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Category-specific video summarization

Danila Potapov, Matthijs Douze, Zaid Harchaoui, and Cordelia Schmid

Inria*

Abstract. In large video collections with clusters of typical categories,
such as “birthday party” or “flash-mob”, category-specific video summa-
rization can produce higher quality video summaries than unsupervised
approaches that are blind to the video category.

Given a video from a known category, our approach first efficiently per-
forms a temporal segmentation into semantically-consistent segments,
delimited not only by shot boundaries but also general change points.
Then, equipped with an SVM classifier, our approach assigns importance
scores to each segment. The resulting video assembles the sequence of
segments with the highest scores. The obtained video summary is there-
fore both short and highly informative. Experimental results on videos
from the multimedia event detection (MED) dataset of TRECVID’11
show that our approach produces video summaries with higher relevance
than the state of the art.

Keywords: video summarization, temporal segmentation, video classi-
fication

1 Introduction

Most videos from YouTube or DailyMotion consist of long-running, poorly-filmed
and unedited content. Users would like to browse, i.e., to skim through the video
to quickly get a hint on the semantic content. Video summarization addresses
this problem by providing a short video summary of a full-length video. An ideal
video summary would include all the important video segments and remain short
in length. The problem is extremely challenging in general and has been subject
of recent research [1,2,3,4,5,6].

Large collections of videos contain clusters of videos belonging to specific
categories with typical visual content and repeating patterns in the temporal
structure. Consider a video of a “birthday party” (see Figure 1). It is unclear
how an unsupervised approach for video summarization would single out the
short segments corresponding to “blow the candles”, “applause”, etc.

In this paper, we propose a category-specific summarization approach. A
first distinctive feature of our approach is the temporal segmentation algo-
rithm. While most previous works relate segment boundaries to shot bound-
aries, our temporal segmentation algorithm detects general change points. This
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Orlglnal video (uniform sampllng)

Fig. 1: Original video, and its video summary for the category “birthday party”.

includes shot boundaries, but also sub-shot boundaries where the transitions be-
tween sub-shots are gradual. A second feature is the category-specific supervised
importance-scoring algorithm, which scores the relative importance of segments
within each category, in contrast to video-specific importance [1,2,7].

Our approach works as follows (see Figure 2). First, we perform an automatic
kernel-based temporal segmentation based on state-of-the-art video features that
automatically selects the number of segments. Then, equipped with an SVM
classifier for importance scoring that was trained on videos for the category
at hand, we score each segment in terms of importance. Finally, the approach
outputs a video summary composed of the segments with the highest predicted
importance scores. Thus, our contributions are three-fold:

— we propose a novel approach, KVS, for supervised video summarization of
realistic videos, that uses state-of-the-art image and video features

— we introduce a new dataset, MED-Summaries', along with a clear anno-
tation protocol, to evaluate video summarization

— we obtain excellent experimental results on MED-Summaries, showing that
KVS delivers video summaries with higher overall importance, as measured
by two performance metrics.

2 Related work

Video summarization. Truong & Venkatesh [7] present a comprehensive overview
and classification of video summarization methods. The task is difficult to define
and many methods are domain-specific (sports, news, rushes, documentary, etc.).

! The annotations and the evaluation codes are available at http://lear.inrialpes.
fr/people/potapov/med_summaries.php.
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Fig. 2: Overall scheme of our Kernel Video Summarization (KVS) approach.

However, to our knowledge, there are no publicly available implementations or
datasets, for eg. sports videos summarization, that could be used for comparison
with more recent approaches. Summaries may focus on dominant concepts [3],
relate to the video’s story [6], the user’s preferences, the query context [4], or
user attention [9]. A video is either summed up as a sequence of keyframes [3,5,2]
or by video excerpts [6].

Video summarization received much attention when NIST was running the
Trecvid Rushes summarization task (2006-2008). The evaluation was conducted
on a dataset of significant size, with an expensive manual annotation of the
ground-truth [8]. However, the methods were mostly specific to the domain, i.e.
they focused on detecting redundant shots of a scene, and clapperboards.

For professional and low-dynamic TV broadcast videos (e.g. from [3,4] or
Open Video Archive), shot boundaries naturally split a video into “visual sen-
tences”. Early summarization methods [7] extract one or more keyframes to
represent a shot, often independently from the other shots. Recent works, in-
cluding this one, focus on user-generated data [3,5,6,10], which typically do not
contain shot boundaries.

Without supervision, summarization methods must rely on low-level indices
to determine the relevance of parts of a video [9,11,12]. When the video do-
main is known, summarization can be strongly supervised. For example, soccer
games [13,14] or feature films [15] have standard phases that can be manu-
ally identified. A few previous works [3,6,5] produced summaries using features
crafted for specific visual categories. In contrast to these works, our approach
builds short yet highly informative category specific video summaries, using
generic state-of-the-art visual features.

In [16,17], the main task is to remove redundant video footage, which is
detected as easy to reconstruct based on sparse coding from the rest of the
video. A recent work [10] also segments a video at a finer level than shots and
relies on supervised mutual information to identify the important segments. The
main difference of our work is the use of state-of-the-art video features and the
quantitative evaluation of the approach. Leveraging crawled internet photos is
another recent trend for video summarization [18,5].
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There are several ways of evaluating video summarization methods [7]. Most
works [3,6,5,11] conduct user studies to compare different summaries of the same
video. The concept coverage metric evaluates the number of important objects
or actions included in the summary [3,8]. Although it requires time-consuming
manual annotation of videos, the annotations can be reused to evaluate multiple
approaches. When the goal is to simplify video navigation, the time it takes a
user to perform some data exploration task can be used as a quality metric [8].
Automatic comparison to reference summaries comes from text summarization
literature [19]. It relies on a user-generated summary of a video and a metric to
compare it to the algorithm’s summary [5,2,18]. The protocol used in this paper
combines concept coverage with a comparison to multiple reference summaries.

Temporal video segmentation. Computer vision methods often utilize
spatial or temporal segmentation to raise the abstraction level of the problem
and reduce its dimensionality. Segmentation can help to solve image classifica-

tion, scene reconstruction [20] and can serve as a basis for semantic segmen-
tation [21]. Similarly, video segmentation usually implies dividing a video into
spatio-temporal volumes [22,23]. Temporal video segmentation often means de-

tecting shot or scene boundaries, that are either introduced by the “director”
through editing or simply correspond to filming stops.

The proliferation of user-generated videos created a new challenge for se-
mantic temporal segmentation of videos. Lee et al. [3] used clustering of frame
color histograms to segment temporal events. In [6] a video is split in sub-shots
depending on the activity of the wearer of a head-mounted camera: “static”,
“moving the head” or “in transit”. Similar to these works we focus on the con-
tent of the segment rather than its boundaries.

Most shot boundary detection methods focus on differences between con-
secutive frames [24], relying on image descriptors (pixel color histograms, local
or global motion [7], or bag-of-features descriptors [25]). Our temporal segmen-
tation approach takes into account the differences between all pairs of frames.
Therefore, the approach allows to single out not only shot boundaries but also
change points in general that correspond to non-abrupt boundaries between two
consecutive segments with different semantic content.

3 Kernel video summarization

We start by giving definitions of the main concepts and building blocks of our
approach.

Video summary. A video is partitioned into segments. A segment is a part
of the video enclosed between two timestamps. A wvideo summary is a video
composed of a subset of the temporal segments of the original video.

A summary is a condensed synopsis of the whole video. It conveys the most
important details of the original video. A segment can be non-informative due to
signal-level reasons like abrupt camera shake and dark underexposed segments
commonly present in egocentric videos [3,6].
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A segment can be considered important due to multiple reasons, depend-
ing on the video category and application goals: highlights of sport matches,
culmination points of movies [7], influential moments of egocentric videos [6].

We make the assumption that the notion of importance can be learned from
a set of videos belonging to the video category. This point of view stems from
the Multimedia Event Recounting task at Trecvid: selecting segments containing
evidence that the video belongs to a certain event category. Similarly, we define
importance as a measure of relevance to the type of event. Fig. 3 shows an
example video together with the importance of its segments.

Our definition of importance spans an ordinal scale, ranging from 0 “no
evidence” to 3 “the segment alone could classify the video into the category”.
More details are given in Sec. 4.1.

Fig.3: Our definition of importance on the “Changing a vehicle tire” category.
These frames come from a 1-minute video where a support car follows a cyclist
during a cycle race. The main event — changing a bicycle tire — takes less
than one third of the video. The figure shows central frames of user-annotated
segments together with their importance score.

The proposed method, KVS, decomposes into three steps: i) kernel tem-
poral segmentation; ii) importance-scoring of segments; iii) summary building.
Figure 2 summarizes our approach.

3.1 Kernel temporal segmentation

Our Kernel Temporal Segmentation (KTS) method splits the video into a set
of non-intersecting temporal segments. The method is fast and accurate when
combined with high-dimensional descriptors.

Our temporal segmentation approach is a kernel-based change point detec-
tion algorithm. In contrast to shot boundary detection, change point detection
is a more general statistical framework [29]. Change point detection usually fo-
cuses on piecewise constant one dimensional signals corrupted by noise, and the
goal is to detect the jumps in the signal. It is able to statistically discriminate
between jumps due to noise and jumps due to the underlying signal. Change-
point detection has been subject of intense theoretical and methodological study
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in statistics and signal processing; see [29,30] and references therein. Such meth-
ods enjoy strong theoretical guarantees, in contrast to shot boundary techniques
that are mostly heuristic and tuned to the types of video transitions at hand
(cut, fade in/out, etc.). We propose here a retrospective multiple change-point
detection approach, based on [31], that considers the whole signal at once.
Given the matrix of frame-to-frame similarities defined through a positive-

definite kernel, the algorithm outputs a set of optimal ”change points” that
correspond to the boundaries of temporal segments. More precisely, let the video
be a sequence of descriptors x; € X, i =0,...,n—1. Let K : X x X — R be
a kernel function between descriptors. Let H be the feature space of the kernel
K(-,-). Denote ¢ : X — H the associated feature map, and ||-||3 the norm in
the feature space H. We minimize the following objective

Minimize  Jy, 5 1= Ly + Cg(m, n) (1)

m; to,...,tm—1
where m is the number of change points and g(m, n) a penalty term (see below).

Ly, 1 is defined from the within-segment kernel variances vy, 4, ,:

tiz1—1
t:thll ¢>(~Tt)

tiy1 —t;

m tigt1—1

Lm,n = Z’Uti—hti’ Uty tigr = Z ||¢(wt) - :U’ng-U Hi = (2)
i=0 t=t,

Automatic calibration. The number of segments could be set proportional
to the video duration, but this would be too loose. Therefore, the objective
of Equation (1) decomposes into two terms: L,,, which measures the over-
all within-segment variance, and g(m,n) that penalizes segmentations with too
many segments. We consider a BIC-type penalty [32] with the parameterized
form g(m,n) = m(log(n/m) + 1) [33]. Increasing the number of segments de-
creases Ly, (2), but increases the model complexity. This objective yields a
trade-off between under- and over-segmentation. We propose to cross-validate
the C' parameter using a validation set of annotated videos. Hence we get kernel-
based temporal segmentation algorithm where the number of segments is set
automatically from data.

Algorithm. The proposed algorithm is described in Algo. 1. First, the ker-
nel is computed for each pair of descriptors in the sequence. Then the segment
variances are computed for each possible starting point ¢ and segment duration
d. It can be done efficiently by precomputing the cumulative sums of the ma-
trix [34]. Then the dynamic programming algorithm is used to minimize the
objective (2). It iteratively computes the best objective value for the first j de-
scriptors and ¢ change points. Finally, the optimal segmentation is reconstructed
by backtracking. The total runtime cost of the algorithm is in O(mmyaxn?). The
penalization introduces a minimal computational overhead because the dynamic
programming algorithm already computes L; ,, for all possible segment counts.

3.2 Learning to predict importance scores

For each category, we train a linear SVM classifier from a set of videos with
video-level labels, assuming that a classifier originally trained to classify the full
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Algorithm 1 Kernel temporal segmentation

Input: temporal sequence of descriptors xg,Xx1,...,Xp—1 Cost
1. Compute the Gram matrix A: a;; = K(x;,X;) dn?/2
2. Compute cumulative sums of A n?
3. Compute unnormalized variances n?

t+d—1 1 ttd—1

Vittd = Dy Gii— g Zi,j:t Qi j

t=0,....,n—1, d=1,...,n—1

4. Do the forward pass of the dynamic programming algorithm 2Mmaxn’
Li;= mint:i,‘..,jfl(Li—l,t + vt_,]-), Lo j = voj

t=1,..., Mnpax, J=1,...,n
5. Select the optimal number of change points 2Mmax
m* = arg min"L:O,.“JYLInax Lm.ﬁ + Cg(m7 n)
6. Find change-point positions by backtracking 2m*
e =n,  ti1 = argming (Li—1 ¢ + ve4,)
i=m*r,...,1

Output: Change-point positions tg, ..., tmx_1

videos can be used to score importance of small segments. This assumption is
reasonable for videos where a significant proportion of segments have high scores.
The opposite case, when a very small number of segments allow to classify the
video (“needle in a haystack”), is outside the scope of the paper.

At training time, we aggregate frame descriptors of a video as if the whole
video was a single segment. In this way a video descriptor has the same dimen-
sionality as a segment descriptor. For each category we use videos of the category
as positive examples and the videos from the other categories as negatives. We
train one binary SVM classifier per category.

At test time, we segment the video using the KTS algorithm and aggregate
Fisher descriptors for each segment. The relevant classifier is then applied to the
segment descriptors, producing the importance map of the video.

In order to evaluate the summarization separately from the classification,
we assume that the category of the video is known in advance. While recent
methods specifically targeted at video classification [27,28] are rather mature,
depending on them for our evaluation would introduce additional noise.

3.3 Summary building with KVS

Finally, a summary is constructed by concatenating the most important seg-
ments of the video. We assume that the duration of the summary is set a priori.
Segments are included in the summary by the order of their importance until the
duration limit is achieved (we crop the last segment to satisfy the constraint).

4 MED-summaries dataset

Most existing works evaluate summaries based on user studies, which are time-
consuming, costly and hard to reproduce.
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We introduce a new dataset, called MED-summaries. The proposed bench-
mark simplifies the evaluation by introducing a clear and automatic evaluation
procedure, that is tailored to category-specific summarization. Every part of the
video is annotated with a category-specific importance value. For example, for
the category “birthday party”, a segment that contains a scene where someone
is blowing the candles is assigned a high importance, whereas a segment just
showing children around a table is assigned a lower importance.

We use the training set of the Trecvid 2011 MED dataset (12,249 videos) to
train the classifier for importance scoring. Furthermore, we annotate 60 videos
from this training set as a validation set. To test our approach we annotate
100 videos from the official test set (10 per class), where most test videos have
a duration from 1 to 5 minutes. Annotators mark the temporal segments and
their importance; the annotation protocol is described in section 4.1. To take into
account the variability due to different annotators, annotations were made by
several people. In the experimental section we evaluate our results with respect
to the different annotations and average the results. The different metrics for
evaluation are described in section 4.2. See the dataset’s website for details.

4.1 Annotation protocol

Segment annotation. The annotation interface shows one test video at a time,
which can be advanced by steps of 5 frames. First, we ask a user to annotate
temporal segments. Temporal segments should be semantically consistent, i.e.
long enough for a user to grasp what is going on, but it must be possible to
describe it in a short sentence. For example it can be “a group of people marching
in the street” for a video of the class “Parade”, or “putting one slice of bread
onto another” for the class “Making a sandwich”.

Some actions are repetitive or homogeneous, e.g. running, sewing, etc. In
that case we ask to specify the “period” — minimum duration of a sub-segment
that fully represents the whole segment. For example, watching 2-3 seconds of a
running person is sufficient to describe the segment as “a person is running”.

We require all shot boundaries to be annotated as change points, but change
points do not necessarily correspond to shot boundaries. Often a shot contains a
single action, but the main part is shorter than the whole segment. In this case
we ask to localize precisely the main part.

Importance annotation. For each semantic segment we ask a user “Does the
segment contain evidence of the given event category?”. The possible answers
are:

0: No evidence

1: Some hints suggest that the whole video could belong to the category

2: The segment contains significant evidence of the category

3: The segment alone classifies the video to the category



Category-specific video summarization 9

While audio can be used during annotation, we specify that if something
is only mentioned in onscreen text or speech, then it should not be labeled as
important.

In preliminary experiments we found that annotators tend to give too high
importance to very short segments, that often have ambiguous segmentation
and importance score. Therefore, we preprocess the ground-truth before the
evaluation — we decrease the annotated importance for segments smaller than
4 seconds proportionally to the segment duration.

4.2 Evaluation metrics

We represent the manually annotated ground-truth segments S = {S1,...,5,}
of a video by:

importance M
Il In

segments ‘ S1 ‘ ‘ S; ‘ Sn
periods P <1_37 P,

An automatic temporal segmentation is represented by the sequence of seg-
ments 8" = {S},...,S5,}.
To evaluate segmentation we define a symmetric f-score metric as:

N 2 'p(svs/) 'p(Slvs)
f(SﬂS ) - p(S,S/) +p(S/,S) ’ (3)

where the similarity of two segmentations A and B is
1
A

p(A,B) [{A € A st. 3B € B matching A}| (4)
where |A] is the number of segments in A. We consider segments A and B are
matching if the temporal overlap over the union ratio is larger than 0.75, and
when a segment has an annotated period, it is reduced to a sub-segment no
shorter than the period, that maximizes the overlap over the union.

To evaluate summarization we define two metrics: the importance ratio
and the meaningful summary duration. B B B

A computed summary is a subset of the segments S = {S1,---,S7} C §'.
We say a ground truth segment S; is covered by a detected segment §j if

duration(S; N gj) > ab; (5)

When the period equals the segment duration this means that a fraction « of
the ground truth segment is covered by the detected segment. We use o = 80%
to enforce visually coherent summaries, which was validated using the ground-
truth. Note that this definition allows covering several ground truth segments
by a single detected segment, as in the following example:
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period period - covered by the summary

ground truth t> - cover the ground-truth
summary I:] no match

Let € (S) C S be the subset of ground truth segments covered by the sum-
mary S. Given the duration of the summary 7(S) = Z;’;l duration(S;) and its

total importance Z(S) = ZieC(é) I;, we define the importance ratio as

3 Z(S)

7*(S) ., with Z™(T)= max Z(A) (6)

Imax(’]’(s)) ATC(i)SsTt
We use the mazimum possible summary importance Z™**(T') as a normalization
factor. This normalization takes into account the duration and the redundancy
of the video and ensures that Z*(S) € [0, 1].

It turns out that maximizing the summary importance given the ground-
truth segmentation and importance is NP-hard, as it is a form of knapsack
problem. Therefore we use a greedy approximate summarization: we reduce each
segment to its period, sort the segments by decreasing importance (resolving ties
by favoring shorter segments), and constructing the optimal summary from the
top-ranked segments that fit in the duration constraint.

A second measure is the meaningful summary duration, MSD. A meaningful
summary is obtained as follows. We build it by adding segments by order of
classification scores until it covers a segment of importance 3, as defined by the
ground-truth annotation. This guarantees that the gist of the input video is
represented at this length and measures how relevant the importance scoring
is. Summaries assembling a large number of low-importance segments first are
mediocre summaries and get a low MSD score. Summaries assembling high-
importance segments first get a high MSD score. In our experiments we report
the median MSD score over all test videos as a performance measure.

5 Results

5.1 Baselines

As the videos are annotated by several users, we can evaluate their annotations
with respect to each other in a leave-one-out manner (Users). This quantifies
the task’s ambiguity and gives an upper bound on the expected performance.

For segmentation we use a shot detector (SD) of Massoudi et al. [24] as
a baseline. For classification we use two baselines: one with the shot detector,
where shots are classified with an SVM (SD+4SVM) and one where the segments
are selected by clustering instead of SVM scores (KTS+Cluster).

The SD+SVM baseline is close to an event detection setup, where a temporal
window slides over the video, and an SVM score is computed for every position
of the window [27,35]. However, we pre-select promising windows with the SD
segmentation.
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Table 1: Evaluation of segmentation and summarization methods on the test set
of 100 videos. The performance measures are average f-measure for segmentation
(higher is better) and median Meaningful Summary Duration for summarization
(lower is better).

Method Segmentation|Summarization

Avg. f-score MSD (s)
Users 49.1 10.6
SD + SVM 30.9 16.7
KTS + Cluster 41.0 13.8
KVS 41.0 12.5

Clustering descriptors produces a representative set of images or segments
of the video, where long static shots are given the same importance as short
shots [5]. We use a simple k-means clustering, as the Fisher Vectors representing
segments (see next section) can be compared with the L2 distance [26]. The
summary is built by adding one segment from each cluster in turn. First we add
segments nearest to each centroid, ordered by increasing duration, then second
nearest, etc.

Our KVS method combines the KTS segmentation with a SVM classifier.

5.2 Implementation details

Video descriptors & classifier. We process every 5-th frame of the video. We
extract SIFT descriptors on a dense grid at multiple scales. The local descriptors
are reduced to 64 dimensions with PCA. Then a video frame is encoded with
a Fisher Vector [26] based on a GMM of 128 Gaussians, producing a d=16512
dimension vector.

For segmentation we normalize frame descriptors as follows. Each dimen-
sion is standardized within a video to have zero mean and unit variance. Then
we apply signed square-rooting and Lo normalization. We use dot products to
compare Fisher vectors and produce the kernel matrix.

For classification, the frame descriptors from a segment are whitened under
the diagonal covariance assumption as in [26]. Then we apply signed square-
rooting and Ls-normalization. The segment descriptor is the average of the
frame descriptors. This was shown to be the best pooling method for frame
descriptors [27,28].

The linear SVM classifier for each class is built from about 150 positive and
12000 negative training videos from the MED 2011 training dataset. The C
parameter of the classifier is optimized using cross-validation.

We use grid-search on the 60-video validation set to optimize the parameters
of the different methods. The shot detector (SD) has a single threshold T. Our
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Fig.4: Summarization of the 100-video test dataset. (a) Importance ration of
Equation (6) for different durations of the summary. (b) Correlation of SVM
scores and scores assigned by users.

KVS method relies on a single parameter C that controls the number of seg-
ments (equation 1). For the clustering method, the optimal ratio of the number
of clusters over the number of segments was found to be 1/5%.

On average, the annotated segments are 3.5 s long, and so are SD segments.
The KTS method produces segments of 4.5 s on average.

5.3 Segmentation

Table 1 shows the segmentation quality of users and algorithms. For algorithms
we average the f-scores of Equation (3) over segmentations from different users.
For users we report the average f-score of the leave-one-out evaluation, i.e. we
assume each user in turn to be the ground truth. The proposed approach KTS
outperforms the competing method SD in terms of temporal segmentation per-
formance. Surely, human segmentations are better than the algorithms’, which
means that the annotation protocol is consistent. Yet, the average f-score of
users is not close to 100%, which suggests that the segment annotation task is
somewhat subjective.

5.4 Summarization

The MSD metric in Table 1 shows that the temporal segmentation output by
KTS has a significant impact on the summary’s quality. Indeed, the SD+SVM
method generally produces longer summaries than KTS+Cluster.

Fig. 4a shows the summarization quality for different summary durations.
The user curve gives an upper bound on what can be achieved, by evaluating the
consensus between annotators, following the leave-one-out procedure as before.
The proposed approach, KVS, is the closest to the user curve. Again, KVS
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clearly outperforms the competing methods KTS+Cluster and SD+SVM. We
also run an experiment where the SIFT low-level descriptor is replaced by the
MBH motion descriptor [36]. We get 2% improvement for 10 sec. and 1% drop
for longer summaries compared to SIFT. A recent work [27] also reports little
difference between SIFT and MBH on the MED 2011 dataset.

We also investigate how well SVM scores correlate with user importance,
irrespective of the segmentation mismatches. We score ground truth segments
from all videos of a class with SVM, and order the segments by descending score.
Ideally segments with importance 3 should be in the top of the list, and non-
relevant segments at the bottom. Since ground truth scores are discrete (from 0
to 3), we use the nDCG ranking metric [37], nDCG = Z,; 2 >0 1™ (log, i),
where I is the annotated importance score of the i*® segment in the ranked
list; p is the total number of segments over all videos of the class; Z, is the
normalization factor such that a perfect ranking’s nDCG is 1.

Fig. 4b shows that, for 9 out of 10 classes, the SVM ranking is stronger than
the random ranking.

Note that our approach does not require a ground-truth segmentation nor
importance annotation for the training set. Therefore there can be some infor-
mation loss due to unrelated clutter. To quantify this loss, we run an experiment
by cross-validation on the test set where we use as positives during training the
segments with the highest-importance scores, and observe an increase of 3 points
in performance with respect to learning from full videos. Thus, a multiple in-
stance learning (MIL) approach might give some improvement and is a possible
extension of our approach.

Figure 5 illustrates our approach.

6 Conclusion

We proposed a novel approach to video summarization, called KVS, that deliv-
ers short and highly-informative summaries, that assemble the most important
segments for a given video category.

KVS requires a set of training videos for a given category so that the method
can be trained in a supervised fashion, but does not rely on segment annota-
tions in the training set. We also introduced a new dataset for category-specific
video summarization, MED-Summaries, that is publicly available, along with
the annotations and the evaluation code that computes the performance metrics
introduced in this paper.

Acknowledgements. This work was supported by the European integrated
project AXES, the MSR/INRIA joint project, the LabEx PERSYVAL-Lab (ANR-
11-LABX-0025), and the ERC advanced grant ALLEGRO. We thank the LEAR
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Fig.5: Illustrations of summaries constructed with our method. We show the
central frame in each segment with the SVM score below.
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