Algorithm Fusion in Novelty Detection

Abstract : Algorithm fusion has received significant attention in the machine learning community in supervised learning mode but it appears little has been done at this point in a novelty detection framework. This paper examines the merit of a fusion strategy wherein metrics from multiple algorithms are treated as entries of a vector whose probability density is subsequently estimated and used for detection. In the present paper the framework is investigated using two algorithms: 1) a robust version of a whiteness test on Kalman filter innovations and 2) a robust version of a scheme that operates with residuals obtained from an orthogonality test. The density estimation part of the process is replaced by the Kernel PCA algorithm which provides a decision boundary without having explicit density estimates. The fused scheme is implemented in a change detection format and is show to provide notable improvements over the use of either algorithm independently.
Type de document :
Communication dans un congrès
Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01021206
Contributeur : Anne Jaigu <>
Soumis le : mercredi 9 juillet 2014 - 10:20:25
Dernière modification le : mercredi 9 juillet 2014 - 15:27:06
Document(s) archivé(s) le : jeudi 9 octobre 2014 - 11:22:00

Fichier

0259.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01021206, version 1

Collections

Citation

Dionisio Bernal. Algorithm Fusion in Novelty Detection. Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014. 〈hal-01021206〉

Partager

Métriques

Consultations de la notice

93

Téléchargements de fichiers

97