
HAL Id: hal-01023681
https://hal.inria.fr/hal-01023681

Submitted on 31 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Armies of Model Clones through Data Sharing
Erwan Bousse, Benoit Combemale, Benoit Baudry

To cite this version:
Erwan Bousse, Benoit Combemale, Benoit Baudry. Scalable Armies of Model Clones through Data
Sharing. Model Driven Engineering Languages and Systems, 17th International Conference, MODELS
2014, Sep 2014, Valencia, Spain. 2014. <hal-01023681>

https://hal.inria.fr/hal-01023681
https://hal.archives-ouvertes.fr

Scalable Armies of Model Clones

through Data Sharing

Erwan Bousse1, Benoit Combemale2, and Benoit Baudry2

1 University of Rennes 1, France
erwan.bousse@irisa.fr

2 Inria, France,
{benoit.combemale, benoit.baudry}@inria.fr

Abstract. Cloning a model is usually done by duplicating all its runtime
objects into a new model. This approach leads to memory consumption
problems for operations that create and manipulate large quantities of
clones (e.g., design space exploration). We propose an original approach
that exploits the fact that operations rarely modify a whole model. Given
a set of immutable properties, our cloning approach determines the ob-
jects and fields that can be shared between the runtime representations
of a model and its clones. Our generic cloning algorithm is parameter-
ized with three strategies that establish a trade-off between memory
savings and the ease of clone manipulation. We implemented the strate-
gies within the Eclipse Modeling Framework (EMF) and evaluated mem-
ory footprints and computation overheads with 100 randomly generated
metamodels and models. Results show a positive correlation between the
proportion of shareable properties and memory savings, while the worst
median overhead is 9,5% when manipulating the clones.

1 Introduction

Cloning a model consists in obtaining a new and independent model identical
to the original one. An implementation of this operation can be found in the
EcoreUtil.Copier class of the Eclipse Modeling Framework (EMF) [11], which
consists in first creating a copy of the runtime representation of a model (i.e. the
set of Java objects that represent the model) and then resolving all the references
between these objects. Such an implementation is also known as deep cloning.
This implementation is effective to produce valid, independent clones. However
it has very poor memory performances for operations that require manipulating
large quantities of clones (e.g. genetic algorithms [6], design space exploration [10]
or model simulation traces [8]).

We address the performance limitations of current deep cloning operations by
leveraging the following observation: given a metamodel and an operation defined
for this metamodel, the operation usually writes only a subset of this metamodel.
That means that it is possible to identify the footprint of the write accesses of
these operations on a metamodel. This footprint is the set of mutable parts of the
metamodel, i.e. elements that can be modified by an operation. The counterpart

of these elements, the immutable elements, are definitively stated at the creation
of objects. Our intuition is the following: knowing the immutable elements of
the metamodel, data could be shared between the runtime representation of a
given model and its clones, saving memory when generating the clone.

In this paper, we propose a new model cloning algorithm, which implements
different strategies to share immutable data between clones. This contribution
relies on a specific runtime representation of the model and its clones in order
to share the data and still provide an interface that supports the manipulation
of the clones independently from each other. We articulate our proposal around
the following questions:

– Considering that we know which parts of a metamodel are mutable, how can
we avoid duplicating immutable runtime data among cloned models?

– Can it effectively save some memory at runtime when creating a high number
of clones as compared to EMF cloning implementation ?

Our goal is both to give a solution that can be implemented in various existing
execution environments, and to provide concrete evidence of the efficiency of
such an approach on a widely used tool set: the Eclipse Modeling Framework
(EMF). Section 2 motivates our problem. We present a list of requirements for
cloning operators, and give the intuition of our idea regarding existing cloning
techniques. Section 3 defines what we call model cloning and what are runtime
representations of models. Section 4 presents the main contribution of this paper:
a new approach for efficient model cloning. The idea is to determine which parts
of a metamodel can be shared, and to rely on this information to share data
between runtime representations of a model and its clones. We provide a generic
algorithm that can be parameterized into three cloning operators (in addition to
the reference deep cloning one): the first one only shares objects, the second only
shares fields, and the third shares as much data as possible. Section 5 describes
our evaluation, which was done using a custom benchmarking tool suite that
relies on random metamodel and model generation. Our dataset is made of a
hundred randomly generated metamodels and models, and results show that
our approach can save memory as soon as there are immutable properties in
metamodels. Finally, Section 6 concludes.

2 Motivation and Position

In this section we give requirements for cloning operators, and we explain how
our idea is related to existing approaches

2.1 Requirements for Cloning

New activities have emerged in the model-driven engineering community in re-
cent years, which all rely on the automatic production of large quantities of
models and variations of models. For example, several works rely on evolution-
nary computation to optimize a model with respect to a given objective [3, 6].

Optimization in this case, consists in generating large quantities of model vari-
ants through cloning, mutation and crossover and selecting the most fitted. In
the field of executable domain specific modeling languages, modeling traces [8]
(i.e. set of snapshots of the executed model) is a way to verify and validate
the system through visualization or analysis of traces. Yet, a complete model
trace consists in copying the state of the model at each simulation step, pro-
ducing large quantities of model variants. Design space exploration [10] is the
exploration of design alternatives before an implementation, which requires the
generation of the complete design space (i.e. set of variations, which are models).

All these new MDE techniques produce large sets of models that originate
from few models. From a model manipulation point of view, all these techniques
require the ability to clone—possibly many times—an original model, and to
query and modify the clones as models that conform to the same metamodel as
the original. More precisely, we identify four requirements for model manipula-
tion in these contexts

Req #1 scalability. Runtime representations of models must scale in memory.

Req #2 manipulation performance. It is necessary to manipulate the clones
as efficiently as any model.

Req #3 model interface. The clones and the original model must be manip-
ulated through the same interface.

Req #4 metamodel independence. Support model manipulation through
a reflexive layer (the model operation is defined independently of a given
metamodel).

Our work defines novel cloning operators that reduce the memory footprint
of clones, while trying to comply with the aforementioned requirements. In par-
ticular, we evaluate the relevance of our solution with respect to the following
four research questions:

RQ#1 Do the new operators reduce the memory footprint of clones, compared
to deep cloning?

RQ#2 Can a clone be manipulated with the same efficiency as the original
model?

RQ#3 Can a clone be manipulated using the same generated API as the orig-
inal model?

RQ#4 Can a clone be manipulated using the reflective layer (e.g. as stated in
the MOF Reflection package)?

2.2 Existing Cloning Approaches and Intuition

Object copying has existed since the beginning of object-oriented programming
languages [4] with the deep and shallow copy operators. While the second oper-
ator does not ensure the independence of a clone and is thus not of interest, the
first is at the basis of model deep cloning. Concerning models, the EMF provides
a class named EcoreUtil.Copier with operations for deep copying sets of objects,

which can trivially be used to implement a model deep cloning operator. Yet, as
stated previously, this operator does not fit our needs. In [5], Karsai et al. added
model cloning to the Generic Modeling Environment (GME) in order to support
model prototyping, i.e. applying the concepts of object prototyping [7] to models.
However, this work considers that changes made in a model are reflected in its
clones, whereas by definition a clone is independent from its origin. Overall, to
our knowledge, no work attempted to tackle the requirements that we identified.

In terms of memory management, copy-on-write (a.k.a. lazy copy) is a widespread
way to reduce memory consumption. The idea is the following: when a copy is
made, nothing is concretely copied in memory and a link to the original element
is created. At this point, both elements are identical, and accordingly reading
the copy would in fact read the origin directly. But when writing operations are
made on the copy, modified elements are effectively copied so that the copy keeps
its own state and appears like a regular and independent element. Applied to
model cloning, the runtime object configuration of a clone obtained using this
technique would eventually only contain written mutable elements of the original
model, which meets our need to reduce memory footprint (Req #1). However,
it adds a considerable amount of control flow at runtime in order to detect when
copies must be done, and such copies can happen unpredictably depending on
the manipulations; this contradict the need for efficient clones (Req #2). More
importantly, depending on the programming language used, this technique can
be very difficult to implement; for instance, Java is pass-by-value, making it im-
possible to dynamically change the value of a variable from a different context
(i.e. updating all references to an object that was just effectively copied), which
is required to dynamically copy a model progressively and transparently.

Our intuition is that while deep cloning is easy to implement but memory
expensive, and copy-on-write is memory-efficient but complicated with poorly
efficient clones, it is possible to provide operators in between these two extremes.
Similarly to the way copy-on-write discovers dynamically which parts of a model
are mutable when copying written elements, our idea is to statically determine
which elements that have to be copied at runtime. Such elements are opposed
to the ones that can be referenced by both the original runtime representation
and its clone. We present an approach based on this idea in the next section.

3 On Model Cloning

The purpose of this section is to clarify what we mean by the runtime represen-
tation of a model and to precisely define what we call a clone in this work.

3.1 Modeling

Since we focus on the runtime representation of models, we consider a meta-
model to be the definition of a data structure. More precisely, we rely on the
Meta-Object Facility (MOF) [9] that defines a metamodel as an object-oriented
structure.

:B

x = 5

:B

x = 7:A

i = 1

j = 2

-b

*

Example of system

instance ofinstance of instance of
conforms to

b

*

Metamodel "AB"

Model "abb"

Runtime representation

implements

:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1

j = 2

A

+i: int

+(mut) j: int

B

+x: int

representation of

<<interface>>

A

+getB(): List

+getI(): int

+setI(int)

+getJ(): int

+setJ(int)

AImpl

+i: int

+j: int

<<interface>>

B

+getX(): int

+setX(int)

BImpl

+x: int

API

Modeling framework

code generation

e.g. EMF

Fig. 1: Example of modeling and EMF usage with a sample metamodel AB and
a sample model abb.

Definition 1. A metamodel is an object oriented model defining a particular
domain. More precisely, a metamodel is composed of classes composed of prop-
erties, a property being either an attribute (typed by a datatype) or a reference
to another class. In practice, we consider a MOF model.

Since a metamodel is composed of classes, a model that conforms to this
metamodel is quite intuitively a set of objects that are instances of these classes.

Definition 2. A model is a set of objects that conforms to a metamodel. Con-
formity means that each object in the model is an instance of one class defined in
the metamodel. An object is composed of fields, each being based on a property
of the corresponding class.

During its lifecycle, a model can change in two possible ways: by creat-
ing/deleting objects or by changing values of fields of objects. We designate
as mutable elements both the elements of a model that may change over time
and the metamodel parts that define these elements. Our approach considers a
given object configuration in order to produce a clone, and is thus not influenced
by the creation of deletion of objects.

Definition 3. A property of a class of a metamodel is mutable if, in each ob-
ject instance of this class, the value of the field corresponding to this property
can change after the construction of the object. Dually, a property is said to be
immutable if its value cannot change after construction.

Fig. 1 shows a metamodel named AB that is composed of two classes A and
B. A has two attributes i and j and one reference b. j is mutable as specified by
(mut). B has a single attribute x. Below the metamodel, a model abb conforms

to AB and is composed of one object instance of A and two objects instance of
B.

3.2 Implementation of Metamodels and Models

Specific execution environments are necessary to use metamodels and models.
The Eclipse Modeling Framework (EMF) is one of the most popular. It gener-
ates Java interfaces and classes that implement a given metamodel, providing
concrete mechanisms to create runtime representations of models that conform
to the metamodel. We define a runtime representation as follows:

Definition 4. The runtime representation of a model is the set of runtime data
that is sufficient to reflect the model data structure. It must be manipulated
through an interface that is consistent with the corresponding metamodel.

Top right of Fig. 1 shows the API (Java interfaces and classes) generated
by the EMF generator. Interfaces A and B define services corresponding to the
data structure of the original metamodel AB, while Java classes AImpl and BImpl

implement these interfaces. These elements support the instantiation and manip-
ulation of runtime representations—here, Java object configurations—of models
that conform to the metamodel. The bottom right of the figure shows a runtime
representation of abb.

Note that a runtime representation that is eventually obtained using the EMF
is structurally very similar to the original model: each object is represented by a
Java object; each reference is represented by a Java reference; and each attribute
is represented by a Java field. Yet runtime representations could theoretically
take any form, as long as they are manipulated through an API that reflect the
metamodel. One could imagine “empty” objects that get data from a centralized
data storage component, or the use of a prototype-based programming language
to create consistent runtime representations without defining classes.

3.3 Cloning

In this paper, we consider cloning3 to be at the intersection of two main ideas:
the exact duplication of elements and the independence of the obtained clone.
Applied to models, a clone is therefore an independent duplication of some ex-
isting model. We define a clone as follows:

Definition 5. A clone is a model that is, when created, identical to an existing
model called the origin. Both models conform to the same metamodel and are
independent from one to another

Cloning a model is a deterministic procedure that has a unique possible
output (i.e. a model identical to the original model). However there are multiple
ways to implement this procedure for a given runtime environment. We therefore
introduce the idea of cloning operator as follows:

3 In terms of vocabulary, it is very similar to copying, and the choice of word is mostly
a matter of habit. In this paper we rather copy objects and clone models.

Metamodel "AB"

Model "abb"

conforms toconforms to

cloned

from

Model "abb_clone"

representation of representation of

:B

x = 5

:B

x = 7

:A

i = 1

j = 2

:B

x = 5

:B

x = 7

:A

i = 1

j = 5

:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1

j = 5

:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1

j = 2

Runtime representation of "abb" Runtime representation of "abb_clone"

API

System

Fig. 2: Following Fig. 1, deep cloning of the model abb, which created a new
model abb clone along with a new runtime representation in memory. Then
abb clone diverged from abb by changing its j value.

Definition 6. A cloning operator is an operator that takes the runtime repre-
sentation of a model as input and returns the runtime representation of the clone
of the model.

Fig. 2 gives an example of cloning: the model abb clone is a clone that was
created at some point from the model abb. The moment the clone was created is
important, since it is an independent model that can completely diverge from its
origin; on this example, abb clone already changed and has a different j value.

At the bottom right of Fig. 2, the runtime representation of abb clone was
obtained using the deep cloning operator. However, as stated in the previous
section, runtime representations of models can virtually take any form, as long
as it can be manipulated through an API consistent with the metamodel. This is
what we investigate in the next section, where we present our main contribution:
cloning operators that reduce the memory footprint of runtime representations
of clones through data sharing.

4 Memory Efficient Cloning Operators

In this section we present our main contribution: an approach for memory ef-
ficient cloning through data sharing among runtime representations. For this
work, we consider that input runtime representations were obtained using the
EMF, i.e. each input runtime representation is identical to its model. Moreover,
for our clones to be compliant with EMF, we ensure that each object of a clone
is implemented by exactly one runtime object.

4.1 Data Sharing Strategies

When using the deep cloning operator, each object of a runtime representation
is duplicated, which means twice as many objects and fields in memory. Our
intuition is that since we know which parts of a metamodel are immutable, it
must be possible to avoid duplicating some runtime objects and fields by safely
using them for both the runtime representations of a model and its clones. Given
a model conforming to a metamodel, we call shareable both the elements that
can be shared between the runtime representations of the model and its clones,
and the parts of the metamodel that define these elements.

In Section 2, we defined Req #2 (efficient manipulation of clones) and Req #4
(ability to define generic operations). However, sharing objects and fields between
runtime representations necessarily breaks one or both of these requirements.
First, if the same runtime object is shared between two runtime representations,
it is supposed to represent two distinct objects—one per model. Therefore, it is
possible for each of these objects to have a different container, since both ob-
jects are conceptually separate. The problem is that the MOF Reflection package
states that each object must provide a container() operation that returns the
unique container of an object, which is implemented in an operation of EMF
EObject called eContainer(). Unfortunately, when a shared EMF runtime ob-
ject is used, there is no way to know in which context (i.e. model) this manipu-
lation occurs, and this operation thus cannot always return a unique container
as expected. Therefore, generic operations that rely on this operation cannot
be used on clones, which contradicts our Req #4. Second, we rely on a proxy
design pattern to share the fields of runtime objects: a runtime object with a
shareable field can be copied into a new runtime object without this field, but
with a reference pointing to the original runtime object to provide access to this
field. However, there is an overhead when accessing shared data through these
proxy objects, which can be an issue with respect to Req #2.

Data sharing is essential to reduce the memory footprint of clones, which is
our primary objective. Consequently, we designed several strategies that estab-
lish trade-offs between memory savings and satisfaction of Req #2 and Req #4.
Modelers can then decide how to tune the cloning algorithm with respect to
their specific needs. We provide four strategies that implement different inter-
pretations of shareable metamodel elements:

DeepCloning Nothing is shareable.

ShareFieldsOnly Only immutable attributes are shareable.

ShareAll Shareable elements are immutable attributes, classes whose proper-
ties are all shareable, and immutable references pointing to shareable classes.

ShareObjOnly Same shareable classes as ShareAll, while properties are not.

If implementing the DeepCloning and ShareFieldsOnly strategies is quite
straightforward, ShareAll and ShareObjOnly are more complicated because of
a double recursion: shareable properties depend on shareable classes, and con-
versely. This can be solved using a fixed-point algorithm, or using the Tarjan

algorithm [12] to compute strongly connected components of a metamodel seen
as a graph. We choose Tarjan in our implementation. Our approach to memory
management through data sharing is quite close to the flyweight design pattern
from Gamma et al. [2], which consists in identifying mostly immutable objects
in order to share them between multiple objects. The main difference is that this
pattern specifies that the mutable part of shared objects must be a parameter
of all the operations of the objects, which contradicts our first requirement since
the API of the clones hence differs from the one of the original model.

4.2 Generic Cloning Algorithm

Before defining our algorithms for model cloning, we introduce data structures
and primitive functions on which the algorithms rely. We use pseudo-code in-
spired from prototype-based object-oriented programming [7], i.e. creating and
manipulating objects without defining classes. The goal is to define the algo-
rithms independently from any API that may be generated by a particular mod-
eling framework. We consider the following structures and operations:

a runtime object o is created completely empty (i.e. no fields) using the cre-
ateEmptyObject() operation. Fields can be added using addField(name,value),
and can be retrieved using getFields().

a strategy is an object that implements one of the strategies given Section 4.1
with three operations:

isFieldShareable(f) returns true if, at the metamodel level, there is a
shareable property represented by f .

isObjShareable(o) returns true if, at the metamodel level, the class of the
object that match this runtime object is shareable.

isObjPartShareable(o) does the same, but for partially shareable classes,
i.e. non-shareable classes with shareable properties.

copyObject(o) returns a copy of a runtime object o, i.e., a new object with the
same fields and the same values. This is equivalent to the operation copy of
EMF EcoreUtil.Copier

a runtime representation is a set of runtime objects. It can be created empty
with createEmptyRR(), and it can be filled with objects using addObject(o).

a map is a data structure that contains a set of 〈key,value〉 pairs. It can be
created with createEmptyMap() and be filled with addKeyValue(key, value).

resolveReferences (map) is an operation that, given a map whose keys and
values are runtime objects, will create references in the values based on the
references of the keys. This is equivalent to the operation copyReferences of
EMF EcoreUtil.Copier.

The operation copyObjectProxy(o,strategy) is presented as Algorithm 1. It is
parameterized by a strategy and an original object o, and it copies in a new
object all the fields of o, except those considered shareable by the strategy. The
last line of the operation creates a link to the original object in order to keep

Algorithm 1: copyObjectProxy

Data:
o, a runtime object
strategy, the strategy used (i.e. what is shareable)
Result: p, a proxy copy of o

1 begin
2 p← createEmptyObject()
3 for f ∈ getFields(o) do
4 if ¬ strategy.isFieldShareable(f) then
5 p.addField(f .name, f .value)

6 p.addField(“originObj”, o)

o

int x = 1

int y (mut) = 4

p

int y (mut) = 4

originObj

Fig. 3: Example of
proxy object: p is
a copy of o.

Algorithm 2: cloning

Data:
rr, a runtime representation of a model
strategy, the strategy used (i.e. what is shareable)
Result: rrclone, a runtime representation of the clone

1 begin
2 rrclone ← createEmptyRR()
3 copyMap← createEmptyMap()
4 for o ∈ rr do
5 if strategy.isObjShareable(o) then
6 rrclone.addObject(o)
7 copyMap.addKeyValue(o, o)

8 else if strategy.isObjPartShareable(o) then
9 copy ← copyObjectProxy(o,strategy)

10 rrclone.addObject(copy)
11 copyMap.addKeyValue(o, copy)

12 else
13 copy ← copyObject(o)
14 rrclone.addObject(copy)
15 copyMap.addKeyValue(, o, copy)

16 resolveReferences(copyMap)

Objects not shared Objects shared
(RQ #4 ok) (RQ #4 not ok)

Fields not shared (RQ #2 ok) DeepCloning ShareObjOnly

Fields shared (RQ #2 not ok) ShareFieldsOnly ShareAll

Table 1: Cloning operators obtained, one per strategy.

:BNoObjShare :BNoObjShare

:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1

j = 2

Runtime representation of "abb" Runtime representation of "abb_clone"

:ANoObjShare

j = 5

(a) ShareFieldsOnly

:AImpl

i = 1

j = 5
:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1

j = 2

Runtime repr.

of abb
Runtime repr.

of abb_clone

(b) ShareObjOnly

:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1

j = 2

Runtime repr.

of abb
Runtime repr.

of abb_clone

:AObjShare

j = 5

(c) ShareAll

Fig. 4: Runtime representations of models abb and abb clone of Fig. 2 obtained
with the different cloning operators.

a way to access to the shareable data. Fig. 3 illustrates this operation with a
simple object o that has two fields x and y: x is not copied in p, but can still be
accessed using the reference originObj.

The second operation is cloning(rr, strategy), the cloning algorithm itself,
presented as Algorithm 2. It takes a runtime representation rr as input and a
considered strategy, and returns a runtime representation rrclone of a clone of
the model of rr. Depending on the strategy outputs, each object is processed
differently. If the object o is shareable, it is simply added in rrclone, and is thus
shared between rr and rrclone. If o is partially shareable (not shareable but
with shareable fields), a proxy copy of o is added to rrclone. Finally, if o is not
shareable at all, a regular copy is put in rrclone.

4.3 Family of Cloning Operators

From our single cloning algorithm, we eventually obtain four cloning operators
depending on the strategy used. We sum up the possibilities in Table 1, and we
illustrate them with examples in Fig. 4. DeepCloning clones without any form of
data sharing. ShareFieldsOnly clones using proxy objects to share as many fields
as possible; Fig. 4a shows an example where each runtime object has a reference
to the runtime object from which it originates. ShareObjOnly clones with object
sharing only; Fig. 4b shows an example where B runtime objects are referenced
by both models. Finally, ShareAll clones with both objects and fields sharing;
Fig. 4c shows an example where only j is kept by the A runtime object.

In section 4.1, we listed four research questions to evaluate our cloning oper-
ators. Without proper benchmarking, we cannot answer the memory consump-
tion (RQ #1) question yet. Concerning the efficiency when manipulating clones
(RQ #2), we do not expect ShareFieldsOnly and ShareAll to comply because of

proxy objects. As they rely on of object sharing, ShareObjOnly and ShareAll are
not compatible with generic operators that use the MOF container() reflec-
tive operation (RQ #4). However, our clones perfectly comply with the need to
be manipulable by operations defined for the metamodel of the original model
(RQ #3). This is illustrated by our implementation, which allows each clone to
be manipulated using the EMF Java API generated for the metamodel.

4.4 EMF-Based Implementation

We implemented our approach in Java with as much EMF compatibility as
possible, which required us to face two main challenges. First, we had to extend
EMF libraries—including implementations of EObject and Resource—to ensure
that containment references are handled consistently in each model. Second, our
approach relies on proxy objects, which are easy to create dynamically using a
prototype-based object oriented language. However, with a class-based object
oriented language such as Java, the fields of an object are determined by its
class at design-time. We thus have to generate appropriate classes beforehand,
which we do with a java-to-java transformation using EMF and MoDisco [1]
to remove non-shareable properties of generated EMF implementations. More
details about the implementation can be found in the companion web page of
the paper: http://diverse.irisa.fr/software/modelcloning/.

5 Evaluation and Results

This section presents our evaluation. First we describe our dataset, then what we
measure and the metrics considered for our metamodels, and finally the obtained
results and how they relate to the requirements stated in Section 2.

5.1 Dataset

To evaluate this work, we need both various metamodels and models that con-
form to these metamodels. For the metamodels part, we developed a random
Ecore model generator. We parameterized it the following way: a maximum
number of 100 classes per metamodel, 250 properties per class and 50 mutable
properties (which are properties with a m suffix) per class. We use weighted
randomness to create different kinds of properties, with the following weights:
30% of integers, 30% of booleans, 30% of strings, and 10% of references. For
the models part, we generate for each metamodel a single model in a determin-
istic way that covers the whole metamodel. It starts from the roots, navigates
through each composition and creates a maximum of two objects per encoun-
tered class. Then, all attributes are initialized with random values and refer-
ences with random objects. We could have generated more models per meta-
model, but our goal was to illustrate how our operators behave with varying
metamodels, each with different shareable parts. For more information concern-
ing the evaluation process you can refer to our companion web page http:

//diverse.irisa.fr/software/modelcloning/.

proportion of shareable classes (ShareObjectsOnly strategy)

m
em

or
y

ga
in

 o
ve

r
D

ee
pC

lo
ne

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

ShareObjectsOnly
ShareAll

(a) Memory gain for the ShareObjOnly
and ShareAll operators, with varying pro-
portion of shareable classes

density of shareable properties in part shareable classes
 (ShareFieldsOnly strategy) (log scale)

m
em

or
y

ga
in

 o
ve

r
D

ee
pC

lo
ne

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 6 10 16 25 40 63 100 158 251

ShareFieldsOnly

(b) Memory gain with ShareFieldsOnly
against density of shareable properties in
part. shareable classes (log scale)

Fig. 5: Memory gain results obtained for 1000 clones.

5.2 Measures

To verify that we reached our main objective, we must measure the memory
consumption of the runtime representations of the clones, and more precisely
the memory gain compared at the DeepCloning operator. For precise memory
measures, we create a heap dump at the end of each evaluation run, and we
analyze it using the Eclipse Memory Analyzer (MAT) 4. The second measure
we make is the read-access performance of the runtime representations of clones,
compared to the one of the original model. We expect to see some performance
decrease when proxy runtime objects are involved We proceed by measuring the
amount of time required to navigate 10 000 times through each object of a model
while accessing each of their properties.

5.3 Metrics

To embrace the variety of metamodels, we consider two metrics: the proportion
of shareable classes when using either the ShareObjOnly or the ShareAll strategy,
and the density of shareable properties within partially shareable classes when
using the ShareFieldsOnly strategy. The first metric most likely correlates with
the memory gain for operators that share objects, and the second for the operator
that only shares fields.

5.4 Results

Each measure was done by creating the model of the metamodel, cloning it 1000
times with the chosen operator, and measuring both the memory footprint and
the efficiency of one of the clones.

4 http://www.eclipse.org/mat/

density of shareable properties in part shareable classes
 (ShareFieldsOnly strategy) (log scale)

M
od

el
 m

an
ip

ul
at

io
n

ef
fic

ie
nc

y
ga

in
 o

ve
r

th
e

or
ig

in
al

 m
od

el

−25%

−20%

−15%

−10%

−5%

0%

1 2 3 4 6 10 16 25 40 63 100 158 251

ShareFieldsOnly
ShareAll

Fig. 6: Manipulation time gain for the
ShareFieldsOnly and ShareAll opera-
tors, with varying density of shareable
properties in part. shareable classes
(log scale)

Fig. 5a shows the memory gain of the ShareObjOnly and ShareAll operators
over the DeepCloning operator with varying proportion of shareable classes. We
can see that the more shareable classes there are, the more memory gain there
is. This relation appears linear for ShareObjOnly, and less regular for ShareAll.
This is quite normal since the first operator only relies on object sharing, while
the second is also influenced by the amount of shareable properties that can
be shared through proxies. We also observe that ShareAll is always better that
ShareObjOnly, which was expected since it shares fields in addition to objects.
Some points may look surprising at position 0%, however they are simply caused
by metamodels with very few classes and a high amount of shareable properties.
Thus, sharing fields of such metamodels quickly gives very high gains.

Fig. 5b shows the memory gain of the ShareFieldsOnly operator over the
DeepCloning operator with varying density of shareable properties within par-
tially shareable classes. We observe a correlation between gain and the metric,
and the gain raises up to approximately 40%. This operator gives overall worse
results that the ShareObjOnly and ShareAll operators, but can give better results
in some situations (e.g. metamodels with mostly partially shareable classes).

Finally, Fig. 6 presents the model manipulation efficiency gain over the run-
time representation of the model originally cloned. We observe that, as expected
because of the proxy design pattern, the operators ShareFieldsOnly and ShareAll
both suffer from a little performance decrease. The median overhead is -9,5% for
ShareFieldsOnly and -5.9% for ShareAll.

Overall, the results match our expectations. On the one hand, memory gain
measures show that our operators are as good as DeepCloning when no parts are
shareable, and are better and better as the quantity of shareable parts raises.
Therefore, all our operators satisfy the need to reduce the memory footprint
of clones (RQ #1). On the other hand, manipulation efficiency measures show
that there is a little overhead when manipulating clones obtained by our opera-
tors ShareFieldsOnly and ShareAll. Thus, as we foresaw, these operators do not
comply with the efficiency requirement (RQ #2).

5.5 Threats to Validity

We identified two main threats to our evaluation. First, using random meta-
models, we hope to cover as many situations as possible in terms of metamodel
design. Yet, have no way to be sure that our dataset contains enough “realistic”
designs, as we have no metric for this criterion. Second, we use only one model per
metamodel, which even if it covers the whole metamodel and is thus appropriate
to evaluate our approach regarding metamodels characteristics, may overshadow
some situations. For instance, if the objects of the model are mostly instances of
non-shareable classes despite the fact that most classes are shareable, memory
gain would not correlate with this metric as much as we observe.

6 Conclusion

Model cloning is an operation to duplicate an existing model that can be used in
many kinds of applications. We identified four requirements for cloning operators:
to be able to apply domain operators on clones, to have some memory gain over
deep cloning, to be able to apply generic operators on clones, and to be able to
manipulate clones as efficiently as their original model. Our goal was to provide
cloning operators compliant with the first two requirements while satisfying the
last two if possible. The approach we presented consists in sharing both runtime
objects and fields between runtime representations of a model and its clones. We
give four possible strategies to determine which parts of a metamodel are share-
able, and we use these strategies to parameterize a generic cloning algorithm.
We obtain four cloning operators, each being more appropriate for a specific
situation. DeepCloning is the most basic operator with no memory footprint re-
duction, but that can be used in all situations where memory consumption is not
an issue. ShareFieldsOnly shares fields of immutable attributes, which reduces
the memory footprint of the clones but also introduces an overhead when manip-
ulating them. ShareObjOnly shares objects to reduce significantly the memory
footprint, but produced clones are not compatible with generic operations that
rely on the container() specifiec in the MOF Reflection package. Finally, Share-
All shares both objects and remaining shareable fields, which saves even more
memory, but with the weaknesses of the two previous operators. Our evaluation
was done using a hundred randomly generated metamodels, and results show
both memory gain over DeepCloning for all three other operators, and a loss of
manipulation efficiency for ShareObjOnly and ShareAll operators.

To pursue this work, a possible direction would be to automate the choice
of a cloning operator. For instance, it must be possible using static analysis
of operations to determine whether the reflexive layer is used or not, and more
precisely to detect the use of EMF eContainer(). This would give the possibility
to automatically disable cloning operators that forbid the use of this operation.

Acknowledgement. This work is partially supported by the ANR INS Project
GEMOC (ANR-12-INSE-0011).

References

1. Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. MoDisco:
A Generic and Extensible Framework for Model Driven Reverse Engineering. In
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, ASE ’10, pages 173–174, New York, NY, USA, 2010. ACM.

2. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1994.

3. Sherri Goings, Heather Goldsby, Betty H. C. Cheng, and Charles Ofria. An ecology-
based evolutionary algorithm to evolve solutions to complex problems. In Proc. of
the Int. Conf. on the Simulation and Synthesis of Living Systems (ALIFE), 2012.

4. Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983.

5. Gabor Karsai, Miklos Maroti, Akos Ledeczi, Jeff Gray, and Janos Sztipanovits.
Composition and Cloning in Modeling and Meta-Modeling. IEEE Transactions on
Control Systems Technology, 12(2):263–278, March 2004.

6. Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. Model trans-
formation as an optimization problem. In Model Driven Engineering Languages
and Systems, volume 5301 of Lecture Notes in Computer Science, pages 159–173.
Springer Berlin Heidelberg, 2008.

7. Henry Lieberman. Using prototypical objects to implement shared behavior in
object-oriented systems. In Conference Proceedings on Object-oriented Program-
ming Systems, Languages and Applications, OOPLSA ’86, pages 214–223, New
York, NY, USA, 1986. ACM.

8. Shahar Maoz. Model-based traces. InModels in Software Engineering, volume 5421
of Lecture Notes in Computer Science, pages 109–119. Springer Berlin Heidelberg,
2009.

9. OMG. Meta Object Facility (MOF) Core Specification, 2013.
10. Tripti Saxena and Gabor Karsai. MDE-Based Approach for Generalizing Design

Space Exploration. In Model Driven Engineering Languages and Systems, volume
6394 of Lecture Notes in Computer Science, pages 46–60. Springer Berlin Heidel-
berg, 2010.

11. Dave Steinberg, Dave Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework, 2nd Edition. Addison-Wesley, December 2008.

12. Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal
on Computing, 1(2):146–160, June 1972.

