. K. Agg-+-10-]-p, J. Agarwal, L. Gao, H. Guibas, V. Kaplan et al., Kinetic stable Delaunay graphs, SoCG, pp.127-136, 2010.

J. Boissonnat, R. Dyer, and A. Ghosh, DELAUNAY STABILITY VIA PERTURBATIONS, International Journal of Computational Geometry & Applications, vol.24, issue.02, p.25
DOI : 10.1142/S021819591450006X

URL : https://hal.archives-ouvertes.fr/hal-01097086

J. Boissonnat, R. Dyer, and A. Ghosh, Delaunay triangulation of manifolds Research Report RR-8389, INRIA, 2013 Manifold reconstruction using tangential Delaunay complexes, pp.25-2011

D. Bandyopadhyay and J. Snoeyink, Almost-Delaunay simplices: nearest neighbor relations for imprecise points, SODA, pp.410-419, 2004.

J. Boissonnat, C. Wormser, and M. Yvinec, Anisotropic Delaunay Mesh Generation, SIAM Journal on Computing, vol.44, issue.2, 2011.
DOI : 10.1137/140955446

URL : https://hal.archives-ouvertes.fr/inria-00615486

[. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S. Teng, Sliver exudation, Proceedings of the fifteenth annual symposium on Computational geometry , SCG '99, pp.883-904, 2000.
DOI : 10.1145/304893.304894

S. Cheng, T. K. Dey, and E. A. Ramos, Manifold reconstruction from point samples, SODA, pp.1018-1027, 2005.

S. [. Cañas and . Gortler, Duals of orphan-free anisotropic voronoi diagrams are embedded meshes, Proceedings of the 2012 symposuim on Computational Geometry, SoCG '12, pp.219-228
DOI : 10.1145/2261250.2261283

]. E. Dan00 and . Dancer, Degree theory on convex sets and applications to bifurcation, Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, pp.185-225793, 1934.

R. Dyer, H. Zhang, and T. Möller, Surface sampling and the intrinsic Voronoi diagram, Computer Graphics Forum, vol.32, issue.3, pp.1393-1402, 2008.
DOI : 10.1111/j.1467-8659.2008.01279.x

N. [. Edelsbrunner and . Shah, Triangulating Topological Spaces, International Journal of Computational Geometry & Applications, vol.07, issue.04, pp.365-378, 1997.
DOI : 10.1142/S0218195997000223

S. Funke, C. Klein, K. Mehlhorn, and S. Schmitt, Controlled perturbation for Delaunay triangulations, SODA, pp.1047-1056, 2005.

[. Li, Generating well-shaped d-dimensional Delaunay Meshes, Theoretical Computer Science, vol.296, issue.1, pp.145-165, 2003.
DOI : 10.1016/S0304-3975(02)00437-1

D. [. Leibon and . Letscher, Delaunay triangulations and Voronoi diagrams for Riemannian manifolds, Proceedings of the sixteenth annual symposium on Computational geometry , SCG '00, pp.341-349, 2000.
DOI : 10.1145/336154.336221

J. [. Labelle and . Shewchuk, Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.191-200, 2003.
DOI : 10.1145/777792.777822

J. R. Munkres, Elementary differential topology. Princton University press, 1968.

J. R. Munkres, Elements of Algebraic Topology, Trefethen and D. Bau. Numerical linear algebra. Society for Industrial Mathematics, 1984.

]. H. Whi57 and . Whitney, Geometric Integration Theory, 1957.