
HAL Id: hal-01022722
https://hal.inria.fr/hal-01022722

Submitted on 10 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Generic API for Data Load Balancing in
Structured P2P Systems

Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

To cite this version:
Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude. Towards a Generic API for Data
Load Balancing in Structured P2P Systems. [Research Report] RR-8564, INRIA. 2014, pp.18. <hal-
01022722>

https://hal.inria.fr/hal-01022722
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
85

64
--

FR
+E

N
G

RESEARCH
REPORT
N° 8564
July 2014

Project-Team SCALE

Towards a Generic API
for Data Load Balancing
in Structured P2P
Systems
Maeva Antoine, Laurent Pellegrino,
Fabrice Huet, Françoise Baude





RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Towards a Generic API for Data Load
Balancing in Structured P2P Systems

Maeva Antoine, Laurent Pellegrino,
Fabrice Huet, Françoise Baude

Project-Team SCALE

Research Report n° 8564 — July 2014 — 18 pages

Abstract: Many structured Peer-to-Peer systems for data management face the problem of
load imbalance. To address this issue, there exist almost as many load balancing strategies as there
are different systems. Besides, the proposed solutions are often coupled to their own API, making
it difficult to port a scheme from a system to another. In this report, we show that many load
balancing schemes are comprised of the same basic elements, and only the implementation and
interconnection of these elements vary. Based on this observation, we describe the concepts behind
the building of a common API to implement any load balancing strategy independent from the
rest of the code. We then show how this API is compatible with famous existing systems and their
load balancing scheme. Implemented on our own distributed storage system, this API integrates
well with the existing system and has a minimal impact on its business code. Moreover, this can
allow changing only a part of a strategy without modifying its other components.

Key-words: API, Load Balancing, Modularity, Structured P2P



Vers une API Générique pour Balancer des Données dans
les Réseaux P2P Structurés

Résumé : De nombreux systèmes Pair-à-Pair structurés ciblant la gestion de données sont
confrontés au problème du déséquilibre de charge. Pour résoudre ce problème, il existe presque
autant de stratégies que de systèmes différents. En outre, les solutions proposées sont souvent
couplées à une API qui leur est propre, ce qui rend difficile le portage d’une solution de répartition
de charge d’un système à un autre. Dans ce rapport, nous montrons que de nombreux dispositifs
d’équilibrage de charge sont constitués des mêmes éléments de base, et que seules la mise en œuvre
et l’interconnexion de ces éléments varient. Partant de ce constat, nous décrivons les concepts
derrière la construction d’une API générique pour mettre en œuvre une stratégie d’équilibrage
de charge qui est indépendante du reste du code. Nous montrons ensuite comment cette API
est compatible avec certains systèmes existants et leur solution d’équilibrage de charge système.
Mise en place sur notre propre système de stockage distribué, l’API proposée s’intègre bien et a
un impact minimal sur le code métier. En outre, notre solution permet de changer une partie
d’une stratégie sans modifier ses autres composants.

Mots-clés : API, Répartition de Charge, Modularité, Réseaux P2P Structurés



Towards a Generic API for Data Load Balancing in Structured P2P Systems 3

1 Introduction

Load balancing is at the heart of many Peer-to-Peer (P2P) works in particular, systems geared
towards data storage and retrieval, to address performance issues that stem from load imbalance
on peers. Imbalances may be caused by an unfair partitioning of network identifiers between
peers, frequent arrival and departure of peers but also the heterogeneity in terms of bandwidth,
storage and processing capacity between machines where peers are deployed. Other reasons can
be related to the variation of size, popularity and lexicographic similarities among resources
handled by P2P networks. The works considering this area of research can be classified into
two main groups: static or dynamic. In the former, the system load is assumed stable. Either
no continuous insertions or deletions are performed and queries remain similar or solutions are
based on a fixed and preconfigured set of rules. Furthermore, churn is often evicted and the
load balancing decision is assumed to be taken during the join of a peer. The latter enables
decisions and adaptations at runtime while usually taking into account endless data insertions
and removals but also turnover among peers, namely arrival and departure.

In structured P2P networks, peers manage part of a common identifier space, which can be
a circle segment [1], an hypercube subset [2] or a subtree [3]. Usually, resources or data that
have to be indexed into the network are assigned an identifier from the common identifier space.
This enables routing based on the range a peer is responsible for. This identifier can be the
data itself or a hash value associated to the information when a Distributed Hash Table (DHT)
or consistent hashing are at the basis of the indexing scheme. Eventually, the information is
indexed on the peer managing the resource identifier.

To address load imbalance issues in structured P2P networks, especially regarding data distri-
bution, several load balancing strategies have been proposed based on replication or relocation.
The model followed by load balancing strategies usually consists in controlling resources location,
peers location or both. However, many variants are conceivable based on indirection, identifiers
or range space reassignation and virtual peers1. Moreover, designing a load balancing solution
requires to consider additional parameters such as the overload criteria to take into account, how
overload is detected, and how load information is exchanged. This variety of parameters has led
to the definition of multiple solutions that often differ by minor but subtle changes.

We propose to describe the main concepts behind an API for load balancing in structured
P2P systems. More precisely, we will focus on the context of data management systems. Indeed,
this work was motivated by the building of a distributed platform for data storage and retrieval
(see Section 5 for more details). However, the general ideas presented in this paper can be
applied on other types of distributed systems. To this aim, we provide a guide of what criteria
are important to define and the essential principles to think about before implementing a load
balancing strategy. We propose to decompose into components the main features arising from
a load balancing mechanism. This enables changing only a part of a strategy without having
to impact the other components. When conceiving a distributed system, it is often not so easy
to anticipate which kind of load balancing strategy will be the most efficient. Our contribution
is to isolate what concerns load balancing from the rest of the code. Separation of concerns
prevents from changing code that is not necessary to modify, and provides reusability and better
understanding of the code. Therefore, our solution is especially useful when it becomes necessary
to experiment with (prior to a definitive choice for instance) various load balancing strategies on
a system, without impacting the existing business code.

The rest of the paper is structured as follows. Section 2 introduces some existing load bal-

1Unlike traditional P2P networks where one peer is deployed per node, virtual peers are an abstraction allowing
several peers to be hosted on a same physical node. Upon the detection of an underloaded or overloaded peer,
virtual peers are reassigned to other nodes in order to maintain the machine load under a given threshold.

RR n° 8564



4 Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

ancing solutions in the literature we find relevant in our context. Section 3 describes what we
consider as the main elements that make up a load balancing strategy. Section 4 presents our
common API to implement any kind of strategy. Section 5 describes the experiments and presents
the results obtained to balance the load of our own distributed storage system. Section 6 shows
how our API can be applied to the previously mentioned papers. Finally, Section 7 concludes
the paper.

2 Existing Systems

Many papers propose load balancing solutions for distributed systems, using various strategies.
In the following, we focus on four different systems, each implementing its own load balancing
strategy. Although the chosen papers do not constitute an exhaustive list of load balancing
solutions, they are representative of existing works. Indeed, these strategies are applied on
various P2P systems (CAN, Chord) and in different contexts (publish/subscribe, distributed
games, data storage). Load balancing is triggered at different states: when a new peer joins
the system, when inserting data, or after a peer has periodically compared its load state with
an internal threshold or load information received from other peers. Besides, these papers are
among the most-cited for the topic.

2.1 Rao et al.

Rao et al. [4] suggest three different strategies based on virtual peers to address the issue of
load imbalance in P2P systems that provide a DHT abstraction. This paper proposes a general
solution, not especially dedicated to data load balancing. Each physical node is responsible
for one or more virtual servers, whose load is bounded by a predefined threshold. A node is
considered as imbalanced depending on this threshold: heavy if its load is above, light otherwise.
The proposed load balancing solutions are meant to transfer the load between heavily and lightly
loaded nodes by moving virtual peers only. The first scheme called one-to-one involves two peers
to decide whether a load transfer should be performed or not. A peer simply contacts a randomly
chosen peer, and both exchange their load information. If one of them is heavy and the other
one is light, then a virtual server transfer is initiated. The second scheme relies on directories
indexed on top of the existing overlay. Each directory, indexed on a node, stores piggybacked
load information from light nodes. When a node receives a message from a heavily loaded node,
it looks at the light nodes in its directory in order to transfer the heaviest virtual server from
the heavily loaded node to a lightly loaded one. Finally, the third variant extends the first two
by matching many heavily loaded nodes to many lightly loaded nodes, still using directories. A
node responsible for a directory receives load information from both heavy and light nodes. This
node periodically performs an algorithm to calculate how to balance the load between all these
nodes. Solutions specifying which virtual servers should be transferred to which nodes are then
sent to the concerned nodes.

2.2 Gupta et al.

Gupta et al. [5] exploit the characteristics of CAN and their publish/subscribe system (Megh-
doot) properties to balance the load when new peers are admitted into the system. Each peer
in the system periodically propagates its load to its neighbors. When a new peer wants to join
the system, it contacts a known peer in the system, responsible for locating the heaviest loaded
peer. The authors distinguish subscriptions load from events load given that they have to be
handled differently. To balance subscriptions load, the idea is to split a heavy peer’s zone so

Inria



Towards a Generic API for Data Load Balancing in Structured P2P Systems 5

that its number of subscriptions is evenly divided with the peer that joins. The second solu-
tion addresses load imbalance regarding events. If the peer is loaded due to event propagation,
alternate propagation paths can be created by using replication. When a new peer pj joins a
peer pi overloaded by events, the zone from pi is replicated on pj (including its subscriptions).
In addition, the neighbors are updated to keep track of pj in a replica list. Finally, events are
balanced during the propagation of an event to be matched with candidate subscriptions by
picking, on the peer that executes the routing decision, one replica peer out of the list of replicas
in a round robin fashion. This replication strategy improves load balancing, data availability
and performance.

2.3 Bharambe et al.

In [6] the authors present Mercury, a system made to support range queries on top of a structured
P2P network constructed by using multiple interconnected ring layers where each one is named a
hub. Each hub manages the indexation of an attribute from a predefined schema. Mercury does
not use hash functions for indexing data and suffers from non-uniform data partitioning among
peers as data requires to be assigned continuously for supporting range queries. Owing to this
bad data distribution, the authors propose load balancing mechanisms based on low overhead
random sampling to create an estimate of the data value and load distribution. Basically, each
peer periodically sends a probing request to another peer using random routing. This offers a
global system load assessment whose values are collected into histograms maintained on peers.
Using this information, a heavily loaded node can contact a lightly loaded node and request it to
leave its location in the routing ring and re-join at the location of the heavy node. The authors
show this approach is enough for effective load balancing because their system topology is an
expander graph with a good expansion rate. In other words, with a small number of edges in
their network topology, everyone can reach other edges by many paths.

2.4 Byers et al.

In [7] the authors investigate the direct applicability of the power of two choices paradigm [8] on
the Chord P2P network for addressing load imbalances in terms of items per peer. The scheme
they applied to balance the load between peers can be summarized in a few lines. A node that
wishes to insert an item applies d hash functions on the item key and gets back d identifiers
(each hash function is assumed to map items onto a ring identifier). Afterwards, a probing
request is sent in parallel for each identifier from the identifiers computed previously and the
peers managing the identifiers answer with their load. Once load information is retrieved, the
peer with the lowest load is adopted for indexing the item. In addition to storing the item at the
least loaded peer pi, this variant consists of adding a redirection pointer (key space identifier)
to pi on all other peers pj where j 6= i. Thus, a lookup can be achieved by using only one hash
function among d at random. Following the same principle, load-stealing and load-shedding
strategies can be used, too. An underloaded peer should be able to steal items for which it has
a redirection pointer, whereas an overloaded peer can pass on an item by creating a redirection
pointer to a lighter peer. The experimental results show that using two hash functions (d = 2)
is enough to achieve a better load balancing with their two choices strategy rather than using a
limited number of virtual peers.

RR n° 8564



6 Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

3 Load Balancing Differentiators

Even though they seem very different, all the load balancing strategies cited above and most
other existing solutions rely on the same principle. A peer decides to move a given amount of
load (regardless of the type of load : bandwidth, CPU, storage) to a certain target which will
become responsible for the load being moved. The decision to move load always comes after
a load comparison with a given source of information. It is very common to trigger this load
comparison during a specific state of the system such as network construction, data insertion or
periodically.

Overall, we identified the following differentiators to establish a load balancing strategy.
These differentiators represent main concerns to focus on in order to develop a strategy.

a) Criteria Before fixing load imbalances, disproportion in terms of load must be detected.
This implies to know which load criteria are involved and how their variation could be measured
on peers. This first differentiator defines which load variations are considered and to which re-
source(s) (CPU, bandwidth or disk usage) but also operation(s) (e.g. item lookup, item insertion,
etc.) they refer. Usually, a few criteria, not to say only one is taken into consideration.

b) Load State Estimation Algorithm Once criteria are defined, the next step consists in
deciding whether a peer is experiencing an imbalance or not. The purpose of this differentiator
is to define how the decision is made. Usually, a peer may rely on a source of load information
containing aggregated remote information (see differentiatior g) to figure out how this source of
information is populated with remote information) or use purely local information by comparing
its local load(s) with predefined threshold(s).

c) Load Balancing Decision The decision to trigger load balancing often differs from a load
balancing strategy to another. This differentiator aims to identify when the decision to evaluate
load state is triggered. Consequently, it is related to the time at which the whole load balancing
mechanism is triggered and will necessarily impact how a load balancing implementation is
welded to an existing system business code.

d) Load Balancing Method The method identifies which well known solution is applied to
move load from a peer to its target. As summarized in the introduction, it may consist in using
virtual peers, redirection pointers or even range space reassignation. It helps checking whether
prerequisite abstractions that are required to define a given load balancing strategy are available
or not.

e) Load Moving Once an imbalance is detected, the next stage is to fix it. It implies to know
what is the load to move. This differentiator defines the amount of load to move from a peer to
its target but also which part.

f) Target Given a peer p that suffers from load imbalance, its target is a set of peers that
is used to balance its load with. In other words, it describes who receives the load when load
balancing is triggered.

g) Load Information Exchange Load balancing strategies optionnally embed a mechanism
to exchange information. It is often used to compare the local load to an average system load
estimated through load estimations that are exchanged. This differentiator defines when load

Inria



Towards a Generic API for Data Load Balancing in Structured P2P Systems 7

estimations are transferred (if they are), from who and how. Once exchanged and received on a
peer, these estimations compose a source of information.

h) Load Information Recipients Given a peer p, recipients are peers that share load in-
formation with p. They are mainly used to build a source of information involved in the load
balancing decision process.

4 Generic API for Load Balancing

Defining a generic load balancing API requires to identify key abstractions suitable to model any
strategy. In this section, we classify the differentiators presented in section 3 before identifying
those that achieve a common purpose, thus allowing us to define components, their wrapping
composites and how they compose. After defining components, we give details about embedded
functions required to develop load balancing strategies using generic abstractions. An approach
based on hierarchical components was deliberately used because components enable modularity
and cohesion [9], which eases reusability.

Imbalance
Detector

Load
Balancer

Load Information
Registry

Load Information
Exchanger

Fix
Imbalance

Register
load

Move
Load

Push / Pull
Load Information

Load
Information

Load Balancing Manager Load Information Manager

Perform One
Load Balancing Iteration

Perform Load
Information Exchange

Figure 1: Basic abstractions per peer for a generic API.

4.1 High-level Abstractions

Features associated to differentiators a) to f) relate to the management of load balancing and
could be gathered in a so called Load Balancing Manager component. By pushing our analysis
deeper, we may argue that differentiators b), c) and e) to f) identify two separate subcomponents.
Indeed, the first group of differentiators relates to the detection of imbalances and could be
named Imbalance Detector whereas the second, called Load Balancer, captures the method and
the information required to balance the load in case of imbalance. Finally, differentiators g) to h)
are merely involved in the process to give feedback about resource utilization per criterion to
peers. In a component world, this could be modelized as a Load Information Manager with a
subcomponent, dubbed Load Information Exchanger, in charge of exchanging load information.

Figure 1 illustrates these components in charge of isolating load balancing features on each
peer. In addition to the components presented above, the figure sketches an additional one,

RR n° 8564



8 Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

named Load Information Registry, that aims to link the two main composite components (Load
Balancing Manager and Load Information Manager), since each may run in its own flow of
control.

Components are wired together by calling actions on other components. Some actions carry
load information which contain the following values:

- peer: the peer sending its load information. Can be a peer identifier, a reference, etc.

- criterion: type of load (disk space, CPU consumption, bandwidth, etc.).

- load: load of the peer for a given criterion.

These attributes and their value can be expressed in the form of a key/value list. Optional
elements such as optimal load or internal threshold can also be included. Details about internal
components actions and their behavior are given in the next subsection.

4.2 Core API

Function calls defined below capture the core of load balancing strategies, classified per compo-
nent. The signature for required functions is given in a simple untyped pseudo language, thus
allowing any particular implementation.

Before entering into the description of the API for each simple component, it is worth noting
that the two main composite components identified previously, namely the Load Balancing Man-
ager and Load Information Manager, expose respectively a perform one load balancing iteration()
and a perform load information exchange() function. These last act as the entry points for
peer instances to execute one step of the two complementary composite components and thus
orchestrating in which order functions introduced below are run.

Load Information Exchanger

This component is responsible for sending the peer’s load information and receiving load infor-
mation from other peers in the network.

� exchange load information(
recipients, load information)

→ load information

A peer sends and receives load information from other peers, for a given load criterion (stor-
age, CPU, etc.) and a corresponding amount of load. The exchange load information func-
tion may return Load Information from pull calls that will be directly used by the Load Balancer
component or stored in the peer’s Load Information Registry (see details below). Following the
same principle, a push call is used when a peer wants to unilaterally notify recipients (a given
number of peers: neighbors, all peers, a random peer, etc.) about its load state Load Information.

Load Information Registry

This registry stores all Load Information received by a peer. Optionally, time can be taken into
account when storing information.

� register(load information)

� get load report(criterion, peers)
→ load information

Inria



Towards a Generic API for Data Load Balancing in Structured P2P Systems 9

The register function writes into the registry Load Information received by the peer’s Load
Information Exchanger. The get load report operation provides Load Information of a given
set of peers according to a certain criterion. This estimation is calculated thanks to the Load
Information messages received and stored earlier. The returned Load Information can help
estimate the overall average load or the load of a given peer, for example. There can be no result
if the calling peer has not recently received any Load Information message from the concerned
peer(s).

Imbalance Detector

Default behavior is to check if a load criterion is unbalanced (overload or underload), in order
to trigger a load balancing strategy.

� make decision(criterion)
→ load state

Using a given algorithm, this function determines whether to induce a load balancing strategy
or not, according to a given criterion. This operation is basically meant to return an enumerated
type: overloaded or underloaded if a rebalance is necessary, normal otherwise. The returned
value may depend on a threshold value or not, typically to detect overload or underload. If
a threshold value is used, it can be calculated using Load Information provided by the Load
Information Manager (locally, from the Load Information Registry using get load report, or
remotely by contacting peers with exchange load information).

Load Balancer

This component is responsible for balancing the load. The criterion and the load state selected
by the Imbalance Detector are used by all methods here. The Load Balancer process can be
summarized in three steps:

� select load to move(load information manager,
criterion, load state)

→ load to move

� select target(load information manager,
criterion, load state)

→ target

� rebalance(criterion, target, load to move)

The select load to move operation is necessary to calculate the amount of load to move
from one peer to another. Optionally, it is possible to use local or remote information from the
Load Information Manager to determine how much load has to be moved. The select target
function is responsible for finding which peer(s) will receive this load to move. To determine this
target, it is possible to query the Load Information Manager (for example, if target has to be
the least loaded peer known) but it is not mandatory (target can be a random peer, a new peer,
etc.).

Finally, the rebalance method is used to move the load to move between the calling peer
and the target.

RR n° 8564



10 Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

5 Evaluation of the Generic API on the EventCloud

This work was originally motivated by the PLAY project2 which is a platform that allows for
“event-driven interaction in large highly distributed and heterogeneous service systems”. In this
context, we have developed the EventCloud (EC) [10] framework which is a Java software block
that offers the possibility for services to communicate in a loosely coupled fashion thanks to
the publish/subscribe paradigm but also to store and to retrieve past events in a synchronous
manner.

In this section, we assess the proposed API by extending the EC with the load balancing
abstractions introduced previously. Before giving details about the load balancing strategies
involved with the EC and to explain how components presented in section 4 are implemented,
we introduce the underlying EC architecture and why load balancing is considered. Finally, some
experiments are reviewed to gauge how flexible the generic API presented in this paper is.

5.1 EventCloud

The EC enables publish/subscribe interactions by means of its event-driven architecture. Sub-
scribers register their interest in some types of events in order to asynchronously receive the
ones that are matching their concerns. Events are semantically described as sets of quadruples.
Quadruples are in the form of (graph, subject, predicate, object) tuples where each element is
named an RDF term in the RDF [11] terminology. The graph value identifies the data source;
the subject of a quadruple denotes the resource that the statement is about; the predicate defines
a property or a characteristic of the subject; finally, the object presents the value of the property.

The underlying architecture is based on a slightly modified version of CAN (Content Address-
able Network) [2], a structured P2P network which is built on top of a d -dimensional Cartesian
coordinate space labeled D. This space is dynamically partitioned among all the peers in the
system such that each node is responsible for events in a zone of D. More precisely, an EC is
defined with d = 4 to map each RDF term of a quadruple to a dimension of the P2P network.
The first dimension is associated to the graph value, the second dimension to the subject value,
and so on. Also, in contrary to the default CAN protocol that makes use of hashing to map data
onto nodes, the EC uses the lexicographic order to index data. Thus, a quadruple to index is a
point in a 4-dimensional coordinate space whereas a subscription, which may be represented as
a quadruple with some wildcards such as S=(g, s, p, ?), simply consists in sending S to all the
peers that in this example manage the fixed attributes g, s and p on the first three dimensions.

Load balancing with the EC was motivated by the fact that some RDF terms are more
popular than others (especially predicates) but also because many RDF terms share common
prefixes since they are URIs, thus overloading peers by having one or a few adjacent peers from
the identifier space managing most data and many indexing no information. The next subsection
sketches how an existing system like EC may define, using the API defined in section 4, its own
load balancing strategies without difficulty.

5.2 Load Balancing Strategies

Using the proposed API, multiple strategies are conceivable. However, with the EC, the focus is
on two key aspects: load criteria and load information exchange.

The former is to provide a load balancing method that allows to consider the unbalance of
multiple different criteria. Although the number of items (RDF terms) per peer is critical in the
context of the EC, as for other distributed datastores, this is not the only criterion to consider.

2http://www.play-project.eu

Inria

http://www.play-project.eu


Towards a Generic API for Data Load Balancing in Structured P2P Systems 11

Unbalance may be caused by the execution of multiple different operations that consume different
resources but also require distinct mechanisms to fix the imbalance (e.g. subscriptions matching
use CPU and replication could be considered to lower the load).

The latter aspect is about information exchanged. The more information is spread, the more
precise average system load estimate is. Consequently, a good decision may be taken for load
discharge. However, in distributed systems, exchanging information is costly. Thus, depending
on the network size, selecting which subset of peers receives load information is crucial. To assess
the API, two load dissemination strategies are proposed, namely absolute and relative. The first
aims to detect imbalances without exchanging information between peers, whereas the second
relies on information exchanged to detect whether an imbalance is experienced.

In the following, we explain and give details about how components introduced in section 4
are implemented in the EC to manage both aspects.

Load Balancing Manager

The first stage is about the process involved to detect whether a peer is experiencing an imbal-
ance. Since run one iteration() is the entry point of the Load Balancing Manager component,
but also because imbalance detection is assumed to be performed periodically in the EC, the
management of multiple criteria is made at this level. The content of this function is summed
up by Algorithm 1 along with its crucial subcalls.

The entry point function respectively detects (through the make decision function) a peer
as imbalanced if its load for a criterion c is respectively k1 times greater or k2 times lower than
a load estimate e associated to the criterion c that is observed (k2 must be lower or equal to k1).
The retrieval of a meaningful e value is made possible thanks to information exchanged between
peers. Variables k1 and k2 are static variables scoped to the lifecycle of the system as for variable
C which is a list of criteria defined before the system starts. Order in which criteria are added
matters since it defines priorities in which imbalances are detected. Besides, the detection process
is sequential for the simple reason that load measurements are not necessarily expressed in the
exact same unit but also the fact that actions required to fix imbalances depend on criteria.

Upon imbalance detection (lines 5–8) for a single criterion that relates to disk consump-
tion due to the insertion of RDF data, the select target function is used in order to select a
peer from a preallocated pool of peers (line 6). Then, the load to move is selected with se-
lect load to move (line 7). In the EC, two methods have been implemented to partition the
load, one that uses the middle value of the zone a peer is responsible for3 and one that takes
advantage of the centroid value, this last considering the number of items per peer and RDF
terms size (i.e. number of characters). Both methods, which may be seen as two different Load
Balancer component implementations, are used to show below how flexible the API is. Once the
target and the load to move are identified, a rebalance is performed (line 8).

Load Information Manager

Load information exchange is an optional process. For this reason and as explained before, two
flavors of the Load Information Exchanger are proposed: absolute and relative. With the absolute
version, threshold values are configured per criterion and passed to peers when they are deployed.
These last are upper bound values that allow to signal an overload once they are exceeded.
Concretely, defining such a behaviour implies to set variables introduced in Algorithm 1 to specific
values. By setting k1 to 1, k2 to 0 and e to the desired threshold values, the make decision
function works with local knowledge only. The relative version requires load information exchange

3This is the default CAN rule.

RR n° 8564



12 Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

between peers to estimate the average system load that each peer aims to remain close to. Peers
in charge of receiving load information registered in the Load Information Registry depend on the
gossip protocol used. For the following evaluation, a basic strategy that consists in forwarding
load information to immediate neighbors is applied.

1: function run one iteration()
2: for c ∈ C do
3: load state← made decision(c)
4: if load state 6= normal then
5: lim← get load info manager()
6: target←

select target(lim, c, load state)
7: load to move←

select load to move(lim, c, load state)
8: rebalance(c, target, load to move)
9: end if

10: end for
11: end function
12:

13: function make decision(c)
14: m← get load measurement(c)
15: e← get load estimate(c)
16: k1 ← get upper threshold(c)
17: k2 ← get lower threshold(c)
18: if m > e× k1 then
19: return Overloaded
20: end if
21: if m < e× k2 then
22: return Underloaded
23: end if
24: return Normal
25: end function

Algorithm 1 – Load state estimation algorithm.

Regarding the registry that is used to store and retrieve load information exchanged with the
relative version, it makes use internally of a max-heap like datastructure that ensures retrieval of
max items (in terms of freshness) in constant time and garbage collection of outdated information
in O (log n), where n is the number of load information in the data structure.

In summary, while remaining simple, this load balancing strategy investigates different meth-
ods involved in a standard load balancing workflow and easily supports the definition of multiple
independent criteria. For this reason, we propose to evaluate it in the next section to prove that
it fits with the proposed API.

5.3 Results

The presented strategies have been implemented and assessed with micro benchmarks using real
data extracted from a Twitter data flow and up to 32 peers deployed on the French Grid’5000
testbed [12]. The workload is about 105 quadruples.

Inria



Towards a Generic API for Data Load Balancing in Structured P2P Systems 13

Before evaluating the absolute and relative load information exchange strategies, we have
performed an experiment to see what could be the best distribution. The scheme consists in
injecting the workload on a single peer and once all quadruples have been stored to start load
balancing iterations. Each load balancing iteration consists in picking a new peer from a pre-
allocated pool of peers to make it join the most loaded one in the network, thus simulating an
oracle. The action is repeated until having a network containing 32 peers. To show the interest
of using the centroid, the experiments have been performed, as depicted on Figure 2, by using
zones cutting based on their middle or centroid values recorded on the fly. By cutting zones at
their middle, the workload is distributed on 4 peers only. However, the same experiment using
centroid values distributes the load on all peers with almost two-thirds having their load close
to the ideal distribution. Although the distribution is not perfect, it is greatly improved.

1

10

100

1000

10000

100000

N
u
m

b
er

of
Q

u
ad

ru
p
le

s
p

er
p

ee
r

(l
og

sc
al

e)

Distribution with 32 peers

centroid based cutting
middle based cutting
perfect distribution

Figure 2: Load balancing partitioning using middle vs centroid.

To compare results for a same configuration (i.e. same workload and number of peers), a
good estimator is the coefficient of variation, also known as the relative standard deviation. It
is expressed as a percentage by dividing the standard deviation by the mean times 100. In
the following we use this estimator to compare strategies. For information, the coefficients are
559.4% and 69.5% when the middle and centroid methodologies are respectively applied to the
load balancing experiments presented above, thus showing that centroid performs better because
its value is eight times lower than the middle value.

Finally, we have compared the absolute and relative schemes. For the absolute one, the
threshold value is set to the number of quadruples divided by the final number of peers, which
gives 3125. The relative strategy does not rely on global knowledge, and k1 was set to 1.1,
so that overload is detected when local measurements on peers are greater than or equal to 1.1
times the estimate value computed by receiving load information from immediate neighbors. The
parameter k1 was set according to emperical evaluations that let suppose the best distribution
is achieved for this value.

Table 1 shows the results obtained according to the strategy applied, when correlated with

RR n° 8564



14 Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

the results obtained for the previous experiments that exhibit the best distribution that can
be achieved (69.5%) due to the “oracle” assumption. The relative standard deviation is almost
twice as large (119.75%) as the best when the absolute strategy is applied. Similarly, the relative
strategy performs worse than the static load balancing solution but achieves a better distribution
(96.57%) than the absolute strategy and this without using global knowledge. Besides, since more
peers are receiving RDF data, more nodes are involved to answer subscriptions with the pub/sub
layer, thus increasing the throughput in terms of notifications received per second for end-users
of EC.

Load Information Exchange Schemes

Absolute Relative

119.75% 96.57%

Table 1: Load information exchange methods comparison based on relative standard deviation.

Although the analysis of the results is not the central point of this paper, it shows that
investigating different implementations for the functions identified in section 4 may have strong
impact on results. Thanks to the proposed API, the behaviour of the different load balancing
stages can be simply changed by writing a new function with less than 10 lines of code in our
case. The main reason is that key features of the load balancing workflow are clearly identified.
Obviously, the example shown in this section still requires one line of code change and a full code
recompilation to switch from a component implementation to another. In our case, an alternative
based on dynamic class loading could be used [13]. In this situation, some code redeployment is
required. Moreover, synchronization between nodes may have to be taken into consideration to
prevent inconsistent states due to stale information that could transit during the transition from
a component implementation to another on peers.

6 API Implementation on Other Systems

As mentioned earlier, this work was motivated by the building of our own distributed storage
system (the EventCloud), for which we wanted to apply the most suitable load balancing strategy.
Afterwards, we picked various relevant papers from the literature to see if they could validate
our generic API, too. This section sketches how these existing load balancing strategies can be
implemented using the proposed API. Using our differentiators, presented in Section 3, we were
able to decompose in Table 2 each strategy implemented by the papers mentioned in Section 2.
Results show that these load balancing strategies can fit our model, even though they seem very
different at first sight. As they match our differentiators, we will describe how these strategies
integrate with our API.

Inria



Criteria
Load State

Estimation Algorithm
Load Balancing

Decision
Load Balancing

Method
Load Moved Target

Load Information
Exchange

Load Information
Recipients

Rao et al. Resource
agnostic
(storage,
bandwidth
or CPU)
but only
one

Given Li the load of
node i (sum of the
loads of all virtual
servers of node i) and
Ti a target load chosen
beforehand, a node is
heavily loaded if Li >
Ti, lightly loaded oth-
erwise.

Periodically,
on each
peer

Virtual
peers (with
no virtual
peer split
or merge)

One of the
overloaded
peer’s vir-
tual server

A random
peer, an un-
derloaded
peer or the
best un-
derloaded
peer ac-
cording to
the scheme
used

Random probing for the first
scheme (pull). Periodic load
advertisement from lightly
loaded peers (push) and sam-
pling from heavily loaded
peers (pull) with the second
scheme. Third scheme implies
load exchange from a peer to
a directory (push)

A peer managing a ran-
dom id for the first
scheme. Directory as-
sociated to some peers
for the second and
third scheme

Gupta et al. Subscription
and data
popularity

Always triggering re-
balancing when a new
peer joins the system

When a
peer joins
the system

Range
space re-
assignation
or replica-
tion

Half of
a heavy
peer’s sub-
scriptions
or a heav-
ily loaded
peer’s
replica

The heavi-
est peer in
the system
known by
the new
peer joining
the system

Periodically, peers update
neighbors about their load
(push) and share their list that
contains the k most heavily
loaded peers detected

One hop neighbors

Bharambe et al. Query se-
lectivity
and data
popularity
(routing
load)

Lightly loaded if the
ratio between its lo-
cal load (average load
of itself, its succes-
sor and its predecessor)
and the average system
load is less than 1 �
� but heavily loaded
if the ratio is greater
than �, with � �

p
2

Periodically,
on each
peer

Range
(identifier)
space re-
assignation

Half of the
overloaded
peer’s load

A lightly
loaded peer

Periodic random sampling
through messages routed with
a TTL (pull) + each peer pe-
riodically samples its one-hop
neighborhood to produce a
system load estimate (pull)

k random peers at TTL
hops from the initiator
(p) + all one-hop p’s
neighbors

Byers et al. Number of
data items
per peer

Always triggering re-
balancing when receiv-
ing an item to insert

Upon the
insertion
of an item
(data) on
the entity
that per-
forms the
insertion

Power of
two choices
paradigm

The item to
be inserted

The least
loaded peer
among
those con-
tacted in
source for a
given item

The peer that wants to insert
an item compute d hash values
and contact the associated peer
to retrieve their load (pull)

For d hash func-
tions applied on an
item to insert, the n
peers managing the
computed hash values

Table 2: Load balancing strategies mapped to differentiators.



16 Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

6.1 Rao et al.

In this paper, peers periodically push their load information (Load Information Exchanger) to a
set of nodes in the system, some of which maintaining a directory (Load Information Registry).
Load information contains the load of each virtual server of a peer and the peer’s internal
threshold. Each peer p periodically compares its load loadp for a given load criteria to its
thresholdp (Imbalance Detector). Depending on the peer’s load state, the paper proposes three
different rebalancing strategies (Load Balancer):

1. If loadp < thresholdp, p is considered as underloaded and a rebalancing is triggered by
p. A random node is periodically picked (select target) and its load sent to p (Pull
Load Information via Load Information Exchanger). If the random node is heavy, then
a virtual server transfer (select load to move) may take place between the two nodes
(rebalance).

2. If loadp > thresholdp, p is overloaded and contacts one of the peers holding a directory to
request a lightly loaded peer (select target) and which virtual server (select load to move)
should be moved (Pull Load Information via Load Information Exchanger). After infor-
mation is received by p, the rebalance method can be called.

3. If loadp > thresholdp, p can also send its load information to a peer dir holding a directory
(Push Load Information via Load Information Exchanger). After dir has received enough
information from heavy and light nodes, dir will perform an algorithm to pick which
virtual server p should send (select load to move) to which light node (select target).
The solution will then be sent back to p, to start the rebalance process.

The workflow associated to the second strategy is depicted in Figure 3. Steps are numbered
to sketch the sequence of actions involved in a typical load balancing iteration with three peers.
Arrows between function calls depict remote communications.

P1

P2

P3
1. perform load information exchange()

2. exchange load information(
P2, load information)

3. register(load information)4. run one load balancing iteration()

5. make decision(c) → overloaded

6. exchange load information(
P2, load information)

7.1 select target(
load information manager, c,

overloaded) → P3

7.1.1 get load report(c, all)
→ load information

7.2 select load to move(
load information manager, c,

overloaded) → load to move

8. rebalance(c, P3, load to move)

Push Load Information

Pull Load Information

Move Load

(P3, load to move)

Figure 3: Workflow associated to the second scheme proposed by Rao et al.

6.2 Gupta et al.

Peers periodically exchange their load information with their neighbors (Load Information Ex-
changer), as well as an estimated list containing the most heavily loaded peers they know (from

Inria



Towards a Generic API for Data Load Balancing in Structured P2P Systems 17

their Load Information Registry). Load balancing is only triggered (Imbalance Detector) when a
new peer p wants to join the system. The first step of the rebalancing process (Load Balancer) is
for p to find an overloaded peer in the system (select target). To do so, p sends a pull request
to a random peer. Then, the random peer will look at its registry in order to tell p which node
(target) is the most overloaded to its knowledge. Finally, target is contacted by p. If the overload
is due to high storage load, p will split with target and receive half of target’s subscriptions.
Otherwise, if target is overloaded because of its processing load, p will replicate target’s events
and subscriptions (select load to move and rebalance).

6.3 Bharambe et al.

Peers periodically exchange their load information (using Load Information Exchanger). They
also maintain histograms containing information about which parts of the network are lightly
loaded (Load Information Registry) regarding data popularity. Using information contained
in its registry, a peer can decide whether it is overloaded or not (Imbalance Detector). If so
(Load Balancer process), the peer contacts an underloaded peer (select target) from a lightly
loaded zone in the overlay (thanks to local information collected in its registry). Then, it requests
this lightly loaded node (target) to leave its position and re-join at the location of the overloaded
peer. Finally, the overloaded peer can send part of its data (select load to move) to its new
neighbor (rebalance).

6.4 Byers et al.

A peer having to insert a data item into the system triggers the process (Imbalance Detector).
This peer applies n hash functions on this item. Then, it contacts each peer associated to an
hash function (Load Information Exchanger) to pull load information concerning the amount of
items already stored by each of these peers. The Load Balancer then selects the lightest peer
(select target) and sends it the item to be inserted (rebalance).

7 Conclusion

In this paper, we have described concepts behind the building of an API for load balancing
in structured P2P systems. Many papers propose different load balancing strategies. We have
presented four different schemes from some of the most-cited papers for the topic. Their strategies
are triggered at various moments (new peer joining the system, data insertion, periodically),
impact more or less peers and require to move or replicate data. By decomposing a strategy
into essential differentiators, we have shown it is possible to implement these different solutions
using our generic API. Regarding the programming aspect, the API allows to separate the code
concerning load balancing from the rest of the system. To further assess its utility, the API
has been used to evaluate different load balancing methods with an existing system named
EventCloud.

Although we presented this API in the context of structured P2P systems, the ideas intro-
duced in this paper could most probably be applied to other networks based on unstructured
overlays, or even on a client/server architecture. Finally, modeling such a process can lead to
implement adaptive load balancing strategies, for example, by changing one of the key features
in a load balancing workflow at run-time. This last is an interesting perspective.

RR n° 8564



18 Maeva Antoine, Laurent Pellegrino, Fabrice Huet, Françoise Baude

Acknowledgments

This work was in part supported by the EU FP7 STREP project PLAY. Experiments presented
in this paper were carried out using the Grid’5000 experimental testbed (see https://www.

grid5000.fr).

References

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” ACM SIGCOMM Computer Commu-
nication Review, 2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable content-
addressable network. ACM, 2001, vol. 31, no. 4.

[3] K. Aberer, “P-grid: A self-organizing access structure for p2p information systems,” in
Cooperative Information Systems. Springer, 2001.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in
structured P2P systems,” in Peer-to-Peer Systems II. Springer, 2003, pp. 68–79.

[5] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot: content-based pub-
lish/subscribe over P2P networks,” in Proceedings of the 5th ACM/IFIP/USENIX Interna-
tional Conference on Middleware. Springer-Verlag New York, Inc., 2004, pp. 254–273.

[6] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting scalable multi-attribute
range queries,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp. 353–
366, 2004.

[7] J. Byers, J. Considine, and M. Mitzenmacher, “Simple load balancing for distributed hash
tables,” in Peer-to-peer Systems II. Springer, 2003, pp. 80–87.

[8] M. Mitzenmacher, “The power of two choices in randomized load balancing,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 12, no. 10, pp. 1094–1104, 2001.

[9] G. T. Heineman and W. T. Councill, “Component-based software engineering,” Putting the
Pieces Together, Addison-Westley, 2001.

[10] L. Pellegrino, “Pushing dynamic and ubiquitous event-based interaction in the Internet of
services: a middleware for event clouds,” PhD Thesis, University of Nice Sophia Antipolis,
Apr. 2014. [Online]. Available: http://tel.archives-ouvertes.fr/tel-00984262

[11] O. Lassila and R. R. Swick, “Resource description framework (RDF) model and syntax
specification,” 1999.

[12] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jégou, P. Primet, E. Jeannot, S. Lanteri,
J. Leduc, N. Melab et al., “Grid’5000: A large scale and highly reconfigurable grid exper-
imental testbed,” in Proceedings of the 6th IEEE/ACM International Workshop on Grid
Computing. IEEE Computer Society, 2005, pp. 99–106.

[13] S. Liang and G. Bracha, “Dynamic class loading in the Java virtual machine,” ACM SIG-
PLAN Notices, vol. 33, no. 10, pp. 36–44, 1998.

Inria

https://www.grid5000.fr
https://www.grid5000.fr
http://tel.archives-ouvertes.fr/tel-00984262


RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	Existing Systems
	Rao et al.
	Gupta et al.
	Bharambe et al.
	Byers et al.

	Load Balancing Differentiators
	Generic API for Load Balancing
	High-level Abstractions
	Core API

	Evaluation of the Generic API on the EventCloud
	EventCloud
	Load Balancing Strategies
	Results

	API Implementation on Other Systems
	Rao et al.
	Gupta et al.
	Bharambe et al.
	Byers et al.

	Conclusion

