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We introduce a generalized notion of semilinear elliptic partial differential
equations where the corresponding second order partial differential operator
L has a generalized drift. We investigate existence and uniqueness of gen-
eralized solutions of class C1. The generator L is associated with a Markov
process X which is the solution of a stochastic differential equation with
distributional drift. If the semilinear PDE admits boundary conditions, its
solution is naturally associated with a backward stochastic differential equa-
tion (BSDE) with random terminal time, where the forward process is X.
Since X is a weak solution of the forward SDE, the BSDE appears naturally
to be driven by a martingale. In the paper we also discuss the uniqueness of
solutions of a BSDE with random terminal time when the driving process is
a general càdlàg martingale.

KEY WORDS AND PHRASES: Backward stochastic differential equations; ran-
dom terminal time; martingale problem; distributional drift; elliptic partial differential
equations.
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1. Introduction

The paper involves three essential areas of study.
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1. Elliptic semilinear PDEs with distributional drift.

2. Backward stochastic differential equations (BSDEs) driven by càdlàg martingales
with terminal condition at random terminal time.

3. The representation of solutions of the above mentioned BSDEs through solutions
of PDEs.

We consider a differential equation of the type

Lu = F
(

x, u, u′
)

, (1.1)

on [0, 1] with boundary conditions, where L is the generator of a one-dimensional stochas-

tic differential equation of the type Lg = σ2

2 g
′′ + β′g′, with σ, β being real continuous

functions and σ is strictly positive. In general, (1.1) is a semilinear PDE, which reduces
to an ODE in the case of one dimension considered here. The drift β′ is the derivative
of a continuous function β, in general a distribution. A typical example of such β is the
path of a fixed continuous process. F is a continuous real function defined on [0, 1]×R

2.
When F does not depend on u and u′, and x varies on the real line, (1.1) was introduced
in [14, 15], via the notion of C1-solutions which appear as limit of solutions of elliptic
problems with regularized coefficients. Indeed [14, 15] investigated the case of initial
conditions.

One-dimensional stochastic differential equations with distributional drift were ex-
amined by several authors, see [14, 15, 2, 23] and references therein, with a recent
contribution by [19]. Such an equation appears formally as

dXt = β′(Xt)dt+ σ(Xt)dWt. (1.2)

More recently some contributions also appeared in the multidimensional case, see [1],
when the drift is a Kato class measure and in [13] for other type of time dependent drifts.

A motivation for studying the mentioned type of equations comes from the literature
of random media. A special case of equation (1.2) with a = 1 and β being the continuous
function β was considered by several authors, see e.g. [21, 20, 17, 26], in particular in
relation with long time behavior, without defining the stochastic analysis framework. In
that case, the solution X of (1.2) is the so called Brox diffusion. The discrete version of
this is the random walk in random environment. In that case the solution X describes
the motion of a particle in an irregular medium: the velocity of the medium β′ can be
for instance the realization of a Gaussian white noise but the noise could be also of other
nature. In particular β is often a (possibly fractional) Brownian path, but it could be
the path any continuous process.

This paper is devoted to the following main objectives.

1. We study existence and uniqueness of a solution u of the semilinear equation (1.1)
with prescribed initial conditions for u(0) and u′(0), see Proposition 3.6.

2. We show that the initial value problem allows to provide a solution to the boundary
value problem on [0, 1] for (1.1), see Proposition 3.12.
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3. We explore several assumptions on F which provide existence and/or uniqueness of
solutions to the boundary value problem, see Corollary 3.11 and Propositions 3.12
and 3.14.

4. We study the uniqueness of solutions of BSDEs driven by a càdlàg martingale M
such that 〈M〉 is continuous, see Theorem 5.3.

5. We show that a solution of the PDE (1.1) with Dirichlet boundary conditions
on [0, 1] generates a solution to a special forward BSDE (see Theorem 6.2) with
terminal condition at the random time τ , where τ is the exit time from [0, 1] of a
solution X of an SDE with distributional drift.

6. Those solutions which are associated with (1.1) are the unique solutions of the
corresponding BSDE (in some reasonable class) whenever F fulfills in particular
some strict monotonicity condition in the second variable, i. e. (3.18) holds.

7. We illustrate situations where the BSDE admits no uniqueness in a reasonable class
but the probabilistic representation still holds.

As we mentioned, a significant object of study is a backward SDE with random terminal
time, which was studied and introduced by [11] when the driving martingale is a Brow-
nian motion. BSDEs driven by a càdlàg martingale with fixed time terminal time were
studied in [7, 12, 9, 6].

The paper is organized as follows. After the introduction in Section 2, we recall some
preliminaries about linear elliptic differential equations with initial condition and the
notion of martingale problem related to an SDE with distributional drift. In Section 3,
we discuss existence and uniqueness of solutions to (1.1), in Section 4 we discuss the first
exit time properties of a solution to equation (1.2). In Section 5 we investigate uniqueness
for BSDEs with random terminal condition with related probabilistic representation.
Finally Section 6 shows how a solution to (1.1) generates a solution to a special BSDE
with terminal condition at random time.

2. Preliminaries

2.1. The linear elliptic PDE with distributional drift

If I is a real open interval, then C0(I) will be the space of continuous functions on I
endowed with the topology of uniform convergence on compacts. For k ≥ 1, Ck(I) will
be the space of k-times continuously differentiable functions on I, equipped with the
topology of uniform convergence of the first k derivatives. If I = R, k ≥ 0, then we will
simply write Ck instead of Ck(R). If I = [a, b] with −∞ < a < b < +∞, then u : I → R

is said to be of class C1([a, b]) if it is of class C1(]a, b[) and if the derivative extends
continuously to [a, b].

In this section we introduce the “generator” L of our diffusion with distributional drift
adopting the notations and conventions of [14, 15].
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Let σ, β ∈ C0 such that σ > 0. We consider formally a differential operator of the
following type [14, section 2]:

Lg =
σ2

2
g′′ + β′g′. (2.1)

By a mollifier, we intend a function Φ belonging to the Schwartz space S (R) with
∫

Φ (x) dx = 1. We denote

Φn (x) := nΦ(nx), σ2n := σ2 ∗ Φn, βn := β ∗ Φn.

We then consider

Lng =
σ2n
2
g′′ + β′ng

′. (2.2)

A priori, σ2n, βn and the operator Ln depend on the mollifier Φ.

Definition 2.1. Let l ∈ C0. A function f ∈ C1(R) is said to be a C1-solution to

Lf = l, (2.3)

if, for any mollifier Φ, there are sequences (fn) in C
2, (ln) in C

0 such that

Lnfn = ln, fn → f in C1, ln → l in C0. (2.4)

The following proposition gives conditions for the existence of a solution h to the
homogeneous version of (2.3), see [14, Prop. 2.3].

Proposition 2.2. Let a ∈ R be fixed. There is a C1-solution to Lh = 0 such that
h′ (x) 6= 0 for every x ∈ R if and only if

Σ (x) := lim
n→∞

2

∫ x

a

β′n
σ2n

(y) dy (2.5)

exists in C0, independently from the mollifier. Moreover, in this case, any C1-solution
f to Lf = 0 fulfills

f ′ (x) = e−Σ(x)f ′(a), ∀x ∈ R. (2.6)

Remark 2.3.

1. In particular, this proves the uniqueness of solutions to the problem

Lf = l, f ∈ C1, f (a) = x0, f ′ (a) = x1, (2.7)

for every l ∈ C0, x0, x1 ∈ R.

2. In most of the cases we will set a = 0.

In the sequel we will always suppose the existence of Σ as in (2.5). We will denote
h : R → R such that h(0) = 0 and h′ = exp (−Σ) and hn : R → R so that hn = exp (−Σn)

with Σn = 2
∫ x

0
β′

n

σ2
n
(y) dy. The proposition below is a consequence of [14, Lemma 2.6]

and [14, Remark 2.7].
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Proposition 2.4. Let a ∈ R and l ∈ C0 and x0, x1 ∈ R. Then there is a unique
C1-solution to

Lu = l (2.8)

u(a) = x0, u′(a) = x1.

The solution satisfies

u′ (x) = e−Σ(x)

(

2

∫ x

a

eΣ(y) l (y)

σ2 (y)
dy + x1

)

. (2.9)

We will denote by DL the set of all f ∈ C1 which are C1-solutions of Lf = l for some
l ∈ C0. This defines without ambiguity L : DL → C0.

2.2. Related martingale problem

For the moment we fix a probability space (Ω,G,P). All processes will be considered on
the index set R+.

For convenience, we follow the framework of stochastic calculus introduced in [25] and
developed in several papers. A survey of that calculus in finite dimension is given in [24].
We will fix a filtration F = (Ft) which will fulfill the usual conditions.

The covariation of two continuous processes X and Y is defined as follows. Suppose
that

At := lim
ε→0+

Cε(X,Y )t (2.10)

exists for any t ∈ [0, T ] in probability, where

Cε(X,Y )t :=
1

ε

∫ t

0
(Xs+ε −Xs) (Ys+ε − Ys) ds.

We say that (X,Y ) admit a covariation if the random function (At) admits a (necessarily
unique) continuous version, which will be designated by [X,Y ]. For [X,X] we often
shortly write [X]. All the covariation processes will be continuous.

Remark 2.5. In [24, Propositions 1, 9 and 11, Remarks 1 and 2] we can find the
following.

a) If [X,X] exists, then it is always an increasing process and X is called a finite
quadratic variation process. If [X,X] ≡ 0, then X is said to be a zero quadratic
variation process.

b) Let X and Y be continuous processes such that [X,Y ], [X,X], [Y, Y ] exist. Then
[X,Y ] is a bounded variation process. If f, g ∈ C1, then

[f(X), g(Y )]t =

∫ t

0
f ′(X)g′(Y ) d[X,Y ].
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c) If A is a zero quadratic variation process and X is a finite quadratic variation
process, then [X,A] ≡ 0.

d) A bounded variation process is a zero quadratic variation process.

e) If M and N are F-local martingales, then [M,N ] is the usual covariation process
〈M,N〉.

An F-Dirichlet process is the sum of an F-local continuous martingale M and an
F-adapted zero quadratic variation process A, see [16, 4].

Remark 2.6. Let X =M +A be an F-Dirichlet process.

1. Remark 2.5c) and e) together with the bilinearity of the covariation operator imply
that [X] = 〈M〉.

2. If f ∈ C1, then f(X) =Mf +Af is an F-Dirichlet process, where

Mf =

∫ ·

0
f ′(Xs) dMs

and Af := f(X) −Mf has zero quadratic variation. This easily follows from the
bilinearity of covariation and Remark 2.5b), c) and e). See also [4] for a similar
result and Proposition 17 in [24] for a generalization to weak Dirichlet processes.

Definition 2.7. Given a stopping time τ and a process X, we denote by Xτ the stopped
process

Xτ
t := Xt∧τ , t ≥ 0.

Remark 2.8. Let τ be an F-stopping time. If X is an F-semimartingale (resp. F-
Dirichlet process), then the stopped processes Xτ is also a semimartingale (resp. F-
Dirichlet process).

In the classical theory of Stroock and Varadhan, see e. g. [27], the solutions of martin-
gale problems are probabilities on the canonical space C0([0, T ]) equipped with its Borel
σ-field and the Wiener measure. Here the meaning is a bit different since the solutions
are considered to be processes. For the sequel of the section we fix x0 ∈ R.

Definition 2.9. A process X (defined on some probability space), is said to solve the
martingale problem MP (σ, β;x0) if X0 = x0 a.s. and

f(Xt)− f (x0)−
∫ t

0
Lf(Xs)ds (2.11)

is a local martingale for any f ∈ DL.

In the sequel we will denote by FX = (FX
t ) the canonical filtration associated with

X.
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Definition 2.10. We say that the martingale problem MP(σ, β;x0) admits uniqueness
(in law) if any processes X1 and X2, defined on some probability space and solving the
martingale problem, have the same law.

The proposition below was the object of Proposition 3.13 of [14].

Proposition 2.11. Let v be the unique solution to Lv = 1 in the C1-sense such that
v (0) = v′ (0) = 0. Then there exists a unique (in law) solution the martingale problem
MP(σ, β;x0) if and only if

v (−∞) = v (+∞) = +∞. (2.12)

In several contexts (see [14]) the solution of the previous martingale problem turns
out to be a solution (in the proper sense) of (1.2), but it will not be used in this paper.

Proposition 2.11 implies the following.

Proposition 2.12. The martingale problem MP (σ, β;x0) admits exactly one solution
in law if and only if the function v : R → R defined by

v(0) = 0,

v′ (x) = e−Σ(x)

(

2

∫ x

0

1

σ2
(y) dy

)

(2.13)

fulfills
v (−∞) = v (+∞) = +∞. (2.14)

Proof. This follows from Proposition 2.11, Proposition 2.4 and from the fact that v
defined in (2.13) is the solution of the problem

Lv = 1, v (0) = v′ (0) = 0.

From now on Assumption (2.14) for the function v defined by (2.13) will always be
in force. Let then X be a solution to the martingale problem on a suitable probability
space and FX be its canonical filtration.

Remark 2.13.

i) By Remark 3.3 of [14], choosing f as the identity function, X is an FX-Dirichlet
process, whose local martingale part MX verifies

[

MX
]

t
=

∫ t

0
σ2(Xs)ds.

ii) Consequently by Remark 2.5c) and e) together with the bilinearity of covariation
it follows [X]t =

∫ t

0 σ
2(Xs)ds.
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Proposition 2.14. Let X be a solution of MP(σ, β;x0). For every ϕ ∈ DL we have

ϕ(Xt) = ϕ(X0) +

∫ t

0
ϕ′(Xs)dM

X
s +

∫ t

0
(Lϕ)(Xs)ds.

Proof. By definition of the martingale problem there is an FX -local martingaleMϕ such
that

ϕ(Xt) = ϕ(X0) +Mϕ
t +

∫ t

0
(Lϕ)(Xs)ds. (2.15)

On the other hand, by Remark 2.13i) and Remark 2.6 ϕ(Xt) is an FX -Dirichlet process
with decomposition

ϕ(Xt) = ϕ(X0) +

∫ t

0
ϕ′(Xs)dM

X
s +Aϕ

t , (2.16)

where [Aϕ] ≡ 0. By the uniqueness of Dirichlet decomposition and the identification of
(2.15) and (2.16) the result follows.

3. The semilinear elliptic PDE with distributional drift and

boundary conditions

In this section we present the deterministic analytical framework that we will need in
the paper.

3.1. The linear case

We explain here how to transform the study of our initial value problem to a boundary
value problem.

Definition 3.1. Let a, b,A,B ∈ R, such that −∞ < a < b < ∞. Additionally, let
g : [a, b] → R be continuous. We say that u : [a, b] → R is a solution of the boundary
value problem











Lu = g,

u(a) = A,

u(b) = B,

(3.1)

if there is a continuous extension g̃ : R → R of g and a function ũ ∈ DL fulfilling
ũ
∣

∣

[a,b] = u, such that ũ is a solution of

Lũ = g̃, (3.2)

in the sense of Definition 2.1, and ũ(a) = A, ũ(b) = B.
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Proposition 3.2. Let g : [0, 1] → R be continuous, A,B ∈ R, a = 0 and b = 1. Then
there exists a unique solution u to (3.1), given by

u(x) = f(x) +

∫ 1

0
K(x, y)g(y)dy (3.3a)

f(x) :=
B
∫ x

0 dye
−Σ(y) +A

∫ 1
x
dye−Σ(y)

∫ 1
0 dye

−Σ(y)
(3.3b)

K(x, y) := 1y≤x
2eΣ(y)

σ2(y)

∫ x

y

dze−Σ(z) − 2

∫ x

0 dre
−Σ(r)

∫ 1
0 dre

−Σ(r)

eΣ(y)

σ2(y)

∫ 1

y

dze−Σ(z). (3.3c)

Remark 3.3. For every y ∈ [0, 1], x 7→ K(x, y) is absolutely continuous and (x, y) 7→
∂xK(x, y) belongs to L∞([0, 1]2).

Proof of Proposition 3.2. We start with existence. Let g̃ be a continuous extension of g
and x1 ∈ R. Then, by Proposition 2.4, there exists a unique solution ũ to the problem
on the real line,

Lũ(x) = g̃(x), x ∈ R, (3.4a)

ũ(0) = A, (3.4b)

ũ′(0) = x1, (3.4c)

given by

ũ(x) = A+

∫ x

0
e−Σ(y)

(

2

∫ y

0
eΣ(z) g̃(z)

σ2(z)
dz + x1

)

dy. (3.5)

We look for x1 ∈ R, so that ũ(1) = B. This gives

B = A+ x1

∫ 1

0
e−Σ(y)dy + 2

∫ 1

0
dye−Σ(y)

∫ y

0
dzeΣ(z) g̃(z)

σ2(z)
,

x1 =
B −A− 2

∫ 1
0 dze

Σ(z) g̃(z)
σ2(z)

∫ 1
z
dye−Σ(y)

∫ 1
0 e

−Σ(y)dy
.

We insert x1 into (3.5) and use the fact that u = ũ|[0,1] and g = g̃|[0,1]. This gives (3.3),
and we get u(0) = A and u(1) = B.

To show uniqueness, let v1 and v2 be two solutions of (3.1), and set v = v1−v2. Then
there is ṽ ∈ DL with ṽ|[0,1] = v and an l̃ ∈ C0 with l̃|[0,1] = 0, so that

Lṽ(x) = l̃,

ṽ(0) = ṽ(1) = 0.

We need to show that v ≡ 0. By Proposition 2.4 we get

ṽ′(x) = e−Σ(x)

(

2

∫ x

0

l̃(y)

σ2(y)
eΣ(y)dy + ṽ′(0)

)

∀x ∈ R.
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In particular, since l̃
∣

∣

[0,1] = 0, we get

ṽ′(x) = e−Σ(x)ṽ′(0), ∀x ∈ [0, 1].

Consequently, for x ∈ [0, 1],

ṽ(x) =

(
∫ x

0
dy e−Σ(y)

)

ṽ′(0).

Since ṽ(1) = 0, it follows ṽ′(0) = 0 and so v(x) = ṽ(x) = 0 ∀x ∈ [0, 1].

3.2. Solution of the semilinear problem on the real line

We extend here the notion of C1-solution to the semilinear case.

Definition 3.4. Let F : R × R
2 → R be a continuous function. We say that u ∈ C1 is

a C1-solution (on the real line) of

Lu = F
(

x, u, u′
)

(3.6)

if u is a C1-solution of Lu = h, with h : R → R defined by h(x) = F (x, u(x), u′(x)).

Definition 3.5. Let us consider a function F : I × R× R → R,

1. (x, y, z) 7→ F (x, y, z) will be called globally Lipschitz with respect to z (resp. (y, z))
if F is Lipschitz with respect to z (resp. (y, z)) uniformly on x varying in I and
y in R (resp. uniformly on x varying in I). More precisely, F is globally Lipschitz
with respect to z if there exists some constant k, called the Lipschitz constant for
F , such that

|F (x, y, z) − F (x, y, z̃)| ≤ k |z − z̃| , ∀x ∈ I, ∀y, z, z̃ ∈ R. (3.7)

Similarly we speak about the Lipschitz constant k related to a function F which is
globally Lipschitz with respect to (y, z).

2. Analogously F will be said to have linear growth with respect to z (resp. (y, z))
if F has linear growth with respect to z (resp. (y, z)) uniformly on x varying in I
and y in R (resp. uniformly on x varying in I). Obvious variants will also be used
without further comment.

Proposition 3.6. Suppose that F : R3 → R, so that (x, y, z) 7→ F (x, y, z) restricted to
K ×R

2, for any compact interval K, is Lipschitz with respect to (y, z). Then there is a
unique solution of

Lu = F
(

x, u(x), u′(x)
)

, x ∈ R,

u(0) = x0,

u′(0) = x1.

(3.8)
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Proof. By Proposition 2.4, u : R → R of class C1 is a C1-solution if and only if

u′ (x) = e−Σ(x)

(

2

∫ x

0

eΣ(y)

σ2 (y)
F
(

y, u (y) , u′ (y)
)

dy + x1

)

, ∀x ∈ R,

u(0) = x0.

(3.9)

We can reduce the well-posedness of (3.9) to the well-posedness of

u′ (x) = e−Σ(x)

(

2

∫ x

0

eΣ(y)

σ2 (y)
F
(

y, u (y) , u′ (y)
)

dy + x1

)

,∀x ∈ [−N,N ],

u(0) = x0,

(3.10)

for every N ∈ N
∗ := N− {0}. In the sequel of the proof, since (3.10) depends on N , we

will often denote it by (3.10)(N).
Indeed, if uN is a solution of (3.10)(N), then any solution of (3.10)(N + 1), re-

stricted to [−N,N ] is a solution (3.10)(N). In this way the existence of a solution
of (3.9) is equivalent to the existence of a family (uN ) of functions which are respec-
tively solutions of (3.10)(N). In the sequel we fix N ∈ N

∗ and we study existence and
uniqueness for (3.10)(N), which is an ODE in a compact interval. We consider the map
T : C1 ([−N,N ]) → C1 ([−N,N ]) defined by

Tf(0) = x0

(Tf)′ (x) = e−Σ(x)

(

2

∫ x

0

eΣ(y)

σ2(y)
F
(

y, f(y), f ′(y)
)

dy + x1

)

.

Clearly a function u ∈ C1 ([−N,N ]) is a solution of (3.10)(N) if and only if Tu = u.
C1 ([−N,N ]) is a Banach space equipped with the norm

‖f‖N = sup
|x|≤N

[

|f(x)|+ |f ′(x)|
]

.

The norm ‖·‖N is equivalent to

‖f‖N,λ = sup
|x|≤N

(

|f(x)|+ |f ′(x)|
)

eΣ(x)−λ|x|,

where λ > 0 will be suitably chosen later. It remains to show that T admits a unique
fixed point. For this we will show that T is a contraction with respect to ‖·‖N,λ. Let
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u, v ∈ C1 ([−N,N ]). Let us denote by K/2 a Lipschitz constant for F . We get

∣

∣

∣(Tu− Tv)′(x)eΣ(x)
∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

∫ x

0

∣

∣F
(

y, u(y), u′(y)
)

− F
(

y, v(y), v′(y)
)∣

∣

eΣ(y)

σ2(y)
dy

∣

∣

∣

∣

∣

≤ K sup
|z|≤N

1

σ2(z)

∣

∣

∣

∣

∫ x

0

(∣

∣u′(y)− v′(y)
∣

∣+ |u(y)− v(y)|
)

eΣ(y)dy

∣

∣

∣

∣

≤ K sup
|z|≤N

1

σ2(z)

∣

∣

∣

∣

∫ x

0
eλ|y|dy

∣

∣

∣

∣

‖u− v‖N,λ

= K sup
|z|≤N

1

σ2(z)

eλ|x| − 1

λ
‖u− v‖N,λ .

This implies that, for every x ∈ [−N,N ],

∣

∣(Tu− Tv)′ (x)
∣

∣ eΣ(x)−λ|x| ≤ K

λ
sup
|z|≤N

1

σ2(z)
‖u− v‖N,λ . (3.11)

On the other hand, since (Tu)(0) = (Tv)(0) = x0 we have

|(Tu− Tv)(x)| ≤
∣

∣

∣

∣

∫ x

0

∣

∣(Tu− Tv)′ (y)
∣

∣ dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0
eΣ(y)−λ|y|

∣

∣(Tu− Tv)′ (y)
∣

∣ e−Σ(y)+λ|y|dy

∣

∣

∣

∣

≤ sup
|s|≤N

e−Σ(s) sup
|y|≤N

(

eΣ(y)−λ|y|
∣

∣(Tu− Tv)′(y)
∣

∣

) eλ|x| − 1

λ
.

Finally, taking into account (3.11), we get

eΣ(x)−λ|x| |(Tu− Tv)(x)| ≤ K

λ2
sup
|s|≤N

e−Σ(s) sup
|y|≤N

eΣ(y) sup
|z|≤N

1

σ2(z)
‖u− v‖N,λ . (3.12)

Summing up (3.11) and (3.12) we get

‖Tu− Tv‖N ≤ C(λ) ‖u− v‖N,λ , (3.13)

where

C(λ) =
K

λ
sup
|z|≤N

1

σ2(z)
+
K

λ2
sup
s≤N

e−Σ(s) sup
|y|≤N

eΣ(y) sup
|x|≤N

1

σ2(x)
.

If C(λ) < 1, (3.13) has shown that T is a contraction. The condition can be fulfilled by
choosing λ sufficiently large.
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3.3. The semi-linear case with boundary conditions

Definition 3.7. Let

i) a, b ∈ R, such that 0 < a < b <∞,

ii) A,B ∈ R, and

iii) F : [a, b] ×R
2 → R be a continuous function.

We say that u : [a, b] → R of class C1([a, b]) is a solution of the boundary value problem











Lu(x) = F (x, u, u′),

u(a) = A,

u(b) = B,

(3.14)

if u is a solution of the boundary value problem











Lu = ℓ,

u(a) = A,

u(b) = B,

in the sense of Definition 3.1 with ℓ : [a, b] → R defined by ℓ(x) = F (x, u(x), u′(x)).

In Section 5 we will observe that solving (3.14) is strongly related to the problem of
solving BSDEs with random terminal time.

Lemma 3.8. Suppose that the assumptions of Definition 3.7 are fulfilled. Then, u is a
solution of the boundary value problem











Lu(x) = F (x, u, u′),

u(a) = A

u(b) = B

(3.15)

if and only if the functions u1, u2 : [a, b] → R, given by

u1 = u,

u2 = eΣu′,

belong to C1([a, b]) and fulfill

u′1(x) = e−Σ(x)u2(x),

u′2(x) = 2
eΣ(x)

σ2(x)
F
(

x, u1(x), e
−Σ(x)u2(x)

)

,

u1(a) = A,

u1(b) = B.

(3.16)

13



Proof. Let u be a solution of the boundary value problem (3.15). This means, by Defi-
nition 3.7, that u is a solution of the boundary value problem











Lu = ℓ,

u(a) = A,

u(b) = B,

with
ℓ(x) = F

(

x, u(x), u′(x)
)

,

in the sense of Definition 3.1. By that definition, there are continuous extensions ũ and
ℓ̃ such that

ũ|[a,b] = u,

ℓ̃|[a,b] = ℓ,

and
Lũ = ℓ̃

in the sense of Definition 2.1. Since ũ ∈ C1, we can define

xa := ũ′(a).

By Proposition 2.4 it follows that

ũ′(x) = e−Σ(x)

(

2

∫ x

a

eΣ(y)

σ2(y)
ℓ̃(y)dy + xa

)

, ∀x ∈ R.

By setting ℓ̃1, ℓ̃2, ũ1, ũ2 : R → R as

ℓ̃1 := ũ′,

ℓ̃2 := 2
eΣ

σ2
ℓ̃,

ũ1 = ũ,

ũ2 = ũ′eΣ,

it yields that ũ1, ũ2 belong to C1 and

ũ′1(x) = ℓ̃1(x) ∀x ∈ R,

ũ′2(x) = ℓ̃2(x) ∀x ∈ R,

ũ1(a) = A,

ũ1(b) = B.

It follows now that u1, u2 ∈ C1 ([a, b],R), which are respectively restrictions of ũ1, ũ2,
solve (3.16).

14



Concerning the converse, let u1, u2 ∈ C1 ([a, b],R]), so that (3.16) is fulfilled. We
define ℓ̃2 : R → R as

ℓ̃2(x) = 2
eΣ(x)

σ2(x)
ℓ̃(x),

where ℓ̃ : R → R is a continuous extension of

ℓ(x) = F
(

x, u1(x), u2(x)e
−Σ(x)

)

.

By (3.16), we have for some xa ∈ R

u2(x) = 2

∫ x

a

eΣ(y)

σ2(y)
ℓ̃(y)dy + xa, (3.17)

for x ∈ [a, b]. We define ũ2 : R → R as the right-hand side of (3.17) for all x ∈ R.
Clearly ũ2 is a C1 extension of u2. We also define

ℓ̃1(x) = e−Σ(x)ũ2(x), x ∈ R.

(3.16) gives
u′1(x) = ℓ̃1(x) = e−Σ(x)ũ2(x), x ∈ [a, b].

We define ũ1(x) =
∫ x

a
ℓ̃1(y)dy + A, x ∈ R. ũ1 is a C1 extension of u1. Consequently,

setting ũ = ũ1, we get

ũ′(x) = ũ′1(x) = ℓ̃1(x) = e−Σ(x)ũ2(x) = e−Σ(x)

(

2

∫ x

a

eΣ(y)

σ2(y)
ℓ̃(y)dy + xa

)

,

ũ(a) = A,

taking into account (3.17) and the consideration below it. We define u : [a, b] → R as
restriction of ũ and get

u(a) = ũ(a) = A,

u(b) = ũ(b) = ũ1(b) = u1(b) = B,

by (3.16). By Proposition 2.4, Definition 3.1 and Definition 3.4, u is a solution to the
boundary value problem (3.15).

The following result provides uniqueness under some monotonicity conditions.

Proposition 3.9. Let

F : [a, b]× R
2 → R,

(x, y, z) 7→ F (x, y, z),

be a continuous function fulfilling the following assumptions.
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1. F is non-decreasing in y, i. e.

(F (x, y, z)− F (x, ỹ, z)) (y − ỹ) ≥ 0, ∀y, ỹ, z ∈ R, x ∈ [a, b]. (3.18)

2. F is globally Lipschitz (with respect to z).

Then, for any A,B ∈ R, the boundary value problem










Lu(x) = F
(

x, u, u′
)

,

u(a) = A,

u(b) = B,

(3.19)

has at most one C1-solution.

Proof. Let u and v in C1 ([a, b]) be two solutions of the boundary value problem (3.19)
and define

xa := u′(a),

ya := v′(a).

Then, by Lemma 3.8, we get

u(x) = A+

∫ x

a

dze−Σ(z)

(

2

∫ z

a

eΣ(y)

σ2(y)
F
(

y, u(y), u′(y)
)

dy + xa

)

, ∀x ∈ [a, b], (3.20a)

v(x) = A+

∫ x

a

dze−Σ(z)

(

2

∫ z

a

eΣ(y)

σ2(y)
F
(

y, v(y), v′(y)
)

dy + ya

)

, ∀x ∈ [a, b], (3.20b)

u(a) = v(a) = A, (3.20c)

u(b) = v(b) = B. (3.20d)

Indeed, we are interested in the C1-function

φ : [a, b] → R

φ = u− v,

which fulfills φ(a) = φ(b) = 0. We consider now the C2-function χ, given by

χ(a) = 0 (3.21a)

χ′(x) = eΣ(x)φ′(x), (3.21b)

and we define
ψ := χ′φ.

By using (3.21b), the monotonicity and Lipschitz conditions, we get, on [a, b],

ψ′ = χ′′φ+ χ′φ′ ≥ χ′′φ = 2
eΣ

σ2
(

F
(

x, u, u′
)

− F
(

x, v, v′
))

(u− v)

≥ 2
eΣ

σ2

(

F

(

x,
u+ v

2
, u′
)

− F

(

x,
u+ v

2
, v′
))

(u− v) ≥ −2k

σ2

∣

∣χ′φ
∣

∣ ,
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where k is the Lipschitz constant. So we get the differential inequality

ψ′(x) ≥ − 2k

σ2(x)
|ψ(x)| , x ∈ [a, b],

ψ(a) = 0,

ψ(b) = 0.

By some basic properties of differential inequalities [28] we get

ψ(x) ≥ 0, x ∈ [a, b]. (3.22)

On the other hand,

∫ b

a

ψ(x)e−Σ(x)dx =

∫ b

a

φ′(x)φ(x)dx =
φ2(x)

2

∣

∣

∣

∣

b

a

= 0. (3.23)

Finally, combining (3.22) and (3.23) leads to

ψ(x) = 0, ∀x ∈ [a, b].

By definition of ψ it follows that (φ2)′ = 0 so that φ2 is constantly equal to φ2(0) = 0.

We consider now a classical boundary value problem of the type considered in (3.16).
Let f1, f2 : R3 → R be continuous and let a, b,A,B ∈ R, −∞ < a < b < ∞. We are
looking for solutions u1, u2 : [a, b] → R of the system

u′1(x) = f1(x, u1(x), u2(x)), (3.24a)

u′2(x) = f2(x, u1(x), u2(x)), (3.24b)

u1(a) = A, (3.24c)

u1(b) = B. (3.24d)

Theorem 2.1.1 in [3] states the following.

Theorem 3.10. Let I =]α, β], −∞ ≤ α < β < ∞, and I0 =]α, β[. Assume the
following.

i) For every (x, y) ∈ I0 ×R z 7→ f1(x, y, z) is an increasing function. Moreover we
suppose

lim
z→±∞

f1(x, y, z) = ±∞,

uniformly on compact sets in I0 × R.

ii) All the local solutions defined on a subinterval of I of (3.24a) and (3.24b) extend
to a solution on the whole interval I.

iii) There exists at most one solution of (3.24), for all a = a0, b = b0 ∈ I0 and all
A = A0, B = B0 ∈ R.
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Then there exists exactly one solution of (3.24) if a ∈ I0 and b ∈ I.

Previous theorem has an important consequence at the level of existence and unique-
ness of solutions to boundary value problems.

Corollary 3.11. Let F : [a, b]×R
2 → R, (x, y, z) 7→ F (x, y, z) be a continuous function.

We suppose the following.

i) (x, y) 7→ F (x, y, 0) has linear growth with respect to y.

ii) F fulfills the monotonicity condition (3.18).

iii) F is globally Lipschitz with respect to z.

Then there exists exactly one solution to the boundary value problem











Lu(x) = F (x, u, u′),

u(a) = A

u(b) = B.

(3.25)

Proof. Uniqueness follows immediately from Proposition 3.9. To show existence, we
make use of Theorem 3.10. Let α < a and β > b. We extend F continuously on the
entire R

3 by introducing a new function F̃ in the following way:

F̃ (x, y, z) :=











F (a, y, z), x < a,

F (x, y, z), a ≤ x ≤ b,

F (b, y, z), x > b.

(3.26)

F fulfills the assumptions of Lipschitz-continuity and monotonicity, and so does F̃ . At
this point we can show the existence of a unique solution u1, u2 : [a, b] → R of the system

u′1(x) = eΣ(x)u2(x),

u′2(x) = 2
eΣ(x)

σ2(x)
F̃
(

x, u1(x), e
−Σ(x)u2(x)

)

,

u1(a) = A,

u1(b) = B.

(3.27)

That coincides with (3.24) setting

f1(x, y, z) = eΣ(x)z,

f2(x, y, z) = 2
eΣ(x)

σ2(x)
F̃
(

x, y, ze−Σ(x)
)

.

As the mentioned existence will be a consequence of Theorem 3.10, we check the validity
of its assumptions. Clearly, i) is fulfilled. Furthermore, by assumption, F̃ : R3 → R is
continuous and has linear growth with respect to (y, z) i.e. the second and third variable.
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Therefore assumption ii) is fulfilled too. Indeed, by Peano’s theorem, we can continue
(to the left and to the right) locally any solution of (3.27) to a possibly exploding
solution. The linear growth condition and Gronwall’s lemma imply that no solution
explodes. Moreover, Assumption iii) of Theorem 3.10 holds. In fact, since F̃ fulfills
the monotonicity condition (3.18) and is globally Lipschitz in z, uniqueness follows from
Proposition 3.9. Finally, by Lemma 3.8, u = u1 is a solution of (3.25).

The proposition below shows existence and uniqueness in the Lipschitz case without
the monotonicity condition.

Proposition 3.12. Let F : [0, 1] × R
2 → R, (x, y, z) 7→ F (x, y, z) be bounded and

globally Lipschitz with respect to (y, z). Then there exists a solution of the boundary
value problem











Lu(x) = F
(

x, u, u′
)

,

u(0) = A,

u(1) = B,

for any A,B ∈ R.

Proof. We extend F to F̃ in the way of (3.26) with a = 0 and b = 1. Moreover, we
define a real function Φ : R → R in the following way: for x0 = A and x1 ∈ R we
denote the solution of (3.8) by ux1 . Its existence follows from Proposition 3.6 since F̃ is
globally Lipschitz with respect to (y, z). Now we set Φ(x1) = ux1(1). Since Σ, F and σ
are continuous, Φ can be shown to be continuous as well. We leave this to the reader.
By (3.9), we get then the following relation:

Φ(x1)− x0 =

∫ 1

0
dxe−Σ(x)

(

2

∫ x

0

eΣ(y)

σ2(y)
F
(

y, ux1(y), (ux1)′ (y)
)

dy + x1

)

. (3.28)

Since F is bounded,
lim

x1→∞
Φ(x1) = ∞ = − lim

x1→−∞
Φ(x1). (3.29)

Consequently, by mean value theorem, for each B ∈ R, there is an x1 so that Φ(x1) =
B.

Remark 3.13. If F is not bounded, one cannot ensure existence in general. To give
an example, we set L = d2

dx2 and F (x, y, z) = −π2y. Then the corresponding boundary
value problem











u′′ = −π2u,
u(0) = 0,

u(1) = 1,

has no solution.
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Proposition 3.14. Let a = 0, b = 1, and F : [0, 1] × R × R → R, (x, y, z) 7→ F (x, y, z)
be globally Lipschitz with respect to (y, z) and Lipschitz-constant k, fulfilling

k <

(

sup
x∈[0,1]

∫ 1

0
dy (|K(x, y)|+ |∂xK(x, y)|)

)−1

, (3.30)

where K was defined in (3.3c). Then, (3.14) has a unique solution for any A,B ∈ R.

Proof. We consider the map T : C1([0, 1]) → C1([0, 1]) defined by

Th(x) = f(x) +

∫ 1

0
K(x, y)F (y, h(y), h′(y))dy,

with f is given by (3.3b). Taking into account Definition 3.7 and Proposition 3.2, (3.14)
is well-posed if and only if T has a fixed point. We show the latter assertion. C1([0, 1])
is a Banach space equipped with the norm

‖h‖ = sup
x∈[0,1]

(

|h(x)| +
∣

∣h′(x)
∣

∣

)

.

To show that T admits a unique fixed point, we will show that T is a contraction with
respect to ‖ · ‖. Let u, v ∈ C1([0, 1]). We get

|(Tu− Tv)(x)| =
∣

∣

∣

∣

∫ 1

0
K(x, y)

(

F
(

y, u(y), u′(y)
)

− F
(

y, v(y), v′(y)
))

dy

∣

∣

∣

∣

≤
∫ 1

0
dy |K(x, y)| k

(

|u(y)− v(y)|+
∣

∣u′(y)− v′(y)
∣

∣

)

≤
∫ 1

0
dy |K(x, y)| k‖u− v‖ (3.31)

and

∣

∣(Tu− Tv)′ (x)
∣

∣ =

∣

∣

∣

∣

∫ 1

0
∂xK(x, y)

(

F
(

y, u(y), u′(y)
)

− F
(

y, v(y), v′(y)
))

dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ 1

0
dy∂xK(x, y)k

(

|u(y)− v(y)| +
∣

∣u′(y)− v′(y)
∣

∣

)

dy

∣

∣

∣

∣

≤
∫ 1

0
dy |∂xK(x, y)| k‖u− v‖. (3.32)

Summing up (3.31) and (3.32) and taking the supremum over x gives

‖Tu− Tv‖ ≤ sup
x∈[0,1]

∫ 1

0
dy (|K(x, y)|+ |∂xK(x, y)|) k‖u− y‖.

It follows that T is a contraction if k fulfills (3.30).

20



4. Exit time of the solution to the forward martingale problem

We are interested in the nature of the first exit time τ from the interval [0, 1] of a solution
X = Xx to the martingale problem with respect to L and initial condition x ∈ [0, 1]. So
we define τ as

τ :=

{

inf
{

t ≥ 0
∣

∣Xt /∈ [0, 1]
}

, if
{

t ≥ 0
∣

∣Xt /∈ [0, 1]
}

6= ∅
∞, otherwise.

Proposition 4.1. τ has finite expectation. In particular τ is finite almost surely.

Proof. We consider Γ : [0, 1] → R as the unique solution of

LΓ = −1

Γ(0) = Γ(1) = 0,

and an extension Γ̃ ∈ DL as regarded in Definition 3.1. Since X is a solution to the
martingale problem with respect to L and initial condition x, the process

Nt = Γ̃(Xt)− Γ̃(x)−
∫ t

0
LΓ̃(Xr)dr,

is a local martingale. By Proposition 2.14 we have Nt =
∫ t

0 Γ̃
′(Xs)dM

X
s , which, by

Remark 2.13 i), implies that

[N ]t =

∫ t

0
σ2(Xs)Γ̃

′(Xs)
2ds.

Now, let (τn) be the family of stopping times defined as

τn := inf

{

t ≥ 0

∣

∣

∣

∣

∫ t

0
σ2(Xs)Γ̃

′(Xs)
2ds ≥ n

}

,

with the assumption that inf (∅) = ∞.
The stopped processes N τn are clearly square integrable martingales. By Doob’s

stopping theorem for martingales, the processes (N τn
t∧τ )t≥0 are again martingales. Con-

sequently,

E

(

Γ̃ (Xτn∧t∧τ )− Γ̃(x)−
∫ τn∧t∧τ

0

(

LΓ̃
)

(Xr)dr

)

= 0.

Since LΓ̃ restricted to [0, 1] equals −1, the previous expression gives

E
(

Γ̃ (Xτn∧t∧τ )− Γ̃(x)
)

+ E (τn ∧ t ∧ τ) = 0.

Now we take the limit n→ ∞, and we can use the theorems of monotone and dominated
convergence, since

∣

∣

∣
Γ̃ (Xτn∧t∧τ )

∣

∣

∣
≤ sup

x∈[0,1]
|Γ(x)| .
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This gives, for every x ∈ [0, 1],

E (Γ (Xt∧τ ))− Γ(x) + E (t ∧ τ) = 0. (4.1)

Finally, letting t→ ∞, we get

E (τ) = Γ(x)− E (Γ (Xτ )) = Γ(x),

by the same arguments as above taking n→ ∞.

As byproduct of the proof of Proposition 4.1 we get the following.

Proposition 4.2. The expectation of the exit time τ is exactly Γ(x), where Γ is the
unique solution of

LΓ = −1

Γ(0) = Γ(1) = 0.

5. Martingale driven BSDEs with random terminal time

5.1. Notion of solution

The present section does not aim at the greatest generality, which could be the object
of future research. We consider the case of one-dimensional BSDEs driven by square
integrable martingales with continuous predictable bracket.

Backward SDEs driven by martingales were investigated by several authors, see e. g.
[7], [9], see also [12], [8] and [10] for recent developments. We are interested in such a
BSDE with terminal condition at random time. This is motivated by the fact that the
forward SDE (martingale problem) only admits weak solutions, therefore the reference
filtration will only be the canonical one related to the solution and not the one associated
with the underlying Brownian motion. We consider the following data.

i) An a. s. finite stopping time τ .

ii) An F-local martingale (Mt)t≥0 with an F-predictable continuous quadratic vari-
ation process 〈M〉. We suppose moreover that M τ is an F-square integrable
martingale, and we suppose the existence of a deterministic increasing function
ρ : R+ → R+ with ρ(0) = 0 and

〈M τ 〉t ≤ ρ(t), ∀t ≥ 0.

iii) A terminal condition ξ ∈ L2 (Ω,Fτ , P ;R).

iv) A coefficient f : Ω × [0, T ] × R
2 → R, such that the process f(·, t, y, z), t ≥ 0, is

predictable for every y, z.

Definition 5.1. Let (Y,Z,O) be a triple of processes with the following properties.

22



i) Y is càdlàg F-adapted.

ii) Z is F-predictable such that E
(∫ τ

0 Z
2
sd 〈M〉s

)

<∞.

iii) O is a square integrable martingale such that O0 = 0 and E
(

O2
τ

)

<∞. Further-
more, O is strongly orthogonal to M , i. e. 〈M,O〉 = 0.

iv) Zt = 0 if t > τ and Ot = Oτ for t ≥ τ .

Such a triplet (Y,Z,O) is called solution of the BSDE (f, τ, ξ) if it fulfills

Yt = ξ −
∫ ∞

t

1{τ≥s}ZsdMs +

∫ ∞

t

1{τ≥s}f (ω, s, Ys, Zs) d 〈M〉s − (Oτ −Ot∧τ ) . (5.1)

Remark 5.2.

i) If t ≥ τ in (5.1) we get Yt = ξ = Yτ , so in particular Yt = Yτ , t ≥ τ .

ii) Indeed we will always suppose that M =M τ so that (5.1) can be rewritten as

Yt = ξ −
∫ ∞

t

ZsdMs +

∫ ∞

t

f (ω, s, Ys, Zs) d 〈M〉s − (Oτ −Ot∧τ ) . (5.2)

When M is a Brownian motion, this was treated in [11] from which we inherit and
adopt very close notations.

5.2. Uniqueness of Solutions

Theorem 5.3. Let a, b, κ ∈ R and set γ = b2 − 2a. We suppose the following.

i) (f (ω, s, y1, z)− f (ω, s, y2, z)) (y1 − y2) ≤ −a |y1 − y2|2, for every ω ∈ Ω, s ∈
[0, T ], y1, y2, z ∈ R.

ii) |f (ω, s, y, z1)− f (ω, s, y, z2)| ≤ b |z1 − z2|, for every ω ∈ Ω, s ∈ [0, T ], y ∈ R.

iii) |f(ω, s, y, z)− f(ω, s, 0, 0)| ≤ κ (|y|+ κ′) + b|z|, where κ′ ∈ {1, 0}.

iv) E
(∫ τ

0 e
θ〈M〉t

(

f(t, 0, 0)2 + κ′
)

d 〈M〉t
)

<∞ for every θ < γ.

Let ξ ∈ L2 (Ω,Fτ ). Then the BSDE (f, τ, ξ) admits at most one solution (Y,Z,O),
such that

E

(

Y 2
0 +

∫ τ

0
eγ〈M〉t(Y 2

t + Z2
t )d 〈M〉t + eγ〈M〉td 〈O〉t

)

<∞. (5.3)

Remark 5.4.

1. In the proof of Theorem 5.3 in appendix B, we omit the dependence of f on ω in
order to simplify the notations.

2. If we suppose F0 to be the trivial σ-field, then Y 2
0 can be deleted in (5.3).
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In the proof of Theorem 5.3 in appendix B, we use the following technical lemma,
which is the generalization of Proposition 4.3 in [11].

Lemma 5.5. Suppose the validity of hypotheses i), ii) and iii) of Theorem 5.3, and let
(Y,Z,O) be a solution of BSDE (f, τ, ξ) such that for some θ,

E

(

Y 2
0 +

∫ τ

0
eθ〈M〉s

(

|Ys|2 + |Zs|2 + f2(s, 0, 0) + κ′
)

d 〈M〉s +
∫ τ

0
eθ〈M〉sd 〈O〉s

)

<∞.

(5.4)
Then

E

(

sup
s≤τ

eθ〈M〉s |Ys|2
)

<∞, (5.5)

and

Nt =

∫ t∧τ

0
eθ〈M〉sYs− (ZsdMs + dOs) =

∫ t

0
eθ〈M〉sYs− (ZsdMs + dOs) (5.6)

is a uniformly integrable martingale.

We prove this lemma in appendix A.

Remark 5.6. Adapting the results of [11] Proposition 3.3, it is possible to state and
prove also an existence theorem. We have decided not to do it for two reasons.

1. The techniques can be adapted from the proof of Proposition 3.3 by the same
techniques as in the proof of Theorem 5.3.

2. For our applications to the probabilistic representation of semilinear PDEs, we
already provide an existence theorem through the resolution of the PDE.

6. Solutions for BSDEs via solutions of elliptic PDEs

In this final section we will make the assumptions of Section 2.1 which guarantee exis-
tence and uniqueness in law of the martingale problem with respect to L. In particular
we will suppose that σ > 0, Σ as defined in (2.5) exists and we assume the validity of
(2.14) for the function v defined in (2.13).

Let x0 ∈ R and let X solve a martingale problem MP(σ, β;x0) (2.2). We are interested
in a BSDE with terminal condition at the random time τ , which is the exit time of X
from interval [0, 1]. In this section F is the canonical filtration FX of X. Since X solves
the martingale problem, by Remark 2.13, X is an FX -Dirichlet process. From now on
its FX-local martingale component MX will also be denoted by M , in agreement with
Section 5.

Let F : R3 → R be a continuous function. We set

f(ω, t, y, z) = −F (Xt(ω), y, z)

σ2(Xt(ω))
, t ≥ 0, y, z ∈ R, (6.1)
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and we define
τ = inf {t ≥ 0|Xt /∈ I} . (6.2)

Let u0, u1 ∈ R and set ξ = 1{Xτ=0}u0 + 1{Xτ=1}u1. So

ξ = u(Xτ ), (6.3)

for a function u : [0, 1] → R such that u(0) = u0, u(1) = u1.
Our method allows to construct solutions of the BSDE (f, ξ, τ) even in cases that f

does not necessarily fulfill Lipschitz or monotonicity assumptions.
We need to check that we are in the framework of the hypotheses at the beginning of

Section 5.1.

• i) is verified because of Proposition 4.1.

• ii) holds because

〈M τ 〉t =
∫ t∧τ

0
σ2(Xs)ds ≤ ρ(t),

where ρ(t) = t supx∈[0,1] σ
2(x).

• iii) is fulfilled since ξ is a bounded random variable, of course Fτ -measurable.

• iv) is verified by construction, and because X is a continuous adapted process.

The aim of this section is to show that the C1-type solutions of elliptic PDEs in the
sense of Definition 3.7 produce solutions to a BSDE of the type defined in Definition 5.1.

Remark 6.1.

1. FX is generally not a Brownian filtration, so that the theory of [11] for existence
and uniqueness of BSDEs with random terminal time cannot directly be applied.

2. Even for a simple equation of the type

dXt = σ0(Xt)dWt,

where σ0 is only a continuous bounded non-degenerate function, FX is not neces-
sarily equal to FW even though W is an FX-Brownian motion.

3. In general, the solution of a semilinear differential equation of the type (3.14) can
be associated with the solution of a BSDE driven by the martingale MX which is
the martingale component of the FX -Dirichlet process X.

4. In Section 5 we have investigated BSDEs driven by (even not continuous) martin-
gales, which are of independent interest.
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Theorem 6.2. Let I = [0, 1] and u : I → R be a C1-solution of











Lu (x) = F
(

x, u (x) , u′ (x)
)

u (0) = u0

u (1) = u1.

(6.4)

Let (Xt) = Xx0 be a solution of MP (σ, β;x0) on some probability space (Ω,G, P ). We
set, for t ∈ [0, T ],

Yt = u(Xτ
t )

Zt = u′(Xt)1[0,τ ](t)

Ot = 0.

Then (Y,Z,O) is a solution on (Ω,G, P ) to the BSDE (f, ξ, τ), where f, τ, ξ were defined
in (6.1), (6.2), (6.3).

Proof. We recall that, by Proposition 4.1, τ <∞ almost surely.
By Definitions 3.7 and 3.1, there exists ũ ∈ DL which extends u to the real line and

Lũ = ℓ̃ and ℓ̃ : R → R is a continuous function extending ℓ(x) = F (x, u(x), u′(x)). By
the definition of the martingale problem,

M ũ
t := ũ(Xt)− ũ(X0)−

∫ t

0
Lũ(Xs)ds, t ∈ [0, T ], (6.5)

is an FX -local martingale.
By Remark 2.6 Ỹt = ũ(Xt) is an

(

FX
)

-Dirichlet process with martingale compo-

nent
∫ t

0 ũ
′(Xs)dM

X
s . On the other hand, by (6.5), Ỹ is an

(

FX
)

-semimartingale with
martingale component M ũ. By uniqueness of decomposition of Dirichlet processes

M ũ
t =

∫ t

0
ũ′(Xs)dM

X
s .

We set now

Yt = ũ(Xt∧τ )

Zt = ũ′(Xt)1[0,τ ](t).

(6.5) gives

ũ(Xt)− ũ(X0) =

∫ t

0
Lũ(Xs)ds +

∫ t

0
ũ′(Xs)dM

X
s .

Stopping previous identity at time τ implies for every T > 0 that

YT∧τ − Yt∧τ =

∫ T∧τ

t∧τ
Lũ(Xs)ds+

∫ T∧τ

t∧τ
u′(Xs)dM

X
s .
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Letting T → ∞, since τ <∞ a. s. gives

Yt = Yτ −
∫ τ

t∧τ
Lũ(Xs)ds−

∫ τ

t∧τ
ZsdM

X
s .

So (Y,Z,O) solves BSDE (f, τ, ξ) with O ≡ 0. In particular the conditions of Defini-
tion 5.1 are fulfilled. In fact i), iii) and iv) are trivial. ii) holds since ũ′ is bounded on
[0, 1]. Moreover (5.1) is fulfilled since u solves (6.4), taking into account (6.1).

Remark 6.3. Since u is bounded, we also have E
(

supt≤τ Y
2
t

)

<∞.

By Theorem 6.2, Corollary 3.11 and the Propositions 3.12 and 3.14, we conclude the
following.

Corollary 6.4. Let F : [0, 1] × R
2 → R be continuous. Suppose that at least one of the

following assumptions holds.

a) (x, y) 7→ F (x, y, 0) has linear growth with respect to y, (3.18) is fulfilled and F is
globally Lipschitz in z.

b) (x, y, z) 7→ F (x, y, z) is bounded and globally Lipschitz with respect to (y, z).

c) (x, y, z) 7→ F (x, y, z) is globally Lipschitz with respect to (y, z) and Lipschitz-
constant k, fulfilling

k <

(

sup
x∈[0,1]

∫ 1

0
dy (|K(x, y)|+ |∂xK(x, y)|)

)−1

,

K being the kernel introduced in (3.3c). Then there is a solution (Y,Z,O) of BSDE
(f, τ, ξ), given by (5.1), where f, τ, ξ were defined in (6.1), (6.2), (6.3).

Remark 6.5. The solution is provided in the statement of Theorem 6.2.

Corollary 6.6 follows from Corollary 6.4 and Theorem 5.3.

Corollary 6.6. Let F : [0, 1] ×R
2 → R with the following assumptions.

i) (x, y) 7→ F (x, y, 0) has linear growth in y,

ii) (F (x, y1, z) − F (x, y2, z)) (y1 − y2) ≥ a (y1 − y2)
2 for some a,

iii) F is globally Lipschitz in z with constant b.

iv) γ = b2 − 2a ≤ 0.

Then the solution (Y,Z,O) provided by Corollary 6.4 is unique in the class of

E

(
∫ τ

0
eγ〈M〉sY 2

s d 〈M〉s +
∫ τ

0
eγ〈M〉sZ2

sd 〈M〉s +
∫ τ

0
eγ〈M〉sd 〈O〉s

)

<∞. (6.6)
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Remark 6.7.

a) Condition iv) implies that a > 0. In particular F is increasing in y.

b) The validity of hypotheses i), ii), iii) imply Hypothesis a) in Corollary 6.4.

c) The solution provided by Corollary 6.4 fulfills (6.6) since γ ≤ 0, u, u′ are bounded
and O ≡ 0, taking into account that E(τ) <∞, by Proposition 4.1.

Remark 6.8. We discuss an example related to the case γ strictly positive, i.e. when
Assumption iv) of Corollary 6.6 is not fulfilled. Consider F (x, y, z) = −π2y.

1. The PDE
{

u′′(x) = F (x, u(x), u′(x))

u(0) = u(1) = 0,
(6.7)

is not well-posed, since u(x) = η sin(πx), η ∈ R, provide a class of solutions of (6.7),
and so Theorem 6.2 provides a family of solutions of BSDE (f, τ, ξ), ξ ≡ 0, f, τ, ξ
being defined in (6.1), (6.2), (6.3), when Xt =

1
2 +Wt and W is a standard Brown-

ian motion. In particular X solves MP (σ, β;x0) in the sense of Definition 2.9 with
x0 =

1
2 , σ = 1, β = 0. We remark that a = −π2, b = 0, so γ = b2 − 2a = 2π2 > 0.

2. In that case, since the mentioned Assumption iv) is not fulfilled, then of course
Corollary 6.6 cannot be applied. Indeed, if η 6= 0, the solutions, provided explicitly
above are not in the class of solutions fulfilling (6.6), as we show below.

Let τ be the exit time of Brownian motion X starting from x0 = 1
2 from interval

[0, 1]. By Proposition C.1 in appendix C we have E (exp(γτ)) = 1

cos(
√

γ
2
)
if 0 ≤ γ <

π2

2 , and E (exp(γτ)) = ∞ whenever γ ≥ π2

2 . Consequently if γ = 2π2 as before,
then E (exp(γτ)) = ∞.

We have 〈M〉t ≡ t, O ≡ 0. So, (6.6) gives

E

(∫ τ

0
dseγsη2

(

sin2 (πXs) + π2 cos2 (πXs)
)

)

≥ E

(∫ τ

0
eγsη2ds

)

=
η2

γ
E (eγτ ) = ∞,

since η 6= 0. In conclusion, if γ > 0, the solutions provided by Corollary 6.4 may
fulfill or not (6.6).

3. On the other hand the solutions above fulfill the version of (6.6) with γ = 0, i.e.

E

(∫ τ

0
(Y 2

t + Z2
t )d 〈M〉t + d 〈O〉t

)

<∞, (6.8)

since τ has finite expectation and u, u′ are bounded. In particular the class of
solutions fulfilling only (6.8) is not, in general, a good class for uniqueness.
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Appendix

A. Proof of Lemma 5.5

Since Y solves the BSDE, by integration by parts we get

e
θ
2
〈M〉t∧τYt∧τ = Y0 +

∫ t∧τ

0
e

θ
2
〈M〉s (ZsdMs + dOs)

−
∫ t∧τ

0
e

θ
2
〈M〉sf (s, Ys, Zs) d 〈M〉s +

θ

2

∫ t∧τ

0
e

θ
2
〈M〉sYsd 〈M〉s . (A.1)

By Assumption ii) of Section 5.1, 〈M〉 is continuous. Consequently,
[

e
θ
2
〈M〉Y

]

t∧τ
=
[

N θ
]

t∧τ
, (A.2)

where

N θ
t :=

∫ t

0
e

θ
2
〈M〉s (ZsdMs + dOs) . (A.3)

Remark A.1. From (5.4) it follows that

E

(∫ τ

0
eθ〈M〉s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

<∞.

Consequently, N θ is a square integrable martingale. So, by the proof of Proposition 4.50
in [18], there is a uniformly integrable martingale Mθ, so that

[

N θ
]

=
〈

N θ
〉

+Mθ.

We continue with the proof of Lemma 5.5 by using Itô’s formula and (A.1) getting

eθ〈M〉t∧τY 2
t∧τ − Y 2

0 =
(

e
θ
2
〈M〉t∧τYt∧τ

)2
− Y 2

0

= 2

∫ t∧τ

0
e

θ
2
〈M〉sYs−d

(

e
θ
2
〈M〉sYs

)

+
[

e
θ
2
〈M〉Y

]

t∧τ

= 2

∫ t∧τ

0
eθ〈M〉sYs− (ZsdMs + dOs)

− 2

∫ t∧τ

0
eθ〈M〉sYsf (s, Ys, Zs) d 〈M〉s

+ 2
θ

2

∫ t∧τ

0
eθ〈M〉sY 2

s d 〈M〉s +
[

N θ
]

t∧τ
, (A.4)

where in the latter equality we have taken into account (A.2). Since 〈M〉 is continuous
we have been allowed to replace Ys− with Ys in the two lines above. By use of Cauchy-
Schwarz, the inequality 2αβ ≤ α2 + β2 and assumption iii) of Theorem 5.3, there is a
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constant c, depending on κ, b and θ, such that

eθ〈M〉t∧τY 2
t∧τ − Y 2

0 ≤ c

∫ t∧τ

0
eθ〈M〉s

(

Y 2
s + Z2

s

+ f2(s, 0, 0) + κ′
)

d 〈M〉s + 2

∫ t∧τ

0
e

θ
2
〈M〉sYs−dN

θ
s +

[

N θ
]

t∧τ
. (A.5)

Now we continue with a localization of (A.5). For that we define for each n ∈ N a
stopping time τ(n) by

τ(n) := inf {t|Yt ≥ n} ∧ n.

Replacing t with t ∧ τ(n) in (A.5) gives

eθ〈M〉t∧τ(n)∧τY 2
t∧τ(n)∧τ − Y 2

0 ≤ c

∫ t∧τ(n)∧τ

0
eθ〈M〉s

(

Y 2
s + Z2

s

+ f2(s, 0, 0) + κ′
)

d 〈M〉s + 2

∫ t∧τ(n)∧τ

0
e

θ
2
〈M〉sYs−dN

θ
s +

[

N θ
]

t∧τ(n)∧τ
. (A.6)

We take the supremum over t on the left-hand side and afterwards the expectation.
Recalling that

Nt =

∫ t

0
e

θ
2
〈M〉sYs−dN

θ
s , (A.7)

this yields

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉t∧τ(n)∧τY 2
t∧τ(n)∧τ

)

)

≤ E
(

Y 2
0

)

+ cE (D) + 2E

(

sup
t≥0

∣

∣

∣N
τ(n)∧τ
t

∣

∣

∣

)

+E

(

[

N θ
]

τ(n)∧τ

)

, (A.8)

where

D =

∫ τ

0
eθ〈M〉s

(

Y 2
s + Z2

s + f2(s, 0, 0) + κ′
)

d 〈M〉s , (A.9)

which has finite expectation because of (5.4). By Remark A.1,

E

(

[

N θ
]

τ(n)∧τ

)

= E

(

〈

N θ
〉

τ(n)∧τ

)

= E

(

∫ τ(n)∧τ

0
eθ〈M〉s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

. (A.10)
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We show now that N τ(n)∧τ is a square integrable martingale. This happens because by
(5.6) we have

E
(

〈N〉τ(n)∧τ
)

= E

(

∫ τ(n)∧τ

0
e2θ〈M〉sY 2

s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

≤ n2E

(
∫ τ∧n

0
e2θ〈M〉s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

≤ n2eθρ(n)E

(∫ τ

0
eθ〈M〉s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

<∞,

taking into account Assumption ii) at the beginning of Section 5.1. So by Proposition
4.50 of [18], there is a uniformly integrable martingale M̃ so that

[

N τ(n)∧τ
]

=
〈

N τ(n)∧τ
〉

+ M̃.

Due to the Burkholder-Davis-Gundy (BDG) inequalities (see e. g. [22, Theorem IV.48]),
there is a constant c0 such that

E

(

sup
t≥0

∣

∣

∣N
τ(n)∧τ
t

∣

∣

∣

)

≤ c0E

(

[N,N ]
1
2

τ(n)∧τ

)

. (A.11)

We denote by N the local martingale

Nt =

∫ t

0
ZsdMs +Ot.

By Theorem 29 in Chapter II of [22] the right-hand side of (A.11) equals

c0E





(

∫ τ(n)∧τ

0
eθ〈M〉seθ〈M〉sY 2

s d [N ]s

)
1
2





≤ c0E





(

sup
t≤τ(n)∧τ

(

eθ〈M〉tY 2
t

)

)
1
2
(

∫ τ(n)∧τ

0
eθ〈M〉sd [N ]s

)
1
2



 . (A.12)

By 2αβ ≤ α2

c3
+ c3β

2, for any c3 > 0, the right-hand side of (A.12) is bounded by

c0
2c3

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉tY 2
t

)

)

+
c0c3
2
E

(

∫ τ(n)∧τ

0
eθ〈M〉sd[N ]s

)

=
c0
2c3

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉tY 2
t

)

)

+
c0c3
2
E

(

[

N θ
]

τ(n)∧τ

)

, (A.13)
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also using (A.3) and [22], Theorem 29, Chapter II. This gives, by (A.11), (A.10) and
(A.12),

E

(

sup
t≥0

∣

∣

∣
N

τ(n)∧τ
t

∣

∣

∣

)

≤ c0
2c3

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉tY 2
t

)

)

+
c0c3
2
E

(

∫ τ(n)∧τ

0
eθ〈M〉s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

. (A.14)

Plugging (A.10) and (A.14) in (A.8) gives

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉tY 2
t

)

)

≤ E
(

Y 2
0

)

+ E (D) (1 + c+ c0c3) +
c0
c3
E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉tY 2
t

)

)

.

Choosing c3 = 2c0, we get

E

(

sup
t≤τ(n)∧τ

(

eθ〈M〉tY 2
t

)

)

≤ 2E
(

Y 2
0

)

+ 2E (D)
(

1 + c+ 2c20
)

.

By the monotone convergence theorem, letting n→ ∞, we get

E

(

sup
t≤τ

(

eθ〈M〉tY 2
t

)

)

≤ 2E
(

Y 2
0

)

+ 2E(D)
(

1 + c+ 2c20
)

,

which shows (5.5).
We go on with the second part, i. e. the fact that N defined in (5.6) is a uniformly

integrable martingale. By BDG and Cauchy-Schwarz inequalities,

E

(

sup
t≥0

|Nt|
)

≤ c0E
(

[N,N ]
1
2

)

≤ c0E

(

(
∫ ·

0
e2θ〈M〉sY 2

s−d[N ]s

) 1
2

)

≤ c0E

(

(

sup
t≤τ

eθ〈M〉tY 2
t

)
1
2
(∫ τ

0
eθ〈M〉sd[N ]s

)
1
2

)

≤ c0

(

E

(

sup
t≤τ

eθ〈M〉tY 2
t

))
1
2
(

E

(∫ τ

0
eθ〈M〉sd[N ]s

))
1
2

= c0

(

E

(

sup
t≤τ

eθ〈M〉tY 2
t

)) 1
2 (

E
([

N θ
]

τ

)) 1
2
. (A.15)

By Remark A.1

E
([

N θ
]

τ

)

= E
(〈

N θ
〉

τ

)

= E

(∫ τ

0
eθ〈M〉s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

<∞.

This shows that N is a uniformly integrable martingale and finally, Lemma 5.5 is estab-
lished.
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B. Proof of Theorem 5.3

We start with some a priori bounds. Let θ < γ. By assumptions i) and ii), for any ε ≥ 0,

using 2αβ ≤ α2

1+ε
+ (1 + ε)β2, we can easily show that

2 (y − ȳ) (f(s, y, z)− f (s, ȳ, z̄)) ≤ −2a |y − ȳ|2 + b2(1 + ε) |y − ȳ|2 + |z − z̄|2
1 + ε

. (B.1)

Let
(

Y i, Zi, Oi
)

, i = 1, 2 be two solutions fulfilling (5.3) of the statement. By similar
arguments as (A.4) and in the lines before, for Y = Y 1−Y 2, Z = Z1−Z2, O = O1−O2

we have

eθ〈M〉τY 2
τ − eθ〈M〉t∧τY 2

t∧τ =

∫ τ

t∧τ
θeθ〈M〉sY 2

s d 〈M〉s + 2

∫ τ

t∧τ
e

θ
2
〈M〉sYs−dN

θ
s

− 2

∫ τ

t∧τ
eθ〈M〉sYs

(

f
(

s, Y 1
s , Z

1
s

)

− f
(

s, Y 2
s , Z

2
s

))

d 〈M〉s +
[

N θ
]

τ
−
[

N θ
]

t∧τ
, (B.2)

where N θ was defined in (A.3). By (B.1) we get

2

∫ τ

t∧τ
eθ〈M〉sYs

(

f
(

s, Y 1
s , Z

1
s

)

− f
(

s, Y 2
s , Z

2
s

))

d 〈M〉s

≤
∫ τ

t∧τ
eθ〈M〉s

(

b2(1 + ε)− 2a
)

Y 2
s d 〈M〉s +

∫ τ

t∧τ
eθ〈M〉s

|Zs|2
1 + ε

d 〈M〉s . (B.3)

(Y i, Zi, Oi), i = 1, 2 fulfills (5.4) by (5.3) and Assumption iv) of Theorem 5.3. Conse-
quently (Y,Z,O) also fulfills (5.4). By Remark A.1, since θ < γ, N θ is a square integrable
martingale and

[

N θ
]

=
〈

N θ
〉

+Mθ,

where Mθ is a uniformly integrable martingale. So

E
([

N θ
]

τ
−
[

N θ
]

t∧τ

)

= E

(
∫ τ

t∧τ
eθ〈M〉s

(

Z2
sd 〈M〉s + d 〈O〉s

)

)

. (B.4)

(B.2), (B.3) and the fact that Yτ = 0, gives

eθ〈M〉t∧τY 2
t∧τ +

[

N θ
]

τ
−
[

N θ
]

t∧τ
+ 2

∫ τ

t∧τ
e

θ
2
〈M〉sYs−dN

θ
s

≤
∫ τ

t∧τ
eθ〈M〉s

(

b2(1 + ε)− 2a− θ
)

Y 2
s d 〈M〉s +

∫ τ

t∧τ
eθ〈M〉s

Z2
s

1 + ε
d 〈M〉s . (B.5)

By Lemma 5.5, since θ < γ,

(
∫ t∧τ

0
e

θ
2
〈M〉sYs−dN

θ
s

)

t≥0
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is a uniformly integrable martingale. So its expectation is zero. By previous considera-
tions, (B.3) and (B.4), we take the expectation in (B.5) to get

E

(

eθ〈M〉t∧τY 2
t∧τ +

∫ τ

t∧τ
eθ〈M〉s

(

εZ2
s

1 + ε
d 〈M〉s + d 〈O〉s

))

≤ E

(∫ τ

t∧τ
eθ〈M〉s

(

b2(1 + ε)− 2a− θ
)

Y 2
s d 〈M〉s

)

. (B.6)

Since θ < γ = b2 − 2a, we have b2(1 + ε) − 2a − θ > 0, ∀ε ≥ 0. We let ε → 0 so that
(B.6) becomes

E

(

eθ〈M〉t∧τY 2
t∧τ +

∫ τ

t∧τ
eθ〈M〉sd 〈O〉s

)

≤ E

(∫ τ

t∧τ
eθ〈M〉s

(

b2 − 2a− θ
)

Y 2
s d 〈M〉s

)

. (B.7)

Equation (B.7) holds for every θ < γ. We let θ → γ−. By the monotone convergence
theorem we get

E

(

eγ〈M〉t∧τY 2
t∧τ +

∫ τ

t∧τ
eγ〈M〉sd 〈O〉s

)

≤ 0. (B.8)

Equation (B.8) finally shows that Y ≡ 0 and 〈O〉 ≡ 0. Coming back to (B.6), it easily
follows that Z ≡ 0 d 〈M〉 a. s.

C. Exponential moments of the first exit time of Brownian

motion

We consider a standard one-dimensional Brownian motion {W =Wt : t ≥ 0}, x0, a, b ∈ R

so that x0 ∈]a, b[. We consider the exit time

τ = min {s : x0 +Ws /∈ ]a, b[} , (C.1)

from the interval ]a, b[. According to [5, p. 212],

E (eγτ ) =
cosh

(

(b+ a− 2x0)
√

−γ
2

)

cosh
(

(b− a)
√

−γ
2

) , γ ≤ 0. (C.2)

We define the function f by

f : C → C,

z 7→
∞
∑

n=0

(−1)n
zn

(2n)!
. (C.3)
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Clearly f is analytical. For x ∈ R we can verify by Taylor series expansion that

f(x) =

{

cos
√
x, x ≥ 0,

cosh
√
−x, x < 0.

(C.4)

Let g be another analytical function, defined by

g : C \
{

π2 (2k + 1)2

2 (b− a)2
, k ∈ N

}

→ C,

γ 7→
f
(

(b+a−2x0)
2

2 γ
)

f
(

(b−a)2

2 γ
) . (C.5)

In particular, for γ ∈ R and γ ≤ 0, this gives

g (γ) =
cosh

(

(b+ a− 2x0)
√

−γ
2

)

cosh
(

(b− a)
√

−γ
2

) . (C.6)

Proposition C.1. Let γ ≥ 0.

i) E (eγτ ) = g (γ), γ < π2

2(b−a)2
,

ii) E (eγτ ) = ∞, γ ≥ π2

2(b−a)2
.

Proof. ii) follows from i), since γ 7→ E (eγτ ) is monotone, taking into account the Beppo-
Levi convergence theorem. By (C.2) and (C.6), i) holds for γ ≤ 0, and it remains to

show i) in the case 0 < γ < π2

2(b−a)2
. For γ < 0 and n ∈ N,

E (τneγτ ) =
dn

dγn
g (γ) . (C.7)

Again, by the monotone convergence theorem, letting γ → 0−, we get

E (τn) =
dn

dγn
g (γ)

∣

∣

∣

∣

γ=0

. (C.8)

In particular all moments of τ exist. Now if 0 < γ < π2

2(b−a)2
, then by Fubini we get

E (eγτ ) =

∞
∑

n=0

γn

n!
E (τn) =

∞
∑

n=0

γn

n!

dn

dγn
g (γ)

∣

∣

∣

∣

γ=0

= g (γ)

=
cos
(

(b+ a− 2x0)
√

γ
2

)

cos
(

(b− a)
√

γ
2

) , (C.9)

since g is analytical on its domain. Finally i) follows.

35



ACKNOWLEDGEMENTS: The authors are grateful to the Referee for her / his
interesting comments and suggestions.
The research was partially supported by the ANR Project MASTERIE 2010 BLAN-
0121-01. The first named author also benefited partially from the support of the “FMJH
Program Gaspard Monge in optimization and operation research” (Project 2014-1607H).
The second named author was supported by a “Marietta-Blau-Stipendium” coming from
the Austrian federal Ministry of science, research and economy (BMWF).

References

[1] Bass, R. F. and Chen, Z.-Q. “Brownian motion with singular drift”. In: Ann.
Probab. 31.2 (2003), pp. 791–817.

[2] Bass, R. F. and Chen, Z.-Q. “Stochastic differential equations for Dirichlet pro-
cesses”. In: Probab. Theory Related Fields 121.3 (2001), pp. 422–446.

[3] Bernfeld, S. R. and Lakshmikantham, V. An introduction to nonlinear boundary
value problems. Mathematics in Science and Engineering, Vol. 109. Academic Press,
Inc. [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London,
1974, pp. xi+386.

[4] Bertoin, J. “Les processus de Dirichlet en tant qu’espace de Banach”. In: Stochas-
tics 18.2 (1986), pp. 155–168.

[5] Borodin, A. N. and Salminen, P. Handbook of Brownian motion—facts and for-
mulae. Second. Probability and its Applications. Birkhäuser Verlag, Basel, 2002,
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Wydawnictwo Naukowe, Warsaw, 1965, p. 256.

38


