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ABSTRACT 

Roadway agencies and state DOTs utilize Pavement Management Systems (PMS) to 

implement cost-effective maintenance strategies.  A reliable yet easily applicable 

model for deterioration process of pavements is an integral part of any Pavement 

Management System. As pavement condition grows to be one of the crucial problems 

facing our nation, the reliability of these deterioration prediction models becomes more 

important. While numerous endevours have been made to capture the effect of the 

environment, load and pavement’s structure on pavement failures, only few have 

realized the impact of severe events such as Snow Storms and Floods on road 

infrastructures. First, this impact was quantified using Long Term Pavement 

Performance (LTPP) and National Oceanic and Atmospheric Administration (NOAA) 

databases with a dependable natural deterioration model. Then, a regression-based 

statistical approach has been undertaken to model the effect of snow storms and floods 

on pavement serviceablilites based on the severity of the events and condition of the 

pavement prior to these event.  Final models rendered more than 90% correlation with 

the quantified impact values of snow storms and floods. 

KEYWORDS : Deterioration Modeling, Pavement Management, Infrastructure 

Monitoring, Statistical Analysis, Data Fusion. 

1. INTRODUCTION 

Restoring serviceability of roadways has prominent societal and economic benefits. However, 

insufficient funding often limits timely repairs and rehabilitation of the pavement. As needs 

continue to outpace the availability of funding, the proper selection of road maintenance and 

improvements becomes more crucial [1]. To maximize the benefits and minimize the overall costs 

of maintaining or preserving the transportation systems, highway administration has provided 

guidelines for developing pavement management systems as early as the 1970s [2]. Hudson et al. 

[3] describe a pavement management system (PMS) as “…a coordinated set of activities, all 

directed toward achieving the best value possible for the available public funds in providing and 

operating smooth, safe, and economical pavements.”  

Success of planning or project prioritization in the PMSs depends on the accuracy of the predicted 

future performance and available up to date pavement condition information. Being able to project 

when a pavement needs to be repaired before the pavement fails is an integral part of any successful 

PMS. Prediction of pavement deterioration influences the quality of many PMS components such as 

determining the number of years when rehabilitation will be needed, corresponding treatment 

alternatives for future years and selecting the most cost-effective maintenance and rehabilitation 

(M&R) alternatives [4]. A solid deterioration model will not only help road controlling authorities 

in cost-effective scheduling of maintenance activities and budget allocations, it can also be 

employed for the design of pavement structures. Consequently, these models can be utilized for 

evaluation of different design, maintenance, and rehabilitation strategies based on geographical 

regions, estimated volumes of traffic and other factors [5]. 
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1.1 GENERAL INFLUENCING PARAMETERS ON PAVEMENT PERFORMANCE 

Interactions between climate, vehicles and the road result in deformation and deterioration of 

pavements. Predicting this behaviour is not easy. While deterioration models for rigid pavements 

have had a decent performance, because of the the high visco-elastic characteristic of the asphalt, 

current deterioration models for flexible pavements have had limited success so far. 

Pavement infrastructure deterioration is an aggregated impact from traffic loading, environmental 

condition, and other contributors. The behaviour of a pavement under these factors depends on the 

characteristics of its structure (materials and thickness of each pavement layer), the quality of its 

construction, and the subgrade (bearing capacity and presence of water) [6]. Each factor causes 

certain distresses on the pavement. Understanding factors that lead to deterioration of roads help 

infrastructure managers to refine their construction and maintenance specifications.  

Load: Cracking and rutting caused by pavement bending under traffic loads are two of the most 

prominent forms of distresses. Tire pressure produced by vehicles in the radius of loaded area 

induces tensile stress on the pavement, lateral shear in the surface and vertical stress at the subgrade 

which gradually deteriorate the pavement [7].  

Material Properties: Severity of distresses and the pace of their formation is heavily influenced by 

material properties of the pavement. Strength and bearing capacity, gradation, modules of elasticity 

and resilience of the materials used in construction determine pavements endurance under load and 

climate fluctuations. [8]. 

Construction Quality: Freitas et al. [9] shows that construction quality influences the two 

significant factors in initiation of top-down cracking: voids and aggregate gradations caused. 

Construction quality also determines the initial pavement condition which has an impact on the pace 

that pavement failures occur.  

Environmental Conditions: Climate oscillations, precipitation and freeze/thaw cycles are the 

primary causes of some dominant distresses such as longitudinal and transversal cracks [10]. 

 Temperature: Temperature fluctuations are followed by tensile and compressive stress in 

pavement which initiates thermal cracking. Smith et al [11] shows a correlation between 

pavement deterioration and temperature where surge in temperature facilitates rutting and 

cracking in the pavement. 

 Precipitation: Studies on pavement performance evaluations show that other than 

formation of longitudinal and alligator cracks, roughness of the road also worsens with a 

boost in precipitation. 

 Freeze/thaw cycles: In cold regions, water penetrated into the pavement layers freezes in 

the winter. Thaw of these ice particles during spring causes deformation in pavement layers 

and triggers fatigue cracking [12]. 

1.2 TYPES OF DETERIORATION MODELS 

Depending on how aging of the pavement is simulated, road deterioration models can be 

categorized into deterministic and probabilistic models.  

Deterministic models are data driven mathematical functions typically trained with large amounts of 

datasets measured over a long period of time. Using these mathematical functions, these models 

predict future road conditions as a single value. 

Probabilistic models, on the other hand, provide a range of possible outcomes with the probability 

of their occurrences. These models are also referred to as Markov prediction models. Although 

considerable effort has been devoted to improve the quality of the probabilistic modeling of 

pavement deterioration, the applicability of their transition matrix is limited to only several widely 

spaced categories typically classified by traffic volume, pavement structure and climate regions 
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[13]. Additionally, the fact that these models are used discrete in time led us into adapting 

deterministic approach in this paper. 

1.3 PAVEMENT PERFORMANCE MEASURES 

Pavement performance can be obtained by observing or predicting the serviceability of a pavement 

from its initial service time to the desired evaluation time. Typically pavement condition is 

evaluated according to four evaluation measurements: roughness, surface distress, structural 

capacity, and skid resistance. Indices have been developed to measure pavement performance in 

terms of one or multiple of these aspects. For example, the International Roughness Index (IRI) is 

used to characterize the ride quality of a pavement, whereas the Structural Number (SN) is 

employed to quantify the structural capacity. These four can be combined and presented by an 

overall condition index, such as the Pavement Condition Index (PCI), which entails information on 

more than one of the above evaluation measurements [14]. Discussions here are focused on using 

the IRI as the performance measurement of pavement sections. 

Typically obtained from longitudinal road profiles, ASTM defines IRI as “a quantitative estimate of 

a pavement property defined as roughness using longitudinal profile measures.”[15] IRI is widely 

used for evaluating and managing highways since the early 1980s.   

1.4 DETERIORATION MODEL DUE TO NATURAL CONDITIONS 

The Long-Term Pavement Performance (LTPP) program was established to collect pavement 

performance data and investigates pavement related details which are critical to pavement 

performance since the late 1980s. Over 2,500 test sections on highways throughout North America 

are monitored by LTPP. Following seven modules are measured: Inventory, Maintenance, 

Monitoring (Deflection, Distress, and Profile), Rehabilitation, Materials Testing, Traffic, and 

Climatic. Now that LTPP database contains more than two decades of data, valuable insights can be 

extracted from studying it. 

Using provided data from LTPP, Jackson et. al. [12] preformed a multivariate regression analysis to 

predict pavement deterioration in terms of serviceability. They considered the following factors in 

the analysis: 

 

 Pavement types (rigid, flexible). 

 Climate (Precipitation, Cooling Index, Freezing Index, and thawing index). 

 Stresses and strains calculated from layer material properties. 

 Performance data (IRI). 

 Soils and material properties. 

 Traffic data. 

 

Predicted performance measures were presented for each of the climatic scenarios and compared at 

a 95 percent confidence interval to determine statistically significant performance differences. 

Jackson et. al. then derived an equation for both rigid and flexible pavements. As more than 85% of 

the roads in the United States are flexible pavements, we focus on the flexible pavements, see 

equation below: 

 

SNESALPRECIPFTCCIFIAgeIRILn /)log(39.54.209.178.15.4()1(          (1) 

 

Where: 

∆IRI:     Change in International Roughness Index 

Age:     Pavement Age 

FI:     Freezing Index (Degree-days when air temperatures are below and above zero 

                degrees Celsius) 
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CI:     Cooling Index (Temperature relation to the relative humidity and discomfort) 

FTC:     Freeze-thaw Cycles 

PRECIP: Precipitation  

ESAL:    Equivalent Single Axle Load (Conversion of traffic into single axle load) 

SN:     Structural Number 

 

Using large amounts of data for a long period of time in addition to the high correlation rendered at 

the end indicates the achievements of this model. However, this model still does not consider an 

important contributor in pavement deterioration: Effect of Extreme Conditions on road pavements.  

The devastation of New Orleans caused primarily by the breach of a levee during hurricane Katrina, 

the impact of hurricane Sandy on New York and New Jersey, a 16% immediate drop in road 

conditions of Denver in Colorado due to sever snow storms in 2006 are some examples that 

highlight the drastic effect severe events could have on pavements [16, 17]. Our purpose here is to 

quantify the contribution of two most prevailing events on pavement deterioration: Snow Storms 

and floods. These events exacerbate road conditions by causing shear failure and cracking, 

weakening the subgrade and widening the existing cracks, mainly due to the drastic increase in 

moisture content they cause in the pavement layers.  

2. DETERIORATION MODEL DUE TO EXTREME EVENTS 

Two consecutive IRI values of LTPP sections are measured one to four years apart and in irregular 

intervals. As no continuous data is available that entails IRI values of before and after a severe 

event, we had to quantify the effect of extreme events ourselves. 

By applying equation (1) and project one measured IRI to the point where the next IRI is measured, 

the two values should be reasonably close unless: 

 Extreme events such as floods and snow storms occured in that period. This causes our 

projected IRI values to be lower than the measure values. 

 Maintenance and rehabilitation activities took place in that period. This causes our projected 

IRI values to be higher than the measured values. 

 

To quantify the effect of extreme events on road deterioration, by forward-projected IRI values 

from one measured IRI to the point where the event has occurred. Consequently, we backward-

projected next measured IRI to the point where event has occurred ; the difference between these 

two values is due to the extreme event that happened in that month if no other events/maintenance 

activities had taken place in that period. This is illustrated in Figure (1). To fit a model to these 

quantities, we had to first collect the data we needed. 

 
Figure 1: Quantifying the increase in IRI due to extreme events. 
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2.1 DATA COLLECTION 

In addition to the occurrence date of extreme events and the parameters that would define their 

magnitude and effect, all of the variables in equation (1) had to be collected. We acquired the first 

from LTPP and the latter from National Oceanic and Atmospheric Administration (NOAA). 

Datasets were collected from January 1996 to December 2013 for the states of Florida, New Jersey, 

Ohio and Illinois. These states had the most comprehensive datasets available on LTPP and are 

more susceptible to frequent snow storms and floods. 

LTPP Data Collection: Most of the parameters were given in an annual format (e.g. FTC, FI, etc.) 

in the LTPP database. To isolate effect of an extreme event from natural deterioration, we 

transformed all datasets to a monthly format. This process involved interpolations and further 

calculations for some of the parameters, each had to be dealt with individually according to their 

meaning. The LTPP database lacked data in some places, some considerations and calculations had 

to be made, such as calculating cooling indices based on daily temperature, assigning missing SN 

values based on a study of pavement type and structural number of sections in that region and 

calculating missing ESAL values from available daily traffic and axle loads/numbers of vehicles. 

NOAA Data Collection: NOAA is a scientific agency focused on the conditions of the oceans and 

the atmosphere [18]. This database contained information on Snow Storms and Floods, their date of 

occurrence, duration and accumulated depth of water or snow. 

Using data from these four states, most of the time more than one event occurred between two 

consecutive measured IRIs. We considered the points where the extra increase in IRI was due to 

only one event to calculate the parameters of the model more realistically. Figure (2) shows an 

example of how data points were reduced for each state and we ended up with less than 50 points 

for each individual event. 

 

 

                                                       
Figure 2: Ohio Data Collection for Snow Storms 

 

 

2.2 IMPLEMENTATION 
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Other than magnitude of the extreme event in terms of depth and duration, traffic (ESAL) and IRI 

values at time the event occurred were considered as predictors of deterioration. While each of these 

parameters provides worthy knowledge about this deterioration process, none alone can furnish 

sufficient information that will entail all needed to calculate the effect of Snow Storms. Our purpose 

here is to predict an increase in IRI from the right combination of all these parameters.  

Data fusion algorithms have been developed to deal with these challenges. Pattern recognition, 

artificial intelligence and regression are some common fusion techniques. Deciding what algorithm 

to use depends heavily on the application and what is expected from the fusion system. Here, we are 

looking for an algorithm that is adept at variable selection as we might conclude that not all of these 

parameters are necessary to predict IRI scores. Looking at the high correlations between our 

variable and predictors in Table (2), regression would be worthwhile to consider. Another reason 

for considering regression is our limited number of data points, regression could deal better with 

them than some machine learning techniques such as Neural Networks [19]. 

 
Table 2: Correlation of Predictors with percentage increase in IRI due to the extreme event 

 

Predictor Correlation with %ΔIRI for Snow Storms Correlation with %ΔIRI for Floods 

Initial IRI 0.721 0.317 

ESAL 0.163 0.033 

Event Depth 0.046 0.089 

Event Duration 0.015 0.383 

 

Regression is a statistical tool for exploring relationships between variables that are related in a 

nondeterministic manner. Our proposed model here is Stepwise Regression. Stepwise regression 

enters and removes variables one at a time to see whether it improves the model. Usually, this takes 

the form of a sequence of F-tests, but other techniques such as t-tests, adjusted R-square, Bayesian 

information criterion, or false discovery rate are also possible [20].  

3. RESULTS 

Snow Storms: Stepwise regression was applied using all the four parameters shown in Table (2) in 

addition to four combinations of them. From the 42 available sections, 29 were entered into the 

fusion model along with all the potential predictors and response variables calculated for these 

streets to train the model. These sections were handpicked for training as they entail a diverse range 

of our predictors and response variable in order to fine-tune the fusion model’s boundaries. The 

fusion model used is shown in Figure (3). 

In the final model, only four parameters were sufficient to predict IRI values, and the presence of 

any other parameter with the existence of these four was trivial, if not harmful, to the correlation 

rendered by the model. The final equation derived through the fusion model is: 

 

DurationESALNDurationNDepthNIRIIRI *706.074.17.15.209.5%                           (2) 

 Where: 
%ΔIRI:  Percentage increase in IRI due to the snow storm   

NIRI:   Normalized IRI of the section before the snow storm   

NDepth:  Normalized Depth of the snow storm   

NDuration: Normalized Duration of the snow storm   

ESAL:   Equavalent Single Axle Load (derived from traffic)  

Floods: Similar to what was discussed above, eight parameters were entered into a stepwise 

regression model for 28 sections affected by a single flood, the remaining 7 sections were used for 

testing. The final equation derived through the fusion model is: 
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IRIDepthNDurationNDepthNIRIIRI *3.1410.230.766.17.10%                      (3) 

                                                                                                                                                      
 

Figure 3: Illustration of fusion model for Snow Storms. 

3.1 TESTING THE MODELS 

IRI values of the remaining sections were predicted with the models developed above. Results were 

promising, rendering correlations of more than 90% for both events as shown in Figure (4).  

 

        Figure 4: Test Results for Floods (Left) and Snow Storms (Right). 

CONCLUSION 

This paper has studied the effect of snow storms and floods on pavement deterioration in terms of 

increase in International Roughness index (IRI) values. Extracting data from the Long Term 

Pavement Performance (LTPP) and National Oceanic and Atmospheric Administration (NOAA) 

databases for four states in the span of seventeen years, the effect of a single snow storm/flood was 

quantified between two consecutive measured IRIs. Then, a regression-based statistical approach 

has been undertaken to model this behaviour with respect to magnitude of the events, traffic at time 

of the event and condition of the road at time the event occurred. Testing both flood and snow storm 

models on IRI prediction for sections that were not included in the training process rendered more 

than 90% correlation with the real values. Adopting this model along with a reliable natural 
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deterioration model will result in a more realistic assessment of future costs, maintenance planning 

and rehabilitation activities.  
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