal frequencies 

of the bridge that participate the most in the global bridge response and are fully excited under 

ambient vibration conditions. Finally, a successful calibration of the Newmarket Viaduct FE model 

is demonstrated. The solution resulted in reasonable values for the updated parameters as well as a 

close match between the FE-computed and field-measured modal characteristics of the bridge. 

Finally, success of all the FE model calibration process depends significantly on fair engineering 

judgements about the level of detail used in developing the FE model, the unknown parameters used 

in the updating the FE model, reasonable objective functions and finally the solution selected. 
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