Category-specific video summarization

Danila Potapov 1 Matthijs Douze 1 Zaid Harchaoui 1, 2 Cordelia Schmid 1, 2
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In large video collections with clusters of typical categories, such as ''birthday party'' or ''flash-mob'', category-specific video summarization can produce higher quality video summaries than unsupervised approaches that are blind to the video category. Given a video from a known category, our approach first efficiently performs a temporal segmentation into semantically-consistent segments, delimited not only by shot boundaries but also general change points. Then, equipped with an SVM classifier, our approach assigns importance scores to each segment. The resulting video assembles the sequence of segments with the highest scores. The obtained video summary is therefore both short and highly informative. Experimental results on videos from the multimedia event detection (MED) dataset of TRECVID'11 show that our approach produces video summaries with higher relevance than the state of the art.
Type de document :
Communication dans un congrès
David Fleet; Tomas Pajdla; Bernt Schiele; Tinne Tuytelaars. ECCV - European Conference on Computer Vision, Sep 2014, Zurich, Switzerland. Springer, 8694 (Part VI), pp.540-555, 2014, Lecture Notes in Computer Science. 〈10.1007/978-3-319-10599-4_35〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-01022967
Contributeur : Thoth Team <>
Soumis le : vendredi 11 juillet 2014 - 12:19:11
Dernière modification le : vendredi 24 novembre 2017 - 13:29:33
Document(s) archivé(s) le : samedi 11 octobre 2014 - 12:05:11

Fichiers

video_summarization.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Danila Potapov, Matthijs Douze, Zaid Harchaoui, Cordelia Schmid. Category-specific video summarization. David Fleet; Tomas Pajdla; Bernt Schiele; Tinne Tuytelaars. ECCV - European Conference on Computer Vision, Sep 2014, Zurich, Switzerland. Springer, 8694 (Part VI), pp.540-555, 2014, Lecture Notes in Computer Science. 〈10.1007/978-3-319-10599-4_35〉. 〈hal-01022967〉

Partager

Métriques

Consultations de la notice

1915

Téléchargements de fichiers

7531