T. Basha, Y. Moses, and N. Kiryati, Multi-view scene flow estimation: A view centered variational approach, Conference on Computer Vision and Pattern Recognition, pp.1506-1513, 2010.

T. Brox and J. Malik, Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.3, pp.500-513, 2011.
DOI : 10.1109/TPAMI.2010.143

A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.120-145, 2011.
DOI : 10.1007/s10851-010-0251-1

URL : https://hal.archives-ouvertes.fr/hal-00490826

B. Goldluecke, E. Strekalovskiy, and D. Cremers, The Natural Vectorial Total Variation Which Arises from Geometric Measure Theory, SIAM Journal on Imaging Sciences, vol.5, issue.2, pp.537-563, 2012.
DOI : 10.1137/110823766

S. Hadfield and R. Bowden, Scene Particles: Unregularized Particle-Based Scene Flow Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.3, pp.564-576, 2014.
DOI : 10.1109/TPAMI.2013.162

E. Herbst, X. Ren, and D. Fox, RGB-D flow: Dense 3-D motion estimation using color and depth, 2013 IEEE International Conference on Robotics and Automation, pp.2276-2282, 2013.
DOI : 10.1109/ICRA.2013.6630885

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.9908

B. K. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.1651

F. Huguet and F. Devernay, A Variational Method for Scene Flow Estimation from Stereo Sequences, 2007 IEEE 11th International Conference on Computer Vision, pp.1-7, 2007.
DOI : 10.1109/ICCV.2007.4409000

URL : https://hal.archives-ouvertes.fr/inria-00166589

C. Kerl, J. Sturm, and D. Cremers, Robust odometry estimation for RGB-D cameras, 2013 IEEE International Conference on Robotics and Automation, pp.3748-3754, 2013.
DOI : 10.1109/ICRA.2013.6631104

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.364.4888

A. Letouzey, B. Petit, and E. Boyer, Scene Flow from Depth and Color Images, Procedings of the British Machine Vision Conference 2011, p.2011, 2011.
DOI : 10.5244/C.25.46

URL : https://hal.archives-ouvertes.fr/inria-00616353

R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction to Robotic Manipulation, 1994.

J. Quiroga, F. Devernay, and J. Crowley, Scene flow by tracking in intensity and depth data, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.50-57, 2012.
DOI : 10.1109/CVPRW.2012.6239237

URL : https://hal.archives-ouvertes.fr/hal-00762557

J. Quiroga, F. Devernay, and J. Crowley, Local/global scene flow estimation, 2013 IEEE International Conference on Image Processing, pp.3850-3854, 2013.
DOI : 10.1109/ICIP.2013.6738793

URL : https://hal.archives-ouvertes.fr/hal-00829515

G. Rosman, A. Bronstein, M. Bronstein, X. C. Tai, and R. Kimmel, Group-Valued Regularization for Analysis of Articulated Motion, European Conference on Computer Vision Workshops, pp.52-62, 2012.
DOI : 10.1007/978-3-642-33863-2_6

D. Scharstein and R. Szeliski, High-accuracy stereo depth maps using structured light, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., pp.195-202, 2003.
DOI : 10.1109/CVPR.2003.1211354

H. Spies, B. Jahne, and J. Barron, Dense range flow from depth and intensity data, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, pp.131-134, 2000.
DOI : 10.1109/ICPR.2000.905290

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, A benchmark for the evaluation of RGB-D SLAM systems, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.573-580, 2012.
DOI : 10.1109/IROS.2012.6385773

S. Vedula, S. Baker, P. Rander, and R. Collins, Three-dimensional scene flow, International Conference on Computer Vision, pp.722-729, 1999.

C. Vogel, K. Schindler, and S. Roth, 3D scene flow estimation with a rigid motion prior, 2011 International Conference on Computer Vision, pp.1291-1298, 2011.
DOI : 10.1109/ICCV.2011.6126381

Y. Wang, J. Yang, W. Yin, and Y. Zhang, A New Alternating Minimization Algorithm for Total Variation Image Reconstruction, SIAM Journal on Imaging Sciences, vol.1, issue.3, pp.248-272, 2008.
DOI : 10.1137/080724265

A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke et al., Efficient Dense Scene Flow from Sparse or Dense Stereo Data, European Conference on Computer Vision, pp.739-751, 2008.
DOI : 10.1007/978-3-540-88682-2_56

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.2280

A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers, An Improved Algorithm for TV-L 1 Optical Flow, Lecture Notes in Computer Science, vol.5604, pp.23-45, 2009.
DOI : 10.1007/978-3-642-03061-1_2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.364.4239

M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers et al., Anisotropic Huber-L1 Optical Flow, Procedings of the British Machine Vision Conference 2009, 2009.
DOI : 10.5244/C.23.108