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ABSTRACT 

Impact-echo is one extensively applied non-destructive technique for flaw detection in 
concrete structures. In impact-echo test, surface motion generated by short-duration 
mechanical impact is investigated for structural condition assessment. This paper 
endeavours to formulate impact echo analysis by using novel statistical techniques, i.e. 
Grassmann manifold learning. Comparing to conventional impact-echo test, the 
proposed method presents several favourable properties: 1. Conventional impact-echo 
method mostly relies on frequency peak in echo spectrum; the proposed method 
characterizes rich temporal-spectral patterns in addition to the spectral peak. 2. 
Proposed method is performed over local area on concrete surface with integration of 
several consecutive echo responses, and thus produces more stable condition 
evaluation result comparing to point-wise impact-echo approach. 3. To cope with 
extracted echo feature, effective similarity metric on Grassmann manifold is employed, 
which favourably facilities condition-based assessment. To demonstrate the proposed 
method, we prepared concrete specimen with 2cm, 4cm and 6cm depth void inside and 
echo signal is captured through air-coupled sensor. Experimental result demonstrates 
the effectiveness of the proposed method, including accurate condition-based 
classification performance and high processing efficiency  

KEYWORDS : non-destructive test, impact-echo, acoustic signal, time-frequency 
analysis, Grassmann manifold learning. 

INTRODUCTION 

Maintenance, rehabilitation and replacement of aging civil infrastructures, i.e. bridges and highways, 
pose worldwide pressing problems to human society. Among all issues related to aging 
infrastructure management, condition inspection is the most critical one, since it is decision-making 
stage for further measures, and thus attracts lots of research efforts for decades. Impact-echo, as one 
most applied non-destructive test (NDT), has been extensively studied from both theoretical and 
numerical aspects since it was initially proposed in 1980s [1]. The basic mechanism of impact-echo 
is to assess health status of concrete through investigating transient stress wave induced by short-
duration impact. Some commercial devices have been well-developed for impact-echo test [2], 
meanwhile, standard has been issued to promote utility of impact-echo method [3]. Based on those 
core works, impact-echo has been applied to various practical tasks, such as flaw detection of 
delamination, voids and debonding in concrete [2].  

In this paper, we propose a novel data-driven impact-echo analysis approach aiming at 
producing high accuracy for detailed flaws pattern classification with objective evaluation protocol. 
The proposed approach formulates impact-echo analysis by introducing content-based recognition 
framework, in which responses from normal and flaws conditions are regarded as different patterns 
to be classified. The main contributions of proposed approach can be summarized as follows:  
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 The proposed approach is a data-driven and condition-based method with well-established 
objective for impact-echo investigation. Unlike conventional impact-echo investigation 
methods involving subjective judgment in interpreting test results [2], the proposed method is 
designed to produce direct condition-based assessment result which could facilitate non-
expert usage. 

 Conventional impact-echo analysis is usually conducted in frequency domain which 
addresses peak frequency for determining defects in concrete. The assumption laid behind is 
that an echo signal can be decomposed into various spectral components and the peak 
frequency of echo signal reflects the condition of concrete. From data representation 
viewpoint, it is a conversion from 1-dimension time-series to 1-dimension spectrum of echo 
signal. However, it is worth noting that by selecting smaller analysis window in Fourier 
analysis, more precise temporal-spectral information of echo signal can be observed which 
may contribute to condition analysis for concrete. Based on such 2-D time-frequency 
representation, we propose to employ subspace to effectively characterize the echo signal. 
The subspace of echo spectrogram is capable of exploring rich temporal-spectral pattern of 
echo signal in addition to spectral peak. In addition, since point-wise impact-echo may be 
severely affected due to elastic heterogeneity of (concrete) structure, the proposed feature 
extraction process is conducted in local area-based manner, in which several successive 
responses in adjacent area are integrated together to produce one echo subspace (feature) for 
further analysis. By doing so, isolated point elastic stiffness variations no longer affect 
assessment result much. 

 Grassmann manifold learning is well developed for investigating subspaces [4]. Various 
effective distance metrics between subspaces are applicable in this formulation, which lay 
solid fundamental for investigating echo subspace features for condition-based impact-echo 
test. In this work, we introduce principle for selecting proper similarity metric for impact-
echo test and further validate it with real data. The experimental results validate the propose 
formulation for impact-echo. 

The rest of this paper is organized as follows. In Sec. 1 we briefly review the state-of-the-art of 
impact-echo method and in Sec. 2 we present details in proposed impact-echo analysis framework, 
including feature extraction from echo signal and Grassmann manifold learning for concrete 
structure condition assessment based on extracted echo feature. In Sec. 3 we demonstrate the 
proposed approach with real-world impact-echo data. A comparison has been made between using 
propose method and conventional one. Finally, we conclude this work in Sec. 4 with a discussion.  

1 REVIEW FOR IMPACT-ECHO 

Impact-echo is most widely applied non-destructive test method for concrete structure health 
assessment in nowadays. In an early summarization [2], impact-echo is described as follows: a 
hammer is first used to generate an impact on surface of concrete structure. Subsequently, a 
transducer is posed near the impact point to collect stress waves which propagate inside the 
structure. Then, signal analysis is performed on echo signal to determine the structural condition of 
concrete. The working scheme can be concisely illustrated in Fig. 1. 

 

Figure 1: Illustration of impact-echo test using air-coupled sensor 
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Echo signal analysis is commonly performed through spectral analysis. Although several 
advanced time-frequency analysis techniques have been employed in recent studies, such as the 
Wavelet transform [5] to alleviate poor time-frequency resolution in Fourier spectra, Fourier 
analysis still dominates impact-echo analysis field due to simplicity of algorithm implementation 
and sharper echo peaks it produces, which is regarded as determinant measure for concrete 
assessment.  

A well-known formula to determine a void beneath surface of concrete is proposed by [6]: 

/ 2pd C f                                                                (1) 

where f  denotes peak frequency of echo signal spectrum, Cp is the velocity of the longitudinal, β is 
constant of 0.96 for plate-shape structures wave [6] and d represents depth of inside void. In 
addition, to facilitate engineers’ usage of impact-echo technique, imaging methods for impact-echo 
test attracted much research interests, such as in [7], a depth spectrum is proposed which interprets 
spectral peak of echo signal to depth of defect. Impact-echo is initially a contact inspection method, 
which is quite time-consuming and requires much human-effort to draw overall condition of large 
structures from points. To tackle the efficiency problem, a new suggestion is to apply air-coupled 
sensor for impact-echo [7]. A designated air-couple sensor is employed to capture acoustic echo 
from concrete structure. And experimental results show the air-coupled sensor is comparable to 
contact sensors for delamination detection and grouting quality evaluation tasks. 

However, some recent studies reveal the availability of formula (1) is constrained by the size 
and flatness of defect area, e.g. if void is not parallel to surface, the echo resonance behaves 
differently and thus Eq. 1 fails to estimate void depth. [8] Until now, impact-echo method, which 
presents high diagnosis accuracy and favourable generalization property, remains to be challenging 
issue to non-destructive test field, and therefore, efforts will be continuously delivered to the topic. 

2 GRASSMANN MANIFOLD LEARNING FOR IMPACT-ECHO 
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Figure 2: Working scheme of the proposed method 
 

In this study, we employ air-coupled transducer to capture echo signal. The systematic scheme is 
shown in Fig. 2. The basic idea is that a “centered” echo feature is extracted from several 
consecutive impacts on local surface area and thus produce stable descriptive feature. To investigate 
the extracted echo feature, Grassmann manifold learning is introduced with effective similarity 
metric selection. The detail of the proposed impact-echo formulation is demonstrated in this section.  
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2.1 Feature extraction for impact-echo signal 

 Time-frequency analysis has long the predominant approach for acoustic signal processing, 
and, one most effective tool is the short-time Fourier transform (STFT) [9]. STFT produces the 
time-frequency spectrogram of acoustic signal and facilitates further advanced signal processing. 
Gabor transform is an effective modification to STFT in order to realize best simultaneous 
resolution in both time and frequency domains. The Gabor transform can be expressed as: 

2( ) 2( , ) ( ) .t j f
xG t f e e x d     


  


                                                (1) 

where x is echo waveform to be analyzed, and Gaussian window function is applied over the framed 
signal. We carry out effective feature extraction based on Gabor spectrogram of echo signal.  

 Fuzzy filter bank for spectrum : To enhance robustness to noise, filter banks are usually 
applied in modern signal processing systems which designated to generate a concise but sufficient 
representation of a pattern with much lower dimension. Especially for audio signals, filter banks are 
well developed and extensively applied to alleviate the noise and interference in spectrogram. 
Among them, the most influential one is the Mel-bank [9]. It has been proved to be effective for 
approximating the human audition and widely applied for Automatic Speech Recognition (ASR) 
decades. We present an explanation chart of Mel-bank filter in Fig. 3 (1). 

  

(1) Mel filter bank for speech                        (2) uniform-spaced filter bank for echo signal 

Figure 3: Filter bank and uniform-bank for characterizing echo spectrum 
 

In here, we follow Mel-filter bank’s idea to design dedicated filter bank for characterizing 
impact response signal. Unlike in Mel-bank that unequal weights are assigned to each filter based 
on prior-knowledge of human hearing perception, in here, we adopt uniform-spaced filter bank 
coving full range of spectrum, which is presented in Fig. 3(2). We summarize the main 
considerations for applying uniform-spaced spectral filter bank: 1. Proposed filer bank preserved 
uniform discriminative resolution from raw power spectrogram, without bias emphasizing on 
particular bands. 2. The noise in spectrogram can be suppressed by sum-average over filter bank, 
making acoustic feature more stable. 3. Peak frequency can be enhanced by filter bank and thus 
facilitates defect investigation. 3. Comparing to power spectrogram, filtered spectrum is more 
efficient for handling with lower dimension and thus significantly accelerates the impact-echo test.  

 Subspace feature representation for echo signal : In machine learning field, representing 
data as a collection of subspaces has been extensively investigated in recent decade [10]. Low-
dimensional subspaces can empirically approximate both the structural distribution and variations in 
data quite well. For example, it has been widely accepted that a low-dimensional subspace is 
effective for encoding a set of images of face with varying lighting conditions and poses. We 
attempt to adopt subspace feature for echo signal from mainly three considerations : 1. From 
variations viewpoint, spectral peak can be well characterized which locates the maximum variation 
point over time-frequency plane; 2. In addition to abovementioned peak frequency, rich spectral-
temporal distribution representation of echo signal which may also contribute to defect inference. 
Subspace feature is favorable for extracting such 2-D dynamic structures. 3. Comparing to 
processing the data spectra, manipulating lower dimensional subspace is much more efficient. All 
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these factors paved the basis for employing subspace representation for echo signal analysis. We 
present the detailed feature extraction procedure in follows. 

Let 1 2[ , , , ], ( 1, , ) M

n ix x i nx x x     denote (M x n) filtered spectra by uniform-spaced 
filter bank and n denotes the time frame indexes, M stands for uniform-bank scale frequency. To 
extract the echo signal subspace, we calculate eigenvalues 

1
( , , )

M
diag      and eigenvectors U = 

[u1,…,uM] by:  

 
1

, ,
x x

n

Cov Cov i i
i

R U U R E x x


                                               (1) 

where , (1, , )
i

x i N    is transpose of xi. We sort eigenvectors by eigenvalues in decreasing order. 
These eigenvalues denote the significance of corresponding eigenvectors for expressing the 
spectrogram. The contribution rate of 

K
 is defined as:  

1 1
.

K M

K i ii i
  

                                                          (2) 

All eigenvectors of UM = [u1,…,uM] (M x M) span the subspace characterizing temporal-spectral 
distribution of echo signal. Particularly, basis vectors in UM is ranked by the importance in 
representing the echo spectrogram and the dominant structural information would lie in first several 
basis vectors. Based on aforementioned specifications, we can select first several basis vectors from 
subspace, i.e., N basis as UN = [u1,…,uN], 1 < N < M  to concentrate on predominant patterns in echo 
signal and remove the noise influence simultaneously.  

The selection of principle basis vectors is crucial for classification performance. From 
information coverage aspect, having more principle vectors means covering more patterns of the 
echo waveform. On the contrary, too few principle vectors of basis will certainly fail in depicting 
the echo. However, it doesn’t mean holding the most principle vectors is always better since the 
intra-class variations and noise will be counted into feature which leads to deterioration in 
discriminant performance. Due to the fact that echo signal is usually presents an impulse-like 
spectra distribution, we experimentally select first 2 principle basis vectors to represent echo signal 
for further discriminant study on Grassmann manifold. 

2.2 Grassmann manifold and distance for concrete condition assessment 

Based on the subspace representation of echo signal introduced in last paragraph, we further 
determine a proper protocol to investigate the relationship between subspaces. Grassmann manifold 
learning is the right solution to tackle such subspace-based learning problems. In this section, we 
firstly outline the definition of Grassmann manifold; second, we introduce the Grassmannian 
distances and discuss principle for distance selection for impact-echo work.  

 Formulation of Grassmann manifold : The linear subspace has been extensively studied 
and put into broad real-world applications, such as in face recognition [11]. However, the collection 
of linear subspaces forms a completely different space, which is specified as Grassmann manifold. 
As an effective mathematical tool for subspace-based analysis, Grassmann manifold has been 
recently introduced to signal processing field with successful applications [4]. We introduce the 
Grassman formulation for impact-echo test coping with uniform-filter bank-scale subspace 
representation of echo signal. Grassmann manifold G(k,D) is defined as the set of k-dimensional 
linear subspaces in the D dimensional space D . For a Euclidean representation of the manifold, 
consider the space ,k D  of all matrices with identical D x k size. Consider the group of 

transformations Y → YL, where L is nonsingular k x k matrix and Y ,k D . The group defines the 
equivalence relation of two elements in ,k D  : Y1 = Y2, if span (Y1) = span (Y2), Y1 ,Y2 ,k D . 
Therefore the equivalence classes of ,k D  are in one-to-one correspondence with the elements of the 
Grassmann manifold G(k,D) and G(k,D) can be formed as the quotient space: 

(0) (0)
, ,( , ) k D k kk D  G                                                                 (3) 
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The G(k,D) is an analytical manifold of dimension Dk – k2 = k(D-k), since for every Y regarded 
as a point in ,k D , the set of all elements YL in the equivalence class span the surface in ,k D  of 
dimension k2. Based on the definition of Grassmann manifold, lots of properties have been deducted. 
Particularly, we focus on distance measures on Grassmann manifold for impact-echo test using echo 
signal subspace. The detail is introduced in following section. 

 

  
 

Fig. 4. Principal angles and Grassmannian distances. 
 

 Distance selection on Grassmann for impact-echo: In this part, we address the distance 
metric selection on Grassmann manifold. In Grassmann learning, one most direct metric is the 
canonical distance describing the length of geodesic path connecting the two corresponding points 
on the manifold. It is also named as principal angles/canonical correlations. The definition is:  

Let Y1 and Y2 be two orthonormal D x k matrices. The principal angles 1 1 20       between 
two subspaces span(Y1) and span(Y2), are defined recursively by  

1 2( ) ( )
cos max max ,

m m
m m m

u span Y v span Y
u v subject to

 

                                       

1, 1, 0, 0, ( 1,..., 1).m m m m m n m nu u v v u u v v n m                                   (4) 

 
The (u1, u2,…, um) and (v1, v2,…, vm) are the basis vectors of two subspace and m  is metric between 
subspaces. We depict an explanation chart illustrating the subspaces distances in Euclidean space 

D  and Grassman manifold G(k,D) in Fig. 4. In Fig.4, span(Y1) and span(Y2) are two subspaces in 
the Euclidean space D  on the left. The distance between two subspaces Y1 and Y2 can be examined 
by the principal angles θ = [θ1, ... ,θk]. From the Grassmann manifold viewpoint, the subspaces 
span(Y1) and span(Y2) are two points on the manifold G(k,D), whose Riemannian distance is related 
to the principal angles by d(Y1, Y2 ) =||θ|| [12]. The smaller principle angles that manifest the 
subspaces are closed to each other. In addition to primitive principle angles, several Grassmannian 
distances have been proposed, e.g., max correlation 2sin2θ1, projection distancesin2θi and Binet-
Cauchy distance 1− cos2θi [4], etc. They are mostly deducted from principle angles.  

In this work, we adopt Arc-length Grassmannian distance, which is defined by: 

2 2
1 2( , )Arc i

i

d Y Y                                                                 (5) 

The Arc-length metric is derived from Grassmann manifold geometry and describes the length of 
geodesic curve linking two subspaces over the manifold. Our selection is based on following 
consideration: 1. to fully investigate similarities between echo-subspaces, it is better to evaluate all 
principle angles, not using single principle angle. Arc-length complies with such requirement, 
whereas max correlation and Procrustes distance that use smallest principle angle and Min 
correlation uses largest principle angle doesn’t. 2. As distance measure, symmetric property and 
triangular property are necessary, Arc-length also satisfies such properties. In section 3, we 
experimental validated our selection. 
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3 EXPERIMENTAL VALIDATION WITH REAL DATA 

To perform quantitative evaluation of proposed approach, we prepared three defect concrete blocks 
with 2cm, 4cm, 6cm depth hollows inside and one solid block. Ordinary MIC is used to capture 
responses of hammering impact over concrete. For every echo data sample, it is 1.5 second length 
sound including 3 consecutive hits. Subspace feature is extracted on every to generate stable pattern 
with regard to concrete condition. In Fig.5, we present an illustration of the extracted features, from 
which the condition-based discriminant power of the proposed feature can be clearly demonstrated. 
The subspace features forms several clusters corresponding to concrete conditions. In addition, we 
conduct comparative experiment by using peak echo frequencies of echo. The test data is the same 
as used in last test. The result is shown in Fig. 6 and in the result chart, and based on observation; 
there is no clear boundary in peak frequency measures for each condition of concrete. Notably, the 
last 5 echo for normal concrete were captured by hitting the area close to the edge which sounds 
differently comparing to the central parts of concrete. Therefore the peak frequencies vary sharply 
as marked in red. In contrast, such within-class variation doesn’t affect result produced by the 
proposed approach. Final condition-based assessment results are summarized by statistical test. 
 

 
 

Figure 5: Condition-based echo signal classification result 

 

Figure 6: Peak frequencies extracted from hammering echo on concretes 
 

At condition assessment stage, we employ principal angles to measure similarities between 
response signal on Grassmann Manifold and Leave-one-out (LOO) protocol is applied for statistical 
evaluation. According to Tab. 1, Echo signal corresponding to four conditions of concrete can be 
distinguished perfectly by the proposed method. Meanwhile, by comparison, the proposed approach 
significantly outperformed the conventional method using peak frequency of echo.  
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Table 1: Summarization of condition-based assessment results 
 

Conditions Solid 2cm depth void 4cm depth void 6cm depth void 

Sample No. 19 6 8 6 
Peak freq. reco. rate 73.68 50% 62.5% 100% 

Proposed method reco. rate 100% 100% 100% 100% 

CONCLUSION 

In this work, we present novel formulation for impact-echo analysis. Unlike conventional impact-
echo relying on peak frequency in spectrum of echo signal, we introduce subspace representation to 
characterize temporal-spectral distribution of response waveform. There are several advantages in 
doing so: 1. subspace representation effectively characterizes prominent time-frequency 2D 
distribution patterns of echo signal in addition to the frequency peak applied in conventional 
impact-echo. 2. Proposed method is conducted in local-region based manner including several 
consecutive echos, which produces more reliable results for concrete health assessment comparing 
to using point-wise method. 3. Grassmann manifold learning is designated for effectively measuring 
distances between subspaces, which is an ideal to work together with subspace feature in this task. 
We performed experimental validation on real data collection to validated the propose approach. 
Comparison results demonstrated effectiveness of the propose method. However, as a preliminary 
method, more detail settings would be further determined, such as perform band selection or 
importance weighting or introducing non-linear classification scheme with more data for more 
accurate condition-based assessment. 
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