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ABSTRACT

Score-Based Interactive Music Systems (SBIMS) are in-
volved in live performances with human musicians, re-
acting in realtime to audio signals and asynchronous in-
coming events according to a pre-specified timed scenario
called a mixed score. This implies strong requirements of
reliability and robustness to unforeseen errors in input.

In this paper, we present the application of formal meth-

ods for black-box conformance testing of embedded sys-
tems to SBIMS’s. We describe how we have handled the
3 main problems in automatic testing reactive and realtime
software like SBIMS: (i) the generation of relevant input
data for testing, including delay values, with the sake of
exhaustiveness, (ii) the computation of the corresponding
expected output, according to a given mixed score, (iii) the
test execution on input and verdict.
Our approach is based on formal models compiled from
mixed scores. Using a symbolic checker, such a model is
used both for (i), by a systematic exploration of the state
space of the model, and for (ii) by simulation on a given
test input. Moreover, we have implemented several sce-
narios for (iii), corresponding to different boundaries for
the implementation under test (black box). The results ob-
tained from this formal test method have permitted to iden-
tify bugs in the SBIMS Antescofo.

1. INTRODUCTION

Interactive music systems (IMS) presented in [1] are in-
volved in live music performances with human musicians.
They work by coupling functionalities of artificial listen-
ing, in particular score following and tempo detection, and
of reactive systems, for synchronizing their outputs to mu-
sician inputs. In the case of SBIMS, all these activities
are performed in realtime following a pre-specified timed
scenario called a mixed score, written in a domain specific
language (DSL).

During an instrumental performance, when a musician
does a mistake, the piece must and will continue. However,
IMS practitioners know that a crash or misbehavior of an
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IMS can jeopardize a mixed instrumental-electronic per-
formance. In order to avoid unforeseen errors of an IMS at
runtime, and meet listeners’ expectations, it is important to
be able to explore, statically, its reactions to possible mu-
sician’s interpretations, and check that they conform to the
behavior specified in the given mixed score. This difficult
task is complicated by high unpredictability of musicians’
inputs and hard temporal constraints (due in particular to
the strong requirements of audio computing platforms).

A traditional and manual approach is to rehearse with mu-
sicians. However time is precious during a rehearsal, and
its purpose is usually more to solve musical questions than
to fix bugs. It is also possible to listen to an IMS play-
ing with some recordings of musicians, checking that the
system is not crashing and that the result sounds in a satis-
fiable way. The problem with this approach is that, on the
one hand, the test input is not complete (it just represents
one or a few particular performances), and on the other
hand the verification of the outcome is not rigorous.

generation execution

Model (M) Qut trace (tin) =9 Real output trace (f0,;)

Expected output trace (fou:) ==p Compare

b
Verdict

Figure 1: Principles of Model Based Testing

Several formal methods have been developed for auto-
matic conformance testing of critical embedded software,
see e.g. [2]. The principle (Figure 1) is to execute a real
implementation under test (IUT) in a testing framework.
When the source code of the IUT is not known and only
its input and output are observed, we call it black-box test-
ing. In conformance model-based testing (MBT), a for-
mal specification, or model M of the system is written
(in general manually) and used to generate automatically
some test data. This comprises input test data ¢;,, sent to
the IUT, and theoretically expected output test data oy,
computed from t;, using M. The latter ¢, is then com-
pared to the real output test data ¢/ ., obtained from the
IUT when it receives t;,, in order to produce a test verdict.
This procedure is iterated on a large base of pairs (tin, tout),
which is generated, for exhaustiveness purposes, accord-
ing to a user specified covering criteria, expressed as a
formula referring to elements of M. This provides a rig-
orous mathematical framework, increasing the confidence
in the tested systems and reducing test costs. For realtime


mailto:clement.poncelet@ircam.fr
mailto:florent.jacquemard@inria.fr
http://creativecommons.org/licenses/by/3.0/

systems such as communication protocols, transportation
control etc, like for IMS, time is a semantical issue (not
just a measure of performance), and it must be included in
test data, which become timed traces.

This paper presents a study of the application of MBT
methods to the SBIMS Antescofo, developed at Ircam and
used regularly in concerts. This system shares several char-
acteristics of the reactive and realtime systems usually tar-
geted by MBT, but also has its own specificities. In partic-
ular, the formal specification of the IO behavior of the sys-
tem is produced automatically from a given mixed score,
using a front-end compiler into an ad hoc intermediate rep-
resentation (IR). This is in contrast with usual MBT case
studies where the specification has to be written manually
by an expert in formal methods. After a brief presentation
of Antescofo and its score DSL (Sections 2.1 and 2.2), the
test data is presented in Section 2.3. Then we describe
some test scenarios that we have used for Antescofo (Sec-
tion 2.4). Some are running in real time, some running in
a fast forward mode thanks to implementation of virtual
clocks in Antescofo. The automatic construction of formal
model, using IR, is presented in Section 3. In particular,
we show how we used the symbolic model checker Up-
paal [3] based on timed automata model, and its extension
CoVer [4] for the production of test input data with cover-
ing criteria.

The test outcome permits us to prepare concerts, by simu-
lation of covering sets of fake musician performances (the
test input ¢;,,) derived from a given mixed score. Moreover,
it increases the guarantee on the reliability on the system,
with a systematic analysis of test outcome, exploited for
debugging.

2. TEST FRAMEWORK FOR A SBIMS

We present in this part the principles of a testing frame-
work that we have developed for the SBIMS Antescofo !,
following the approach depicted in Figure 1.

2.1 Antescofo

Collective music performance involves several complex and
sometimes implicit activities. The system Antescofo aims
at acting as an electronic musician interacting with human
musicians, implementing these behaviours. For this pur-
pose, the system takes as input a mixed score which de-
scribes in the same file some musician and electronic parts.
During a performance, the system synchronizes the elec-
tronic parts to the musician’s ones: it aligns in realtime the
performance of human musicians to the score, handling
possible errors, detects the current tempo, and plays the
electronic part, following the detected tempo. Playing is
done by passing by messages to an external audio environ-
ment such as MAX or PureData. A popular particular case
of this behavior is automatic accompaniment [5].
Antescofo is therefore a reactive embedded system, inter-

acting with the outside environment (the musicians), under
strong timing constraints; the output messages must indeed
be emitted at the right moment, not too late but also not too

"http://repmus.ircam. fr/antescofo
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Figure 2: Architecture of Antescofo

early. Figure 2 shows the Antescofo architecture. Our elec-
tronic musician is composed of two units. A listening ma-
chine (LM) receives an audio or midi stream from a musi-
cian and detects in realtime his position in the mixed score.
This score following feature is coupled with a function of
tempo inference based on Large’s algorithm [6]. The posi-
tions and instantaneous tempo detected by the LM are sent
to a reactive engine (RE) which schedules the electronic
actions to be played and emits on time messages to the au-
dio environment. Note that the information exchange be-
tween LM and RE is discrete, as well as the output of the
system (messages sent).

2.2 Mixed Scores DSL

The mixed scores of Antescofo are written in a textual re-
active synchronous language describing the electronic ac-
companiment as reaction to the detected instrumental events.
A simplified extract of the score of Einspielung I> by Em-
manuel Nunes is presented in Figure 3. This piece for vi-
olin and electronics will be used as a running example in
this paper.

We give here an abstract syntax corresponding to a small
part of this language, following our needs for presenting
our test framework. The reader can find more complete
descriptions in [7, 8].

Formally, an Antescofo mixed score is a finite sequence
of input events ey, ..., each event being bound to a finite

2nttp://brahms.ircam. fr/works/work/32409/

bpm 144
note D4 1/7 eventl
0 a0
group 0 gl @loose @global

{

0 al
1/7 a2
1/7 a3
1/7 a4
1/7 a5
1/7 a6
1/7 a7

}
chord ( B3b D4) 1/7 event2

chord ( E4 D4) 1/7 event3
chord ( D5# D4) 1/7 eventd
chord ( A4 D4) 1/7 event5
chord ( C4b D4) 1/7 eventb
chord ( G4 D4) 1/7 event7

Figure 3: Simplified extract of Einspielung in Antescofo
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sequence of triggered actions called act(e;). In the fol-
lowing, a finite sequence of actions is called group, and
act(e;) is called top-level group triggered by e;.

An event e; is a tuple (i, ¢, d, g) made of the unique iden-
tifier 4 (event number), some event data c, the event’s dura-
tion d (also denoted dur(e;)), expressed either in number
of beats of tempo or milliseconds (ms), and group g trig-
gered by e;. The event data contains information such as
the event kind (note, chord, trill...), and pitch values. An
important point here is that on detection of an event, the
LM will return the id ¢ to the RE (and not simply the pitch).
Note that all values in Antescofo, including durations, are
expressions which can possibly contain variables (global
or local to groups) and functions.

An action is a pair a = (d, g) where d is a delay (in beats
or ms) and g can be either an atom or a group. An atom is a
control message sent to an external audio system — MAX or
PureData or a computation of the form = := exp where x is
a variable and exp an expression. Note that with the above
recursive definition, the groups can be nested arbitrarily, in
order to reflect some musical intention. Moreover, every
action is contained in a group, called its container.

The delay d in a = (d, g) is the time to wait before start-
ing to play g, after the trigger of a has been detected (if it
is an event) or started (if it is an action). The trigger of an
action a with container ¢’ is defined as follows. If a is not
the first action of ¢/, then its trigger is the action preceding
a in ¢’. Otherwise, either ¢’ is a top-level group act(e;)
and the trigger of a is e;, or ¢’ is in an action o’ = (d’, ¢’)
called parent of a and the trigger of a is the trigger of a’.

Some high-level attributes can be added to groups to ex-
press an expected behavior for musician-electronic syn-
chronization and error handling, corresponding to a partic-
ular musical situations [5]. In this paper, we shall consider,
for illustration purposes, a small sub-set of attributes : two
synchronisation attributes:

loose: Synchronization on tempo. Only the tempo is
used to compute the delays of the group’s actions.

tight: Synchronization on events. Every action in the
group is bound to the closest event.

and two error management attributes. In Antescofo, an er-
ror is a missing event (note), either because the musician
did not play it or else because the LM did not detect it (e.g.
because it is not well tuned).

local: Skip. If the triggering event is missing, the actions
of the group are skipped.

global: Immediately. The actions are started immediately
at the detection that the triggering event is missing.

Roughly, the synchronisation attribute expresses how smo-
othly (for loose) or not (for tight) the electronic part should
be played. The error management specifies the importance
of the actions. Figure 4 illustrates Antescofo’s behavior for
various compositions of attributes for the group in the ex-
tract of mixed score of Figure 3. Note that in the score, the
attributes loose and global have been chosen.
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Figure 4: Attribute specification (el and e4 missed)

2.3 Test Input and Output Data

What is the form of the input data send to the SBIMS for
testing its behavior, as well as the output data collected for
analyzing the results of tests?

Basically, a test input is a trace of events representing
a musician performance and an output is a trace of ac-
tions representing the electronic accompaniment generated
in reaction to the input. For reactive and realtime IMS, time
is a semantics property, and the dates at which events and
actions are played must be included in test input and output
data (timestamps). This is in contrast with functional pro-
grams, computing output from the given input, for which
it is sufficient to consider, for testing, untimed data values.

A grand challenge for the design and implementation re-
altime embedded systems (including IMS) is to reconcil-
iate two time units [9]: the time of the environment and
the time of the platform. The first is the physical time, ex-
pressed in milli-seconds. The second is a logical time used
by the system in its computations. For IMS, the logical
time unit is the number of beats, it is called relative time in
the rest of the paper. Hence, in IMS, reconciliation of the
times of environment and platform is done through tempo.

A test input trace t;, is a finite sequence of triples (i, d, T')
made of an event identifier ¢ (pointing to an event e; in a
given mixed score), a duration value d expressed in relative
time (like in the score), and the instant tempo 7" between
e; and the next event in the trace, expressed in beat per
minute. Note that missing events can be specified, by ab-
sence, in t;,: the event e; is missing in a ¢;, of the form
ceey <’L — 1, d¢_17ti_1>, <Z + 1, di+17ti+1>, .

As an example, from a mixed score eg, es, ... we can di-
rectly generated the so called ideal trace (1, dur(ey),T),
..., where T is the tempo specified in the score * (see Fig-
ure 5). This trace corresponds to the performance of a
robot, playing exactly the notes and durations specified.
An expected output trace toy: (resp. real output trace t,)

(1,177, 144) - (2, 177, 144) - (3, 1/7, 144) - ... - (7, 1/7, 144)
(a0,0) - (a1, 0) - (a2, 1/7) - {as, 2/7) - ... - {az, 6/7)

Figure 5: Ideal input and expected output for Fig. 3

is a finite sequence of pairs (a, d) made of an atom (as de-

3 If the tempo changes in the score, then it is changed accordingly in
the ideal trace.



fined in Section 2.2) and its date d expressed in relative
time (resp. in physical time).

A test case (see Figure 1) is a pair made of an input trace
tin and the corresponding expected output trace tout.

Related models of performances

Time-warps [10], Time-Maps (Jaffe 1985), Time-deforma-
tions (Anderson and Kuivila 1990), are continuous and mo-
notonically increasing functions used to define either vari-
ations of tempo or variations of the duration of individual
notes (time-shift). Some models of performance [10, 11]
are defined by combination of these two transformations,
defined independently. Our input test trace format is a dis-
crete version of such models, where the tempo variations
and time-shifts are defined respectively in the third and
second component of entries (i,d,T). An important dif-
ference with [10, 11] is the possibility to have missed notes
in input traces.

Input trace fuzzing and generation

Thanks to these models, generating input traces scripting
musical performances is not difficult. One can start with
the ideal trace, generate arbitrary tempo values (e.g. de-
fined by a tempo curve) and add some fuzz to events dura-
tions (time shifts) and missing events. The obtained traces
are well suited for testing in the preparation of concerts.
Another method for generating more exhaustive sets of
input traces, suitable for debugging, is presented in Sec-
tion 3.4.

Generating the corresponding expected output traces tout
is a more difficult problem: it wouldn’t make sense to use
the system under test for this purpose, and we need instead
a formal reference of the timed behavior expected for the
system. As explained in introduction, we follow a model-
based approach (MBT) to tackle this problem, where a
model M is used to compute ¢ from ¢;, (M is also used
to generate t;,); this is detailed in Section 3.

2.4 Test Execution

How can we execute given test cases on the SBIMS?

The execution of a test case (tin, tout) 1S somehow a mon-
itored simulation of a performance. It consists in sending
the events in the input trace t;, to the SBIMS, with their du-
rations, and collect a real output trace t,,, by monitoring
and time-stamping (in physical time) all output emissions
of the SBIMS during the execution. The latter is then
automatically compared to ¢, to produce a test verdict.

The problem is more tricky that it seems due to the data
flow in Antescofo, its modular nature (Figure 2) and the
relative time unit used in test cases. We present below sev-
eral scenarios for testing different parts of the system.

2.4.1 Testing the RE

This scenario is performed on a standalone version of An-
tescofo equipped with an internal fest adapter module. The
adapter iteratively reads one element (i, d, T') of a file con-
taining t;,, converts d into a physical time value d’ = %
(remember that delays are expressed in relative time in t;,),

and waits d’ ms before sending 7 and T to the RE. More

Event
trace ti,
fempo | Rpos _ AANtEscofo Standalone
Expected
Internal output fout
adapter
Listening Reactive Real
>
Machine Engine output t[

Figure 6: Testing scenario of Section 2.4.1.

precisely, it does not physically wait, but instead notifies
a virtual clock in the RE that the time has flown of d’ ms.
This way the test does not need to be executed in realtime
but can be done in fast-fordward mode. This is very im-
portant for batch execution of huge lists of test cases.

The messages sent by RE are traced in t. ,, with times-
tamps in physical time (this functionality is built in the cur-
rent RE). Finally, the timestamps in ¢, are converted from
relative time to physical time using the tempo values in iy,
in order to be comparable to ¢/

out*

In this scenario, the IUT is the RE (the LM is idle).

2.4.2 Testing the RE with tempo detection

Event
trace tin
Ropos Antescofo Standalone
Expected
Internal . output fout
adapter !
!
//
Listening / Reactive Real
. >
Machine ' Engine output
tempo

Figure 7: Testing scenario of Section 2.4.2.

In this second scenario the tempo values 7' are not read
in tj, by the adapter but instead inferred by the LM (the
adapter is calling an appropriate method in LM). The rest
of the scenario is similar to Section 2.4.1. The values of
detected tempo are stored by the adapter and used later to
convert the dates in the expected trace ¢, from relative to
physical time. In this case, the IUT is somehow the RE
plus the part of the LM in charge of tempo inference.

2.4.3 Testing the whole SBIMS as a Blackbox

This scenario is the most general. It is executed in a ver-
sion of Antescofo embedded into MAX (as a MAX patch),
using an adapter which is another MAX patch. The adapter
iteratively reads triples (i, d, T') in a file containing ¢;,, and
plays them as MIDI events, using the duration d converted
to physical time with 7. The audio stream generated is
then sent to the LM, and the output of the RE is traced in
t... as before.
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tin (MAX patch)
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Figure 8: Testing scenarios of Section 2.4.3.

Note that here, the RE uses the tempo values detected
by the LM, which will differ from the tempo values in
tin [6]. Therefore, the former are saved by the adapter (in
MAX the detected tempo is available as an outlet of the
antescofo™ patch), and used later to convert the dates in
tout from relative to physical time like in Section 2.4.2. In
this realistic scenario, the IUT is the whole SBIMS.

In an alternative scenario, the adapter ignores the tempo
values in ¢, and uses tempo detected by the LM, similarly
to Section 2.4.2. Note that in these scenarios, the tests are
executed in realtime and not in a fast-forward mode like in
Sections 2.4.1,2.4.1.

2.5 Test Verdict

How can we check that the real output trace t. , is correct?
When tg,: is not known, we are left to listen the execution
of the IMS on ¢,, in extenso, for instance using the frame-
work presented in Section 2.4.3, and decide subjectively
whether we are satisfied with it. This manual solution is
not rigorous and also tedious when one need to consider
many different ¢;, for covering purposes.

When t,,t is known, we just need to compare pointwise
the conversion of ¢, to physical dates to ., with a fixed
error bound § to dealing with latency, and report differ-
ences. This raises the following important question: How
can we systematically compute the expected to,: from tin?
This is going to be answered in the next part of the paper.

3. MODEL BASED CONFORMANCE TESTING

We report here the use of state-of-the art MBT models,
techniques and tools for testing the SBIMS Antescofo in
the framework presented in previous Section 2.

3.1 Generalities on Model Based Testing

Figure 9 depicts in its higher half a reactive system’s IUT
interacting with an environment RealENV, and in its lower
half, two formal specifications of the latter, resp. S and €.

The behavioral specification S of the system is a formal
description of its reactions to the outside environment. In
our case, it is the function producing tout given ti,.

The environment model £ is a formal description of what
can be expected from the environment. In our case, it is the
definition of the set of all possible ti,, i.e. all the potential
interpretations of musicians to be tested.

Note that since IMS are realtime systems, we need to ex-
press time in £ and S, like in: ”one message m has to be
emitted one beat after the first event ey of the musician”.

The conformance of the TUT to the specification S wrt £
is defined as the inclusion of the set of real output traces
t.t» obtained by the execution of all ¢, € £ against the
IUT, into the set of expected output traces toye = S(tin)
with ¢;, € £. As time values are included in the traces,
conformance ensures the time safety of the IUT on the test
cases.

3.2 Antescofo Intermediate Representation

How can we write formal specifications £ and S for test-
ing the SBIMS Antescofo on a given mixed score s? Ac-
tually, this is the exact purpose of the score! Therefore, in
our test framework we generate automatically from a score
two formal specifications £ and S of the expected behav-
ior of the musicians and Antescofo, exploitable by testing
tools. This prevents us opportunistically from the burden
of an initial phase of manual specification by experts, gen-
erally needed for the testing and verification of embedded
systems. Hence the automatic production of £ and S is a
convenient feature, typical of IMS testing.

We use a front-end compiler transforming an Antescofo
mixed score s into a medium level executable intermedi-
ate representation IR(s). The model IR(s) will be fur-
thermore translated into the timed automata formalism in
order to use tools dealing with such models (Sections 3.3,
3.4). This approach is similar to the use of Ecode for the
Giotto language [12] in order to ensure portability and pre-
dictability (determinism), both in timings and functional-
ity. We present here a simplified graphical version of the
IR designed for Antescofo [13].

An IR is a finite set (called network) of finite state ma-
chines extended with variables and durations (EFSM), com-
municating synchronously with some symbols taken from
a finite alphabet 3. Some example of EFSMs can be found
in Figures 10 and 13. We let 3 = X, W Yot W Xgjg where
Yin and X,y are respectively the sets of the event ids and
atomic messages of s (as described in Section 2.2), and
Ysig contains internal signals presented below. Every tran-
sitions of the EFSMs is labelled by one of ¢! (emission of
a symbol o € ¥), o7 (reception of a symbol), a compu-
tation x = exp or a delay d (in relative or physical time).
The communication with the external environment are rep-
resented by o7 with o € ¥, (reception of events) and ¢!
with 0 € ¥, (emission of messages).

Moreover, all branching (multiple outgoing transitions
from a single state) must have the form depicted in Fig-
ure 114: A transition is fired from the state r as soon as

41R can also contain conditional branchs that we do not describe here.

—~ ’\/—r\ input
(" RealENV | 1T
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Figure 9: Specification : reality (top) and models (down)

tout



g! !
=> S0 s1 Uy 83 = — - - s Sn

Figure 10: IR of a loose and local group. In the initial
state sq, the automaton is waiting for the trigger symbol g.
Once this symbol is read, it waits (in state s1) for a delay
dy, and sends action o1. Then it continues from state sy
with the rest of the group. 0

Figure 11: Generic IR branching

one of the delays d;, 1 < ¢ < n has expired (i.e. the time
spent in 7 is d;) or one symbol 0, 1 < j < m is received.
We consider a synchronous model of time (following [8]):
The time can flow only in source states of branchings. The
other transitions, labeled by o! or x = exp are instanta-
neous (i.e. a logical time 0 is spend in the source state).
The EFSMs composing a network are run concurrently:
at each instant, every EFSM is in one control state. Ini-
tially, every EFSM starts in its initial state, which is unique.

Compiling Scores into IR (construction of the models)

The EFSM network IR(s) is produced from a given score
s by traversing the hierarchical structure of s. Intuitively, it
contains one EFSM for each group in s and a fixed number
of auxiliary EFSMs.

An EFSM called error proxy defines the notion of errors
in the flow of musician events. To each i € ¥;,, we asso-
ciate a unique new signal 7 € X, meaning that the event
of id 4 (in the score s) is missing. The transitions of the er-
ror proxy are labeled by ¢7 (the event ¢ has been detected)
or 7! (to signal that the event ¢ is missing). Various def-
initions of the notion of missing events are allowed, and
specified using parameters of the compilation command.

Next, we generate one EFSM for each group in the score.
To a group g we associate 2 symbols denoted § and g. If g
is a toplevel group, triggered by e;, then § = ¢ € ¥, and
g = 7 € Xsg. Otherwise, § and g are new signals of Ygg.
The generic form of the EFSM of group ¢ is depicted in
Figure 12, where init is the initial state and the sub-EFSMs
fsm(g), mfsm(g) are defined according to the strategies
for g (see examples in Figures 10 and 13).

Additionally, an EFSM & modeling the environment is
constructed, in order to bound the space of possible inter-
pretations of musicians considered for testing and avoid
explosion during test input generation.

g7 _, fsm(g)
=> init

97 7 mfsm(g)

Figure 12: EFSM associated to group g

Figure 13: IR of the beginning of a tight and global
group with a unique action (d,a). We have 4 execu-
tion modes, corresponding to the 4 lines: normal, earlier,
missed-earlier and missed. In states sg, s3 and S5, the au-
tomaton is waiting for an event or group symbol. If this
symbol is missed, it switches to the missed mode (resp.
states s1, 5z). In normal mode (state s1), the automaton
waits for a delay d before sending the action «. In missed
mode (state 51), the automaton sends o without waiting.
Moreover, in state s1, the automaton waits concurrently for
a delay d and for the detection of the next event e; 11 (at the
current score position). If e; 1, respectively €,1 1, arrives
before the expiration of d, then the automaton switches to
mode earlier (state us), resp. missed-earlier (state uz). In
both cases, the action o bound to the previous event e; is
sent without delay and then the automaton switches to nor-
mal or missed mode (s4 or sz). O

3.3 Timed Automata and Uppaal

Timed automata (TA) [14] are finite state automata ex-
tended with a finite set of real-valued variables called clocks.
Every TA transition is labeled by a symbol (in a finite al-
phabet), and a linear constraint (guard) on the clock val-
ues: the transition can be fired only if the current values
of the clocks satisfy the associated constraint. Moreover,
every clock can be independently reset to 0 during a transi-
tion and keeps track of the elapsed time since the last reset.
Some linear constraints (guard) on the clock values called
invariants can also be attached to states, such constraint
must be satisfied as long as the control stays in the state.
In a TA, all the clock values are expressed in a unique
abstract time unit, the model time unit (mtu), i.e. all the
clocks evolve at the same rate. The IR of a score s can be
converted into an equivalent TA, under the restriction that:
(2) all the delays are expressed in relative time in the score
(like in all traditional scores) and (i7) the score contains no
variables or all the variables can be evaluated statically.

Uppaal® is a symbolic model checker which permits users
to write, simulate and verify timed automaton networks.
The set of configurations of a TA A is infinite (it is the
Cartesian product of the finite set of states of .4 and the
infinite set of valuations of the clocks of A). However, it
is possible to transform a TA into a finite state automaton
recognizing the same (untimed) sequences of symbols, us-
ing a finite equivalence on configurations (region construc-
tion) [14]. This fundamental technique gives a PSPACE al-
gorithm for deciding reachability properties, implemented

Shttp://www.uppaal.org
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efficiently in Uppaal.

Given an input trace t;, for testing and a TA model S of
a score, it is possible to compute the corresponding output
tout, according to S. A deterministic environment model £
is first computed from ¢;, as in Figure 14. Then, a simu-
lation is performed with Uppaal, on the automata network
EUS, and t,,+ is obtained by tracing output during this sim-
ulation. The environment can be modified slightly in this
process (from & presented in Figure 14), by introducing
intervals on delays in transition’s guards, in order to pre-
vent state-space explosion in the generation of test cases
(Section 3.4).

eq! ea! es!
=> S0 $1 S2 83 - = - - N Sn
al? ag?

Figure 14: An environment automaton

3.4 Test Suite Generation with CoVer

Testing does not prove that Antescofo is crash-free, but the
more test-case we have checked, the bigger guarantee we
have. As we cannot test exhaustively for all possible per-
formances on a given mixed score, a strategy is to consider
a relevant set of test-cases (including extreme ones!) that
covers in some sense the possible behavior of the IUT on
the score. It is possible to generate automatically such sets
of test-cases based on the formal specification of the sys-
tem, and this problem has been extensively studied [15].

For this purpose, we use an Uppaal extension called Co-
Ver [4], which has been used for testing Ericsson’s indus-
trial size networking systems [16]. It allows to generate
test cases sets according to a user-written coverage criteria,
defined as a finite state automaton called observer moni-
toring the execution of S. The transitions of observers are
labeled by Boolean predicates validated when some states
or transitions in the TA model S have been reached. The
model checker Uppaal is used to generate the input traces
tin enabling to reach a final state of a given observer for S.
This modular approach permits to target a specific group,
or a specific problem such as error handling for testing,
with a focus on Antescofo debugging.

Note that the traces t;, generated by CoVer do not contain
tempo values, but only durations in relative time. They re-
fer to a clock in the TA model which is not yet specified,
and can be instantiated using an arbitrary time-map (for ex-
ecution scenario of Section 2.4.1 or 2.4.3, first case), or by
the detected tempo (Section 2.4.2 or 2.4.3, second case).
Let us consider the generation of a test case on our running
example (Figure 15). First, CoVer returns a couple of notes
es (Eh) and e4 (Df), with respective durations 0.27 (a little
less than 2) and 0.4 (a little less than 2) beats. They repre-
sent time-shifts over the durations in the score. The other
notes are assumed missing. Next, some arbitrary tempo
values are generated: 60bpm for ez and 114 bpm for ey,
completing an input trace t;,. The output trace ¢, associ-
ated to t;, is then computed by Uppaal.

60bpm 114bpm

tin : (3,0.27,60) - (4,0.4,114) 4

i

|

tout : (a0, 0) - (a1,0) - (az,0.14)- lou
(as,0.28) - (a4,0.42) - (as,0.56) - (ag,0.7) - (az,0.84)

Figure 15: Test input generation for the running example

3.5 Execution and Verdicts

To summarize, based on an environment model £ and a
specification S compiled from an mixed score s, CoVer
provides us with a covering suite of input traces ti , ...tk
and the corresponding output traces to, . . . k.. Anex-
ecution with Antescofo on ti]n, 1 < j < k, following one
of the scenarii of Section 2.4, will return real output traces
.. A step by step comparison of the ¢}, and 5, will
permit to draw a test verdict (see Section 2.5). A fixed er-
ror bound (approx. 0.1ms) is applied when comparing the
delays, for dealing with latency.

The crucial point here is that when observers express that
we cover all the edges of £ and S, then success on all the
test cases generated by CoVer guarantees the conformance
of the IUT to the model S of the score, wrt £. This com-
pleteness result is obtained thanks to the use of the region

construction in CoVer.

4. CONCLUSION

We have presented model based conformance testing ap-
proaches and their application to the SBIMS Antescofo.
The generation of test input data and computation of the
corresponding expected output is based on a formal model
compiled from a mixed score, and done with the help of
the symbolic model checker Uppaal.

The results obtained with these approaches, with real sco-
res or small case studies, have permitted to identify and fix
bugs in Antescofo. For instance, an erroneous cast of An-
tescofo’s detected tempo caused the computation of wrong
values of action delays. The small variation was detected
when comparing #, . against toys.

The generation of input can be done automatically with
CoVer, following covering criteria expressed as observers.
This approach is oriented towards software engineering and
debugging. Alternatively, the input can be produced man-
ually by adding some fuzz to an ideal trace (using time-
maps describing tempo variations and time shifts) as de-
scribed at the end of Section 2.3. This gives no guaranty of
coveredness but the input produced is musically more rel-
evant (it corresponds to a performance). This approach is
more oriented towards the preparation of concerts and can
be helpful at composition time.

Another possible application of our framework is non-
regression testing: An expected trace o, can be simply
recorded by monitoring an execution on a given t;, with a
former reliable version of the SBIMS. Then one can com-
pare with the trace ¢/, produced on t;, by the new ver-
sion under test. Of course, unlike model based approaches,
this technique gives no guarantees that the execution % is



correct, it only permits to check automatically whether the
new version behaves like the old one on ¢;,.

One limit of the approach is related to the input test data

generated by CoVer, which tends to chose shortest delays
for ¢, inside regions. As a consequence, the tempo com-
puted on this input can increase exponentially (since delays
in t;, are expressed in relative time, refering to the current
tempo). To avoid this problem, some other input delays
(not the shortest) should be chosen in regions.
A second limitation is due to the expressiveness of TA. TA
can have several clocks but they all run at the same fre-
quency (the mtu). Hence, multirate is not supported in TA
models whereas it is possible in Antescofo DSL. More-
over, in Antescofo DSL and IR, delays can be expressions
with variables which cannot always be evaluated statically
(e.g. when they depend on input). Some extensions of TA
with variables are supported by Uppaal and remain to be
studied in the context of IMS model-based testing.

The approach presented in Section 3 generates the test
cases offline: the whole traces t;, and ., are generated be-
fore test execution, which can be space consuming. Equiv-
alent online approaches exist, with “on the fly’ generation
and execution of traces. This is developed as Uppaal ex-
tension and named TRON. However it could not be used
in our case due to a technical issue in the conversion from
relative to physical time values. An interesting alternative
could be to follow an approach similar to [17] combining
fuzz testing and a white box approach. It consists in exe-
cuting an online test loop, with on the fly random genera-
tion of test input from the code and, in parallel, the incre-
mental developpement a propositional constraint (checked
for satisfiability with a SAT solver), ensuring a form of
coveredness.

Finally, a visualization of the output traces, with a graphi-
cal representation e.g. in Ascograph® would greatly bene-
fit Antescofo’s users, for composition assistance purposes.
It would be useful e.g. to compare respective temporal po-
sitions of groups for different performances.
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