Adaptive Detection of Structural Changes Based on Unsupervised Learning and Moving Time-Windows

Abstract : The present paper addresses data-driven structural health monitoring to propose a real time strategy for adaptive structural assessment. The adaptive character is achieved using unsupervised discrimination machine-learning methods, widely known as clustering algorithms. Real-time capability is based on the definition of symbolic data, which allow describing large amounts of information without loss of related information. The efficiency of the proposed methodology is illustrated using an experimental case study in which structural changes were imposed to a suspended bridge during an extensive rehabilitation program.
Type de document :
Communication dans un congrès
Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01021195
Contributeur : Anne Jaigu <>
Soumis le : mercredi 9 juillet 2014 - 10:17:47
Dernière modification le : jeudi 30 novembre 2017 - 09:36:01
Document(s) archivé(s) le : jeudi 9 octobre 2014 - 11:19:58

Fichier

0300.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01021195, version 1

Collections

Citation

João Santos, Luís Calado, André Orcesi, Christian Crémona. Adaptive Detection of Structural Changes Based on Unsupervised Learning and Moving Time-Windows. Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014. 〈hal-01021195〉

Partager

Métriques

Consultations de la notice

174

Téléchargements de fichiers

134