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ABSTRACT 

Deciding on the position of sensors by optimizing the utility of the monitoring system over a 

structure’s lifetime is typically forbidden by computational cost. Sensor placement strategies are, 

instead, usually formulated for a pre-selected number of sensors and are based on cost functions that 

can be evaluated for any arrangement without the need for simulations. This paper examines the 

performance of two such schemes, the first one is derived directly from a technique that detects 

damage from the shift of a chi-square distribution from central to non-central and takes the optimal 

arrangement as the one that maximizes the sensitivity of the non-centrality to all parameter changes 

of equal norm. The second scheme selects the sensor arrangement as that which maximizes a 

weighted version of the norm of the sensitivity of the covariance of the output to all feasible 

changes in system parameters. The performance of the two schemes is tested in simulations. 
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1 INTRODUCTION 
A sensor arrangement is optimal, in a strict sense, if it maximizes the utility of the monitoring 

system over the structure’s lifetime. Nevertheless, explicit treatment of this utility is difficult so in 

practice one generally settles for a less ambitious goal and places sensors in arrangements that 

maximize some scalar function of the probability of detection for the feasible damage patterns [1]. 

We note from the outset that the solution for the optimal arrangement when the damage detection is 

done with one algorithm is not necessarily the same as when it’s done with another, indicating that 

the term optimal must be interpreted in a restricted, conditional sense. In any event, since the Fisher 

information in the measurements is algorithm independent one anticipates that dependency of the 

solution on the damage detection scheme is unlikely to be of “first order” importance. 

Replacement of utility with probability of detection simplifies the optimal sensor placement 

problem but the computational burden, except for small academic problems, remains excessive if the 

probabilities have to be estimated from simulations. The simplification typically adopted in practice is 

to define a cost function that takes a unique value for each sensor arrangement and to select the sensor 
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positions by maximizing (minimizing) this function. Even under this simplification the resulting 

combinatorial optimizations are typically non-convex and solutions by exhaustive search are 

restricted to relatively small problems. This paper describes two sensor placement strategies: one 

takes the optimal distribution as that which maximizes the sensitivity of the non-centrality of a chi 

square distribution to the appearance of all damages of equal norm in parameter space [2,3] and the 

second takes the solution as the arrangement that maximizes a weighted version of the norm of the 

sensitivity of the output covariance to the possible damages [4]. The effectiveness of the two 

strategies is examined in a numerical example of a far coupled system with 15 DOF and 3 sensors.  

 
2 STRATEGY I – MAXIMIZING THE NON-CENTRALITY IN SUBSPACE DETECTION 

Let Nζ be the residual vector of the orthogonality test used in subspace damage detection [5,6], this 

residual is asymptotically normally distributed with 

                            0

1

(0, ) under 

( , ) under ,

d

N

H

H
ζ

δθ
Σ

→  Σ

N

N J
            (1a,b)  

where J  and Σ  are the asymptotic sensitivity and covariance, θ are the parameters, 0H  is the 

null hypothesis, i.e. that the structure is not damaged, and 1H is the alternative. Let �J  and Σ̂  be 

consistent estimates of J and Σ . A decision between the hypotheses 0H  and 1H  can be made 

through a generalized likelihood ratio (GLR) test, amounting to 
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which is compared to a threshold that is set up in the reference condition for a desired type I error. The 

variable 2
Nχ  is asymptotically 2χ -distributed with rank( )J  degrees of freedom and 

non-centrality parameter T Fγ δθ δθ= , where  

                                           1TF −= ΣJ J                                     (3)                         

is the asymptotic Fisher information on 0θ  contained in Nζ . For any damage distribution the sensor 

arrangement that offers maximum resolution is that which maximizes the non-centrality parameter γ. 

Let the dimension of the parameterization be m, i.e. mδθ ∈ℝ . The key result, as shown in [2], is that 

for changes δθ of constant norm it holds that 
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where cm is area of the unit sphere in m
ℝ  and tr(·)  denotes the trace of a matrix. As can be seen, the 

mean value of the non-centrality parameter γ for changes in the system parameter vector of unit norm 
(or equal norm) is proportional to tr(F). The point, then, is to select the sensor placements to maximize 

the trace of the Fisher information. To calculate the Fisher information one needs the sensitivity of the 

residual with respect to the parameters and the covariance of the residual. Accepting that damage is a 
change on the parameters that describe the stiffness one has that the sensitivity matrixJ can be 

written as 

                                        , , , pζ ϑ ϑ µ µ=J J J J                                   (5) 

where ϑ and µ are the collection of eigenvalues and eigenvectors of the discrete-time and continuous 

time systems, respectively, and , pµJ  contains the sensitivity of µ with respect to the structural 

parameters p. As shown in detail in [2,3]  
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where 1( )p ϑ+O  is the observability matrix in modal basis, ,ϑOJ  is the derivative of the vectorized 

observability matrix with respect to ϑ , and †  denotes pseudo-inversion. Formulae for 1( )p ϑ+O  and 

,ϑOJ  are given in [5,6]. The covariance of the residual function 1,vec( ˆ)( )T
N p qN Sζ ϑ += H  can be 

obtained as  

 

                                  ( ) ) )((( )T SISI ϑ ϑΣ = ⊗ Σ ⊗H                           (7) 

where ΣH  is the covariance of the vectorized block Hankel matrix of output covariance that is used 

in the subspace identification scheme. For the optimal sensor placement ϑ , 1( )p ϑ+O , 1( )p ϑ′
+O , 

( )S ϑ , ,ϑ µJ  and , pµJ  are obtained using a FEM, and 1,p q+H  and Σ  are formed using output data 

generated from the FEM. Combining previous expressions one gets 
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We close by noting that since the pseudo-inverse of the observability matrix is needed in the 

sensitivity computation, sensor configurations leading to poorly conditioned observability matrices 

can be dismissed a priori. 

 

2.1  Weighting 
As noted previously, the sensor placement outlined in this section uses a cost function maximized 

over all damages for which the parameter vector change is of a given norm. The relative importance 

of a particular parameter, therefore, depends on its relative value. Normalization to attain a desired 

weighting is, however, always possible. It is important to note that since the optimization is done 

over all changes of equal norm, results are heavily weighted by multiple damage scenarios, a 

situation that is not in agreement with the expectation that the likely damage is local. One 

anticipates the importance of the noted discrepancy to increase as the size of the free parameter 

space increases. Some quantitative observations on this matter are given later in the paper. 

 

3  STRATEGY II - COVARIANCE BASE OPTIMAL SENSOR PLACEMENTS 

In this section we outline an approach, introduced by Parker in [4], in which sensors positions are 

obtained by maximizing a scalar function of the norm of the sensitivity of the output covariance to 

system changes. We considered two variants of the approach, one that severely penalized “blind 

spots” and another that does not.  

 

3.1  Derivation 
From the state recurrence in discrete time it follows that the covariance of the state satisfies the equation 

     T T
x d x d d dQ A Q A G Q G

ω
= +                   (9) 

Replacing d cA I A t≅ + ∆ and d cG G t≅ ∆ in eq.9 it follows that 

    0T T T
c x x c c x c c cA Q Q A A Q A t G Q G t

ω
+ + ∆ + ∆ =             (10) 

The covariance of the state in discrete time is related to the covariance of the state in continuous time by 

 ct
x xQ Q t= ∆                     (11) 

Substituting eq.11 into eq.10 and looking at the limit when 0t∆ →  gives 

       0ct ct T T
c x x c c cA Q Q A G Q G

ω
+ + =                     (12) 

where it’s worth emphasizing that while the covariance of the state is in continuous time the covariance 

of the process noise Qω is in discrete time. Consider now the output equation  

                                ( ) ( ) ( )y t Cx t D tω= +                                  (13) 

The covariance of the output in continuous time is thus 

                              
1ct ct T T

y xQ CQ C DQ D
t ω

= +
∆

                             (14) 
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Let the system parameter be designated by p. We assume that only stiffness terms are affected by damage 

so only the matrix Ac is a function of p. Differentiating eq.14 gives 

                                
ct ct
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                  (15) 

and from eq.12 it follows that  
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which can be written as 
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Eq.12 is a Lyapunov equation that can be solved for the covariance of the state for any spatial 

distribution of the loading. This result is then used to evaluate eq.18 for the selected p and the result is 

used in eq.17, which is another Lyapunov equation, to solve for the derivative of the state covariance 

with respect to p. Substituting the derivative of the covariance of the state into eq.15 gives the derivative 

of the output covariance with respect to the selected structural parameter. Let the derivative of the output 

covariance be characterized by its largest singular value (i.e. by its 2-norm) and designate this as q, 

namely 

                                  

2

ct
yQ

q
p

∂
=
∂

                      (19) 

let the number of damage scenarios = nd , the number of possible positions for the sensors = ns and the 

number of sensor = m. Assume that the algorithm is applied to each possible scenario and the results (the 

vales of q) are placed in a matrix dz n
ℝ
×Θ∈  where the rows are the possible combinations of sensor 

positions and the columns are the damage scenarios. From the well-known expression for combinations 

one has  

                            
!
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Assume temporarily that the sizes are such that the matrix Θ can be explicitly computed. We consider 

two cost functions, one is a weighted sum of the rows of Θ and the other is a weighted sum of the 

reciprocals. To be explicit, let the jth row of Θ be { },1 ,2 , dj j j j nq q qθ = …  and define 
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… . Let a vector of weight be { }1 2 dnw w w w= …  then the two cost 

functions are: 

                                      1
T

jJ wθ= ⋅                                     (21) 

and          

                            2
T

jJ wϑ= ⋅          (22) 

where J1 does not penalize “blind spots”, while J2 makes unfeasible any arrangements for which some 

damage is unobservable (unless, of course, the weights eliminate their influence). The sensor placement 

problem is then: for J1: select the j where J1 is largest and for J2: select the j for which J2 is smallest.  

 

4  NUMERICAL EXAMPLE 
The system in fig.1 has springs with equal stiffness k = 100, masses are m = [1 2 3 1 3 1 2 1 2 1 2 1 

2 1 3] and damping is classical with each mode having 2% of critical. It is assumed that 3 sensors 

are available, leading to 15!/ ((15 3)! 3!) 445− ⋅ =  possible sensor layouts. Sensor layouts are 

numbered consecutively, with layout #1 as {1,2,3}, then {1,2,4}, …, {1,2,15}, {1,3,4}, {1,3,5}, … 

until {13,14,15} which has number #455. 

  

 
Fig.1 Mass-spring system of numerical example 

 

To evaluate the performance of the damage detection for the different sensor layouts 200 Monte 

Carlo simulations of the system were made in the reference state and in each damaged states for 

each sensor layout, where damages were simulated by decreasing the stiffness of springs 11 to 15 

(one at a time) by 5%. For each simulation, 30,000 data samples were generated from white noise 

excitation with 5% added output noise.  

 

Strategy I 

The average power of the test for each sensor arrangement is shown in Fig. 2 together with the value 

of the trace of the Fisher information computed by giving springs 11 to 15 ten times more weight 

than the other 12. As can be seen, there is good correlation between the two quantities, indicating 

that the influence of the multiple damages, which are not in the simulation, did not degrade the 

correlation much. As the number of springs that may be damaged increases the correlation will 

decrease (due to the increasing number of multiple damage patterns that are not part of the possible 

damages) and this is what the numerical results in fig.3 show.   
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Fig.2 Average power of the test (blue) for all sensor layouts considering damage in springs k11-k15 

(one at a time), using Monte Carlo simulations, and trace of the Fisher information (red). 

 

Fig.3 (left) average power of the test for all arrangements when damage takes place in any of the 17 

springs (right) trace of the Fisher information when all parameters are weighted equally. 

 

Strategy II 

Fig.4 plots the indices of eq.21 and the reciprocal of eq.22 when possible damage is restricted to 

damage in springs 11 to 15. The sensor arrangement deemed optimal by either expression is 

position 441 which corresponds to sensors at {10,12,14}.  
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Fig.4 Results for strategy II for the conditions in fig.2, both normalized to maximum of unity (a) eq.21, 

(b) reciprocal of eq.22. 
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A comparison with the blue line in fig.2 shows that the correlation between sensor placements and 

performance is excellent. 

  

5  CONCLUDING COMMENTS 
Sensor placement strategy I is directly linked to the algorithm used to detect the damage so 

simulations are needed only to provide quantitative insight into how much the multiple damages 

patterns implicit in the optimization (and which are not in the simulations) affect results. While it is 

evident that the effect of the extra damage patterns on the optimization results increases as the 

number of free parameters increases, quantitative assertions of general validity are difficult. In the 

numerical example, which considered a set of five springs as candidates for damage, the correlation 

between the sensor placement obtained and the average power of the test (for single damage) was 

high. Strategy II requires that the damage scenarios be defined explicitly and, albeit not derived 

from the algorithm that was used to detect damage in the numerical simulation, the correlation 

between placements and performance was excellent. 
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