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ABSTRACT 

Sensor faults in wireless structural health monitoring (SHM) systems may reduce the 
monitoring quality and, if remaining undetected, might cause substantial economic loss 
due to inaccurate or missing sensor data required for structural assessment and life-
cycle management of the monitored structure. Usually, fault detection in sensor 
networks is achieved through a redundant deployment of sensors and further hardware 
components (“physical redundancy”), which involves considerable penalties in cost 
and maintainability. Overcoming these drawbacks, in this study the information 
inherent in the SHM system and the known relationships between the sensors are used 
for fault detection without the need for additional sensors (“analytical redundancy”). 
Furthermore, the analytical redundancy approach is implemented in a fully 
decentralized manner: Partial models of the SHM system, being embedded directly 
into the wireless sensor nodes, enable each sensor node to autonomously detect sensor 
faults in real time while efficiently using the limited computing resources. 

KEYWORDS : Autonomous fault detection, structural health monitoring, wireless 
sensor networks, smart sensors, analytical redundancy, artificial neural networks. 

INTRODUCTION 

Wireless SHM systems, if permanently installed on large-scale engineering structures such as 
bridges, dams, towers or wind turbines, require sensors operating correctly and precisely over long 
periods of time. However, when being deployed over extended time periods, sensors are 
increasingly exposed to harsh environmental conditions as well as ageing and degradation, which 
may cause less accurate sensor data or even sensor faults. Sensor faults, if remaining undetected, 
can propagate through the overall SHM system and may lead to severe failures that might degrade 
the overall system performance, decrease the system availability, or even cause a total system 
collapse [1]. 

Referred to as “physical redundancy”, a key technique towards fault detection in distributed 
systems is the multiplication, i.e. the redundant installation of hardware components such as 
sensors, data acquisition units, or computers. For example, for measuring one single parameter of 
interest, multiple sensors are physically installed. To make a decision whether one of the observed 
sensors is faulty, the outputs of the redundant sensors are compared with each other [2]. However, 
physical redundancy involves substantial penalties in cost and maintainability because multiple 
hardware components must be installed in the monitored structure. Overcoming these problems, the 
concept of “analytical redundancy” has emerged in the past decades, fostered by the rapid 
advancements in computer science and information technology. 

Instead of physically installing multiple sensors for measuring one single parameter, analytical 
redundancy takes advantage of the redundant information inherent in the observed system and of 
the coherences and relationships between the sensors that are regularly installed [3]. For each 
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observed sensor, virtual (i.e. model-based) sensor outputs are predicted based on measured outputs 
of correlated sensors and on a priori knowledge about the system. The virtual sensor outputs are 
thus representing non-faulty sensor operation. Comparing actual and virtual sensor outputs, 
residuals are generated, reflecting inconsistencies between the actual and the virtual sensor 
behavior. The diagnostic residuals serve as the basis for decision making with respect to potential 
sensor faults. 

In total, analytical redundancy has tremendous potential for reducing cost and power 
consumption of wireless sensor nodes while substantially increasing system availability, reliability, 
safety, and maintainability. An efficient approach for implementing fault detection applications 
based on analytical redundancy is the application of artificial neural networks [4]. Neural networks, 
composed of a set of processing units (neurons) and weighted connections between the units, are 
capable of accurately modeling non-linear and dynamic decentralized systems (such as wireless 
SHM systems) without the need for first-principle models and without a priori knowledge about the 
complex internal structures of the system observed [5]. Within a training phase, a neural network 
learns from existing relationships, i.e. from given pairs of input and output values, resulting in a 
non-linear black box model that is applied in a subsequent runtime phase. In the runtime phase, new 
input values are presented to the neural network. The neural network estimates the corresponding 
output values by adapting itself to the new inputs, which can advantageously be used in fault 
detection applications to estimate virtual sensor outputs based on actual sensor outputs of correlated 
sensors. 

The application of neural networks to fault detection in sensor systems and the design of 
“intelligent” SHM systems are not new [6, 7]; however, most existing studies tackle the problem of 
fault detection with centralized approaches. Sensor data originating from different sources is first 
transferred into a centralized repository and then analyzed with respect to sensor faults, which 
requires extensive global communication and large amounts of sensor data to be transmitted. This 
paper, by contrast, presents a decentralized approach towards fault detection in wireless SHM 
systems. Neural networks are embedded into the wireless sensor nodes that are installed in the 
monitored structure, enabling each node – that only communicates with its local neighbors – to 
autonomously detect and isolate sensor faults in real time. 

1 IMPLEMENTATION OF A PROTOTYPE WIRELESS SHM SYSTEM 

The prototype SHM system, in essence, is composed of a number of wireless sensor nodes, type 
“Oracle SunSPOT”, that are employed (i) to autonomously collect sensor data from the observed 
structure, (ii) to locally analyze the data, (iii) to aggregate the data, and (iv) to communicate with 
other wireless sensor nodes as well as with an Internet-enabled local computer. The local computer 
is primarily deployed to process and to store the sensor data and to support further (remote) data 
processing. 

For collecting, analyzing, aggregating and communicating the data sets, modular Java-based 
software programs, referred to as “SHM modules”, are embedded into the wireless sensor nodes. In 
addition to the SHM modules, further software programs, labeled “fault detection modules”, are 
embedded into the sensor nodes facilitating autonomous detection of sensor faults. In the following 
subsections, the design of the fault detection modules is presented. For details on the SHM modules, 
the reader is referred to [8, 9, 10]. 

1.1 Fault detection modules 

The fault detection modules embedded into the wireless sensor nodes integrate two major sub-
modules. As shown in Figure 1, each fault detection module includes a mathematical system model 
of the SHM system for computing the virtual sensor outputs and a decision logic for comparing 
actual and virtual sensor outputs. To illustrate the conceptual design of the fault detection modules, 
a typical SHM system is considered in Figure 1. The dynamic system has an input vector x and an 
output vector z. For a realistic system representation it is important to model all effects that can 
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affect the system, such as sensor faults, modeling errors as well as system and measurement noise. 
These effects are included in the fault vector f, which is f = 0 in the fault-free case and f ≠ 0 in a 
faulty case. Further effects relevant to fault detection are summarized in the vector of unknown 
inputs d. The mathematical system model, using the actual system inputs x (i.e. actual sensor 
outputs), estimates the virtual system outputs ẑ (i.e. virtual sensor outputs) that represent the outputs 
of the system in non-faulty operation. The residuals r between actual system outputs z and virtual 
system outputs ẑ are evaluated through the decision logic. 

1.2 Neural network architecture 

The mathematical model of the SHM system is divided into partial system models, each of which 
being embedded into one wireless sensor node. The partial system models are implemented by 
means of artificial neural networks that allow modeling the non-linear nature of the observed SHM 
system and estimating virtual sensor outputs without detailed knowledge about the complex internal 
structures of the system. The partial system models, in detail, are implemented based on multi-layer 
backpropagation feedforward neural networks, which have proven their effectiveness in parameter 
estimation problems in several engineering applications [11]. 
 

 
 

Figure 1: Conceptual structure of the embedded fault detection modules 
 

Before porting specific neural network instances on the wireless sensor nodes, the optimum 
network topology is determined on a desktop PC using training data recorded in preliminary 
laboratory tests [12]. As shown in Figure 2, the number of neurons on the input layer and the 
number of neurons on the output layer are predetermined by the sensors of the wireless SHM 
system; more precisely, the output layer contains the virtual outputs of an observed sensor estimated 
by the neural network, and the input layer corresponds to the correlated sensors. The optimum 
number of hidden layers, the optimum number of neurons per hidden layer as well as further 
network parameters (such as input functions, activation functions and learning parameters) are 
determined using a heuristic search followed by trial and error, which results in 2 hidden layers with 
3 neurons each (Figure 2). 
 

 
 

Figure 2: Topology of the neural network embedded into the wireless sensor nodes  
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2 LABORATORY EXPERIMENTS 

The prototype SHM system is mounted on a laboratory test structure shown in Figure 3. The test 
structure, a steel tower of 4.10 m height, is designed to map the main properties of a wind turbine 
[13]. The tower is connected to the ground through elastomeric spring elements that can be 
exchanged to vary the characteristics of the wind turbine foundation. On top of the test structure, 
steel plates are mounted, which represents nacelle and rotor of the wind turbine. The wireless sensor 
nodes, labeled A, B and C, are attached to the tower. According to the structural sections of the 
tower, the sensor nodes are installed at hA = 4.07 m, hB = 2.55 m and hC = 1.11 m as shown in 
Figure 3. In addition, a base station, connecting the wireless sensor nodes to the local computer, is 
placed next to the test structure. 

Two laboratory experiments are devised. In the first laboratory experiment, the performance of 
the SHM system under normal operation (i.e. in the absence of sensor faults) is validated. Then, in 
the second experiment the sensor data recorded from the test structure in the first experiment is used 
to train the neural networks of the wireless sensor nodes allowing the nodes to “learn” non-faulty 
sensor signatures or, in other words, to distinguish between non-faulty and faulty sensors. 
Furthermore, faults are injected into the wireless sensor nodes to investigate the fault detection 
capabilities of the SHM system. 

2.1 Real-time wireless monitoring under normal sensor operation 

In the first laboratory experiment, the wireless sensor nodes are deployed to analyze the modal 
properties of the test structure. For that purpose, the test structure is excited at the top of the tower 
by a horizontal deflection, forcing the tower to vibrate freely at its characteristic frequencies. 
Acceleration data is recorded through the nodes’ internal three-axis accelerometers, as shown in 
Figure 4, and it is analyzed directly on the nodes. For data analysis, each node calculates the 
frequency response function from the recorded acceleration time histories using an embedded FFT 
algorithm that is implemented to convert the measured accelerations from the time domain into the 
frequency domain [10]. 
 

     
 
 
 

 

Figure 3: Wireless SHM system 
mounted on the test structure 

Figure 4: Horizontal acceleration response 
recorded by the wireless sensor nodes 
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Thereupon, the primary modes of the test structure are derived through peak picking. The first 
fundamental frequency of the structure is calculated by the wireless sensor nodes in this experiment 
as 0.96 Hz, showing close agreement with the theoretical response analytically determined from a 
numerical model of the test structure. The test procedure conducted in this experiment is repeated 
10 times to obtain sufficient quantities of sensor data to be used in the second laboratory 
experiment. 

2.2 Autonomous detection of sensor faults 

In the second laboratory experiment, the previously obtained acceleration data is used (i) to train, 
(ii) to validate, and (iii) to test the neural networks of the wireless sensor nodes. For every sensor 
node, a total of 2,560 data points originating from the 10 test procedures is randomly subdivided 
into three disjoint subsets, 80% of which serving as training data (training set), 10% are used for 
cross validation (validation set), and 10% are used for testing the neural networks (test set). First, 
the training set is applied to adjust the weights of the neuron connections of each neural network 
using a backpropagation algorithm as introduced in [12]. Each network is trained several times with 
random initial weights to avoid local minima problems when determining the optimum connection 
weights. The validation set is used to monitor the network error during training and to stop training 
when the error – the mean squared error between the desired and the estimated outputs – is less than 
the predefined threshold of 0.002. 

Once the connection weights are fixed, the test set is applied to evaluate the fully trained neural 
network of each sensor node and to confirm the predictive power when estimating sensor outputs. 
Therefore, the data points of the test set are fed into each neural network, and the estimated sensor 
outputs are compared with the desired sensor outputs included in the test set. By the example of 
sensor node B, Figure 5 illustrates a time history of horizontal acceleration (recorded during 
excitation of the test structure) and the corresponding acceleration estimated by the neural network. 
The goodness of fit of the embedded neural network to the measured acceleration data is determined 
by the coefficient of determination R2. As can be seen from Figure 6, the neural network is able to 
predict the acceleration of the test structure with R2 = 0.984, which is above the minimum 
regression coefficient R2

min = 0.950 that is defined in this study as a threshold to be met for applying 
a fully trained network for fault detection. 

Upon completing the training procedure, the fault detection capabilities of the SHM system are 
validated. Several faults are simulated by changing the code of the software that is embedded into 
sensor node B for collecting and analyzing acceleration data. The fault injection is exemplarily 
illustrated by simulating a sensor drift – a fault type known to be most difficult to detect [14]. While 
sensor node B is affected by the simulated fault, sensor node A and sensor node C are able to 
continue running in normal operation. 

 
 

           
 

Figure 5: Acceleration measured (solid line) and 
estimated (dashed line) 

 

Figure 6: Prediction performance of the neural 
network (sensor node B) 
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Figure 7 depicts the time history of simulated residuals between the actual measurements and 
the virtual sensor outputs estimated by the neural network of sensor node B. As can be seen from 
Figure 7, the drift is inserted at t = 5 s. The time-varying drift is simulated by adding a ramp with a 
slope of 0.03 g/s to the regular accelerometer output. In the simulation, the fault is detected by 
sensor node B at about t = 11 s once the pre-defined threshold of ±0.2 g is exceeded. At t = 18 s, the 
automated fault correction is triggered, because the residuals are permanently out of the tolerable 
range since t = 13 s, i.e. for more than t = 5 s, where the time span t is chosen based on data 
processing constraints. From this moment on, the virtual sensor outputs of sensor node B are used in 
lieu of the actual measurements recorded by the faulty accelerometer. Otherwise, the faulty sensor 
would continue feeding incorrect measurements into the SHM system, affecting the monitoring 
quality of the SHM system and the fault detection capabilities of the other wireless sensor nodes. 

Although, for the sake of clarity in this paper, the sensor drift exemplarily injected has a 
relatively large slope value (0.03 g/s), it is clear that the embedded fault detection modules detect 
more subtle drifts of smaller slope values with the same accuracy and with a small probability of 
false alarms; the fault detection of smaller drifts just takes a longer time because the time span 
between occurrence of the fault and fault detection depends on the fault magnitude and on the 
thresholds defined for the diagnostic residuals. 
 

 
 

Figure 5: Residuals associated with a sensor drift 

SUMMARY AND CONCLUSIONS 

A decentralized analytical redundancy approach towards autonomous fault detection in wireless 
SHM systems has been presented. Instead of physically installing multiple redundant sensors, which 
would involve substantial penalties in cost and maintainability, the information inherent in the SHM 
system and the known relationships between the sensors have been used for fault detection. 
Furthermore, as opposed to traditional centralized approaches towards fault detection that require 
extensive global communication between the sensor nodes as well as large amounts of sensor data 
to be transmitted, the analytical redundancy approach presented in this study has been implemented 
in a fully decentralized fashion.  

Partial models of the SHM system, implemented through multi-layer backpropagation 
feedforward neural networks, have been embedded into the wireless sensor nodes, allowing each 
node to autonomously detect sensor faults. The results obtained from the laboratory experiments 
clearly demonstrate that the analytical redundancy approach based on neural networks facilitates 
reliable real-time fault detection in wireless SHM systems. While efficiently using the limited 
computing resources, even difficult fault types such as sensor drifts are detected. Furthermore, it 
could be proven in this study that autonomous, decentralized fault detection is possible without the 
need for first-principle models and without a priori knowledge about the internal structures of the 
SHM system observed. 
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