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ABSTRACT

This paper addresses the challenging task of single channel
audio source separation. We introduce a novel concept of on-
the-fly audio source separation which greatly simplifies the
user’s interaction with the system compared to the state-of-
the-art user-guided approaches. In the proposed framework,
the user is only asked to listen to an audio mixture and type
some keywords (e.g. “dog barking”, “wind”, etc.) describing
the sound sources to be separated. These keywords are then
used as text queries to search for audio examples from the
internet to guide the separation process. In particular, we pro-
pose several approaches to efficiently exploit these retrieved
examples, including an approach based on a generic spectral
model with group sparsity-inducing constraints. Finally, we
demonstrate the effectiveness of the proposed framework with
mixtures containing various types of sounds.

Index Terms— On-the-fly source separation, user-guided,
non-negative matrix factorization, group sparsity, universal
spectral model.

1. INTRODUCTION

For a wide range of applications in audio enhancement and
post-production, audio source separation still remains a very
hot research topic. The problem becomes more challenging
in the single-channel case where spatial information about
the sources cannot be exploited. Thus most state-of-the-art
approaches rather rely on the spectral diversity of individual
sound sources, which is usually learned from relevant training
data in order to separate them from the mixture [1, 2]. Such a
class of supervised algorithms is often based on Non-negative
Matrix Factorization (NMF) [3, 4, 5] or its probabilistic for-
mulation known as Probabilistic Latent Component Analysis
(PLCA) [2, 6]. However, relevant training data is not often
available or representative enough, especially for non-popular
sounds such as animal or environmental sounds.

Another type of so-called user-guided approaches rely on
source-specific information provided by a user to guide the
source separation process. For example, this information can
be user-“hummed” sounds that mimic the sources in the mix-

ture [6] or a speech transcription used to produce speech ex-
amples via a speech synthesizer [7]. Alternative user-guided
approaches allow the end-user to manually annotate informa-
tion about the activity of each source in the mixture [8, 9]. The
annotated information is then used, instead of training data,
to guide the separation process. In this line of annotation-
based approaches, recent publications disclose an interactive
strategy [10, 11] where the user can even perform annotation
on the spectrogram of intermediate separation results so as to
gradually correct the remaining errors. Despite the effective-
ness of these user-guided approaches, they are usually very
time consuming and require significant effort from the user.
Additionally, the annotation process is only suitable for expe-
rienced people since they have to understand the spectrogram
display in order to annotate it.

With the motivation of greatly simplifying the user inter-
action so as non-experienced people can easily do the job, we
introduce in this paper a new concept of on-the-fly source sep-
aration for which the user guides the separation at a higher
semantic level. More specifically, we propose a framework
that only requires the user to listen to the mixture and to se-
mantically describe the sources he/she would like to separate.
For example, a user may wish to separate the “dog barking”
(source 1 description) from the “bird song” (source 2 descrip-
tion). We then use these semantic descriptions as text queries
to retrieve example audio files from the internet and use them
to guide the source separation process. This strategy is akin
to on-the-fly methods in visual search [12, 13] where an end-
user searching for a certain person or a visual object is only
required to type the person’s name or the object’s descrip-
tion. The corresponding representative example images are
then retrieved via Google Image Search and used for training
an appropriate classifier. Figure 1 depicts the workflow of the
proposed system.

However, several challenges arise when using the afore-
mentioned retrieved audio examples. First, examples re-
trieved from the internet are not guaranteed to contain a sound
with spectral characteristics similar to those of the source in
the mixture. Second, these examples may also be mixtures
of several sources. Thus it is desired to have a mechanism
to allow selecting only the most representative examples to
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Fig. 1. General workflow of the proposed on-the-fly framework. A user listens to a mixture and types some keywords describing
the sources. The keywords are used to retrieve examples to learn a spectral model for each source.

improve the separation result. We propose two alternative
strategies to address this issue. The first one is based on the
pre-selection of examples via a ranking scheme. Whereas
the second exploits a universal spectral model learned from
examples and handles the selection of the appropriate spectral
patterns via some group sparsity-inducing constraints [4].

The rest of the paper is organized as follows. In Section
2 we summarize the supervised source separation approach
based on the NMF model. We then present two classes of
algorithms for the on-the-fly system in Section 3. In Section
4, we conduct experiments to validate the effectiveness of the
proposed approach. Finally we conclude in Section 5.

2. NMF-BASED SUPERVISED SOURCE
SEPARATION

This section discusses a standard supervised source separa-
tion approach for the single-channel case based on NMF, one
of the most popular and widely used models in the state-of-
the-art source separation. The general pipeline, which has
been considered e.g. in [2, 3], consists in first learning cor-
responding source spectral models from some training data.
Then these pre-learned models are used to guide the mixture
decomposition.

Let X and Sj be the F × N matrices of the short-time
Fourier transform (STFT) coefficients of the observed mix-
ture signal and the j-th source signal, respectively, where F
is the number of frequency bins and N the number of time
frames. The mixing model writes

X =
J∑
j=1

Sj , (1)

where J is the total number of sources. Let V = |X|.2 be
the power spectrogram of the mixture where X.p is the matrix
with entries [X]pil. NMF aims at decomposing the F×N non-
negative matrix V as a product of two non-negative matrices
W and H of dimensions F × K and K × N , respectively,

such that V ≈ V̂ = WH. This decomposition is done by
optimizing the following criterion [5]

min
H≥0,W≥0

D(V‖WH), (2)

whereD(V‖V̂) =
∑F,N
f,n=1 dIS(Vfn‖V̂fn) and dIS(x‖y) =

x
y − log(xy ) − 1 is the Itakura-Saito divergence measure [4]
which is a popular choice for audio applications. The param-
eters θ = {W,H} are initialized with random non-negative
values and are iteratively updated via multiplicative update
(MU) rules [5].

In the supervised setting, the factorization of V is guided
by a pre-learned spectral model. In other words, the matrix
W is obtained (and fixed) by

W = [W(1), . . . ,W(J)], (3)

where W(j) is spectral model for j-th source learned also
in the NMF decomposition of the training examples. Cor-
respondingly, the activation matrix is also partitioned into
blocks as H = [HT

(1), . . . ,H
T
(J)]

T , where H(j) denotes a
block characterizing the time activations for j-th source.
Thus, first W is estimated from training data by optimizing
(2). Then, H is estimated from the mixture by optimizing (2)
but using the previously calculated W and keeping it fixed.
Once the parameters θ = {W,H} are obtained, the source
STFT coefficients are computed by Wiener filtering as

Ŝj =
W(j)H(j)

WH
�X, (4)

where� denotes the element-wise Hadamard product and the
division is also element-wise. And finally, the time domain
source estimates are obtained via the inverse STFT.

3. PROPOSED ON-THE-FLY SOURCE SEPARATION

The state-of-the-art supervised approach described in Section
2 will work efficiently with “good” training examples, i.e. the



ones whose spectral characteristics are similar to that of the
source in the mixture. However, in the considered on-the-
fly framework there is no guarantee that the audio examples
retrieved through the internet from an external database will
sound similar to the source in the mixture. For instance, the
retrieved audio data for a query “bird” may contain various
bird songs from different bird species. Thus using all re-
trieved examples would be less efficient than using only those
corresponding to the bird song in the mixture. In this section
we therefore present two different approaches that allow to
overcome this limitation and efficiently use the examples to
guide the separation process.

3.1. Example pre-selection-based approach

In order to discard inappropriate retrieved examples, i.e. those
containing spectral characteristics that are quite different from
the source in the mixture, in the training step, we propose
pre-ranking schemes to first roughly select the more likely
“good” candidates among all the retrieved ones. These rank-
ing schemes are based on the similarity between each example
and the mixture computed in one of the following ways:

(i) Similarity based on temporal correlation: in this scheme,
the normalized cross correlation between each example
for each source and the mixture signal is computed.
Examples with higher correlation values are selected.

(ii) Similarity based on audio feature correlation: in this
scheme, the spectral magnitudes of the examples and
the mixture are considered. Features such as the spec-
tral centroid and the spectral spread are computed for
each frame to form a sequence of 2D feature vectors
for each signal. Then the 2D correlation between these
feature vectors is computed. Examples with higher cor-
relation values are selected.

After the ranking process, only a short list of the retrieved
examples is retained. For each source in the mixture, the
corresponding selected examples are concatenated and used
to learn the spectral model W(j) in the NMF framework by
solving the minimization problem:

min
H̃(j)≥0,W(j)≥0

D(Vj‖W(j)H̃(j)), (5)

where Vj is the power spectrogram of the concatenated train-
ing examples for the j-th source. Once W(j) are learned for
all sources, they are used to guide the mixture separation, as
explained in Section 1.

3.2. Universal model with a group sparsity constraint-
based approach

Since the mixture contains several sources and a retrieved ex-
ample may also contain several sources or additional noise,

the similarity measure between them, e.g. as described in Sec-
tion 3.1, may be very low so that even some “good” examples
could be eventually discarded. In this section, we propose an
alternative approach where the selection of “good” examples
is done jointly in the model fitting step.

The proposed approach employs the so called universal
model1 with group sparsity constraints on the activation ma-
trix H to enforce the selection of only few representative
spectral patterns learned from all training examples. To be-
gin, each retrieved example q corresponding to j-th source is
used to learn the NMF spectral model denoted by Wjq. Then
the universal spectral model for j-th source is constructed as

W(j) = [Wj1, . . . ,WjQj ], (6)

whereQj is the number of retrieved examples for j-th source.
In the NMF decomposition of the mixture, the spectral model
W is constructed by (3). Then the activation matrix is esti-
mated by solving the following optimization problem

min
H≥0

D(V‖WH) + λΨ(H), (7)

where Ψ(H) denotes a penalty function imposing group spar-
sity on H, and λ is a trade-off parameter determining the con-
tribution of the penalty. When λ = 0, H is not sparse and the
entire universal model is used as illustrated in Figure 2a. For
λ > 0, different penalties can be chosen (e.g. as in [3, 4]); and
in this paper we propose to use two alternative group sparsity-
inducing penalties as follows.

(i) Block sparsity-inducing penalty

Ψ1(H) =
G∑
g=1

log(ε+ ‖H(g)‖1), (8)

where H(g) is a subset of H representing the activation coef-
ficients for g-th block, ‖.‖1 is the `1 norm, G is the total num-
ber of blocks, and ε is a small positive constant. In this case,
a non-overlapping block represents one training example and
G is the total number of examples used. This penalty is mo-
tivated by the fact that if some of the retrieved examples are
more representative for the corresponding source in the mix-
ture than the others, then it may be better to use only the for-
mer examples. It thus enforces the activation for “good” ex-
amples only while omitting the poorly fitting examples since
their corresponding activation blocks will likely converge to
zero, as visualized in Figure 2b. This block sparsity constraint
was shown to be effective with the universal speech model in
[3] in a denoising task; and in this paper we argue that it could
also bring benefit in handling the selection of relevant training
examples retrieved on-the-fly.

1The term “universal model” was introduced in [3] for the separation of
speech and noise, which is also in analogy to the universal background mod-
els for speaker verification [14].
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Fig. 2. Estimated activation matrix H: (a) without a sparsity
constraint, (b) with a block sparsity-inducing penalty (blocks
corresponding to poorly fitting models are zero), and (c) with
a component sparsity-inducing penalty (rows corresponding
to poorly fitting spectral components from different models
are zero).

(ii) Component sparsity-inducing penalty

Ψ2(H) =
K∑
k=1

log(ε+ ‖hk‖1), (9)

where hk denotes k-th row of H. This penalty is motivated
by that fact that only a part of the spectral model learned from
an example may fit well with the source in the mixture, while
the remaining patterns (components) in the model do not (as
in the case when an example is also a mixture of sounds).
Thus instead of activating the whole block (all components
in a spectral model Wjp) as guided by Ψ1(H), the penalty
Ψ2(H) allows to select only the more likely fitting spectral
components from Wjp. An example of H after convergence
is shown in Figure 2c.

To derive algorithms optimizing (7) with different penalty
functions (8) and (9), one can rely on MU rules and the
majorization-minimization algorithm, as in [3] for the NMF
with Kullback-Leibler divergence and in [4] for the NMF
with Itakura-Saito divergence as considered in this paper.
The resulting algorithm is summarized in Algorithm 1, where
P(g) is a matrix of the same size as H(g) and pk is a row
vector of the same size as hk.

Algorithm 1 NMF with sparsity-inducing constraints
Input: V, W, λ
Output: H

Initialize H randomly
V̂ = WH
repeat

if Block sparsity-inducing penalty then
for g = 1, ..., G do

P(g) ← 1
ε+‖H(g)‖1

end for
P = [PT

(1), . . . ,P
T
(G)]

T

end if
if Component sparsity-inducing penalty then

for k = 1, ...,K do
pk ← 1

ε+‖hk‖1
end for
P = [pT1 , . . . ,p

T
K ]T

end if
H← H�

(
WT (V�V̂.−2)

WT (V̂.−1)+λP

). 12
V̂←WH

until convergence

4. EXPERIMENTS

4.1. Data and parameter settings

We evaluated the performance of the proposed on-the-fly ap-
proaches via a dataset containing 10 single-channel mixtures
of two sources artificially mixed at 0 dB SNR. The mixtures
were sampled at either 16000 Hz or 11025 Hz and vary in du-
ration between 1 and 10 seconds. The sources in the mixtures
represent different types of sound ranging from human speech
to musical instruments and animal sounds. This variability of
sound sources will demonstrate the power of the proposed on-
the-fly strategy since e.g. appropriate training examples for
non-popular sounds such as animal or environmental sounds
are usually not available at the end-user’s side. In our exper-
iment, some example wave files were retrieved from www.
findsounds.com, a search engine for audio where sev-
eral parameters such as sample rate, number of channels, au-
dio file format (wav, mp3), etc. can be specified and a list of
URLs of audio files is accordingly retrieved. The keywords
used included guitar, bongos, drum, cat, dog, kitchen, river,
chirps, rooster, bells, and car. Additionally, speech examples
were retrieved from the TIMIT database [15]. Note that the
retrieved files were imposed to have sampling rates at least as
high as that of the mixture; then the ones with higher sam-
pling rates were downsampled to the mixture’s sampling rate.

For parameter settings, a frame length of 47 ms with 50%
overlapping was used for the STFT. The number of iterations
for MU updates in all algorithms was 200 for training and
100 for testing. The number of NMF components for each



Method NSDR NSIR
Baseline on-the-fly 2.0 6.6

Temp. corr. -based ranking 2.4 7.1
Feature-based ranking 3.2 7.8

Universal non-constraint 3.1 7.5
Universal block sparsity (λ = 128) 3.3 7.9

Universal component sparsity (λ = 64) 3.7 7.9

Table 1. Average source separation performance.

source in the example pre-selection-based approach and the
number of NMF components for each spectral model learned
from one example in the universal model-based approach was
set to 32. Several values were tested for the trade-off parame-
ter λ which weights the contribution of the sparsity-inducing
penalty (7); it was finally set to 128 and 64 for block and
component sparsity, respectively.

4.2. Results and discussion

We compare the separation performance obtained by the
baseline on-the-fly algorithm (named Baseline on-the-fly)2

described in Section 2, where all retrieved examples were
used to train one spectral model for each source, with that
achieved by the example pre-selection-based approach de-
scribed in Section 3.1, where only the 3 top-ranked examples
were used to train the corresponding source spectral model.
These examples were chosen either via the temporal correla-
tion scheme (named Temp. corr. -based ranking) or the au-
dio feature correlation-based scheme (named Feature-based
ranking). We also evaluated the performance of the universal
model-based approaches described in Section 3.2 with either
no sparsity constraints i.e. λ = 0 (named Universal non-
constraint), or a block sparsity-inducing penalty (8) (named
Universal block sparsity), or a component sparsity-inducing
penalty (9) (named Universal component sparsity).

Separation results were evaluated using the normalized
signal-to-distortion ratio (NSDR) measuring overall distor-
tion as well as the normalized signal-to-interference ratio
(NSIR) [16, 17], measured in dB and averaged over all
sources. Note that the normalized values were simply com-
puted by subtracting the SDR of the original mixture signal
from the SDR of the separated source. In other words, these
normalized values show the improvement compared to the
case where the user does not have access to a source separa-
tion system.

The results obtained by different algorithms are shown in
Table 1, and sound files for subjective listening are available
online3. As can be seen, the proposed on-the-fly strategy for

2Note that as on-the-fly source separation is a new approach, there is cur-
rently no state-of-the-art methods with which to compare; and thus we con-
sider as a baseline the method in Section 2

3http://audiosourceseparation.wordpress.com/

retrieving examples via a search engine to guide the source
separation brings significant benefit where the average perfor-
mance over all methods was of 3 dB NSDR and 7.5 dB NSIR.
As expected, pre-selecting retrieved examples even by simple
temporal correlation or feature correlation improves the result
over the baseline, e.g. by 0.4 dB and 1.2 dB NSDR, respec-
tively, since it allows to discard inappropriate examples in the
training phase. Also as expected, feature-based correlation
was slightly better than temporal correlation since it is un-
affected by dynamic variations; indeed these variations may
result in low temporal correlation values between otherwise
similar sounds causing their unnecessary elimination. More-
over, better results were achieved by the universal model with
group sparsity constraint-based approaches with an improve-
ment of 0.2 and 0.6 dB NSDR over the non-constraint case.
This shows that these proposed methods efficiently handle
the use of representative spectral models learned from train-
ing examples in the parameter estimation process. Finally, it
should be noted that the component sparsity-inducing penalty
produces the best result with 3.7 dB NSDR and 7.9 dB NSIR.
We think that this is thanks to the fact that this penalty al-
lows exploiting the most representative spectral patterns from
different spectral models.

5. CONCLUSION

In this paper, we introduced the novel concept of on-the-fly
audio source separation and proposed several algorithms im-
plementing it. In contrast with other state-of-the-art user-
guided approaches, the considered framework allows to
greatly simplify the user interaction with the system such
that everyone can do source separation just by typing key-
words describing audio sources in the mixture. In particular,
we proposed to use a universal spectral model with group
sparsity-inducing constraints so as to efficiently handle the
selection of representative spectral patterns learned from re-
trieved examples. Experiments with mixtures containing
various sound types confirm the potential of the proposed on-
the-fly source separation concept as well as the corresponding
algorithms. Future work includes addressing the case where
the user does not completely specify all the sources in the
mixture (e.g. describing one out of two sources). Addition-
ally, a compressed sensing approach for overlapping blocks
[18], and a mixed block and component sparsity-inducing
penalty [19] would also be investigated within the considered
universal spectral model framework.
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