I. Chopra, Review of State of Art of Smart Structures and Integrated Systems, pp.2145-2187, 2002.

E. Crawley and J. De-luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal, vol.25, issue.10, pp.1373-1385, 1987.
DOI : 10.2514/3.9792

V. Giurgiutiu and C. Rogers, Recent Advancements in the Electro-Mechanical (E/M) Impedance Method for Structural Health Monitoring and NDE, Annual International Symposium on Smart Structures and Materials, pp.3329-3353, 1998.

A. Zagrai and V. Giurgiutiu, Electro-Mechancial Impedance Method for Crack Detection in Thin Plates, Intelligient Materials systems and Structures, pp.709-718, 2001.

V. Giurgiutiu and A. Zagrai, Embedded Self Sensing Piezoelectric Active Sensors for On-line Structural identication, Vibration and Acoustics, pp.116-125, 2002.

W. A. Smith and B. A. Auld, Modeling 1-3 composite piezoelectrics: thickness-mode oscillations, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.38, issue.1, pp.40-47, 1991.
DOI : 10.1109/58.67833

A. A. Bent, N. W. Hagood, and J. P. Rodgers, Anisotropic Actuation with Piezoelectric Fiber Composites, Journal of Intelligent Material Systems and Structures, vol.13, issue.3, pp.338-349, 1995.
DOI : 10.1177/1045389X9500600305

R. B. Williams, G. Park, D. J. Inman, and W. K. Wilkie, An overview of Composite Acutators with Piezoceramics, Proceeding of IMAC XX, 2002.

H. A. Sodano, G. Park, and D. J. Inman, An investigation into the performance of macro-fiber composites for sensing and structural vibration applications, Mechanical Systems and Signal Processing, vol.18, issue.3, pp.683-697, 2004.
DOI : 10.1016/S0888-3270(03)00081-5

A. E. El-etriby, M. E. Abdel-meguid, T. M. Hatem, and Y. A. , Bahei-El-Din A Multiscale-based Model for Composite Materials with Embedded PZT filaments for energy Harvesting, Proc. SPIE 9058, Behavior and Mechanics of Multifunctional Materials and Composites, 2014.

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Royal Society of London, pp.376-396, 1957.

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, pp.571-574, 1973.
DOI : 10.1016/0001-6160(73)90064-3

M. L. Dunn and M. Taya, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites, International Journal of Solids and Structures, vol.30, issue.2, pp.161-175, 1993.
DOI : 10.1016/0020-7683(93)90058-F

J. Y. Li and M. L. Dunn, Micromechanics of Magnetoelectroelastic Composite Materials: Average Fields and Effective Behavior, Intelligent Material Systems and Structures, pp.404-416, 1998.
DOI : 10.1177/1045389X9800900602

S. Kari, H. Berger, R. Rodriguez-ramos, and U. Gabbert, Numerical Evaluation of Effective Material Properties of Transversely Randomly Distributed Uniderctional Piezoelectric Fiber Composites, Intelligent Material Systems and Structures, pp.361-371, 2007.

G. J. Dvorak, Transformation field analysis of inelastic composite materials, pp.311-327, 1992.

J. L. Teply, Periodic Hexagonal Array Models for Plasticity Analysis of Composite Materials, Ph. D. Dissertation, 1984.

Y. A. Bahei-el-din, R. Khire, and R. Hajela, Multiscale transformation field analysis of progressive damage in fibrous laminates, Multiscale Computational Engineering, pp.69-80, 2010.

D. Berlincourt, H. H. Krueger, and C. Near, Technical Publications 226: mportant Properties of Morgan Electro Ceramics Piezoelectric Ceramics (PZT-4, 2013.

. Simulia, ABAQUS 6.10 Documentation

T. M. Hatem, M. N. Abuelfoutouh, and H. M. Negm, Application of Genetic Algorithms and Neural Networks to Health Monitoring of Composite Structures, Proceedings of the Second European Workshop on Structural Health Monitoring, 2004.