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Yves Achdou
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Laboratoire J-L Lions, Université Paris Diderot



Setting: a thick version of a network

Consider a domain  C R2:
o star-shaped w.r.t. the origin O
o 0f) is smooth

o Far enough from the origin O, € coincides with the union
of N non-intersecting semi-infinite strips directed by the
vectors e;, 1 =1,..., N

€3

The domain Q €1

P2
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Setting: a more precise definition

o for some o > 0, let W be the polygonal set
W={zxeR?: z-e<ryVi=1,...,N}

N
o Then Q\W = '91 Si, where S; is the half-strip

1L i
i:{xiei+xi e, T >To, \xi\<1}




Q. =€) “tends” to a network G as ¢ — 0

N
g = {oyulJ
=1

Ji = {wie;, z; >0}

Ja

A J: 5



State constrained control problems in

ue(z) = inf /000 e (ye(t; x, ), a(t))e_)‘tdt

[0}

subject to

Ye(t;xz, ) = aft), aa. t>0,
Ye(0;z, ) = 1,

with a: Ry — A measurable, under the state constraint

Ye(t) € Qe, VL2 0.

Controlability : A is a compact subset of R? such that
B(0,7) C A for some r > 0.
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Assumptions on the running costs

o The function £, : Q. — R is bounded and continuous

°
l; | ; — erg, ?,a in €S;

4 (E,a) in eW NQ,

€

le(z,a) =

l; 2 [0,+00) x [-1,1] x A =R

bh: WNY) xA—=R

£; and fp match properly in order to ensure the continuity of £,



Assumptions on the running costs

o The function 4, : Q. — R is bounded and continuous

Qo
i
£ (Ju — €1, ﬁ, a) in €S;
€
le(x,a) =
x .
o (—,a) in eW NQ,
€
Remark

In €S5;, ¢ varies slowly w.r.t. x; and fast w.r.t. :1:2L

o It is not restrictive to assume that ¢35 > 0.
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The value function wu,

ue is bounded uniformly with respect to €, continuous, and is
the unique viscosity solution of

Mue(z) + He(x, Du) >0 in Q,
Muie(x) + He(x, Due) <0 in Q,

where

H (z,p) = Iglgi((—p ca—Lle(x, a)).

Questions
o Asymptotic behavior of u. as e — 07

o Can we define an effective problem in G?
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Background and additional new difficulties

o Existing results:

o Singularly perturbed control problems in thin domains
around smooth manifolds: Bensoussan, Alvarez-Bardi,
Arztein-Gaitsgory, Gaitsgory-Leisarowitz, Terrone,...

o Comparison for viscosity solutions on networks:
YA-Oudet-Tchou and Imbert-Monneau

o Very recent results of Lions-Souganidis on homogenization
of HJB equations with defects

o Several additional new difficuties:
o Identification of the effective problem
o Will the effective problem keep track of ¢, near O? How?
o In the perturbed test-function method of Evans, we need to
construct correctors in unbounded domains.
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Main result

Theorem

Under a further technical assumption, u. converges locally
uniformly to the bounded viscosity solution u : G — R of

Mu(@) + Hi(zi, g-(2)) = 0 z€J;,

Au(0) + max <E H(O, 22.(0),..., A= (0))) _—
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Main result

Theorem

Under a further technical assumption, u. converges locally
uniformly to the bounded viscosity solution u : G — R of

Mu(@) + Hi(zi, g-(2)) = 0 z€J;,

Au(0) + max (E H(O, 5 (0)s - iy (0))) = v

with

Hi(xi,pi) = sup </ (_piai — (@i, y, a))dﬂ(y7a)>
HEZ; [—1,1]xA
Z; is a compact and convex set of Radon probability measures
n[-1,1] x A
Z;: limiting relaxed controls.
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Main result

Theorem

Under a further technical assumption, u. converges locally
uniformly to the bounded viscosity solution u : G — R of

Mu(@) + Hi(zi, g-(2)) = 0 z€J;,

Au(0) + max <E H(O, & (0),..., (0))) _—

) dz
with

—F : an effective cost at the junction
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Main result

Theorem

Under a further technical assumption, u. converges locally
uniformly to the bounded viscosity solution u: G — R of

Mu(@) + Hi(zi, g-(2)) = 0 z€J;,

Mu(0) + max (E H(0, 2 (0), ..., (0))) _—

) dxq Y dx N

with H(O,p1,...,pN) = r{laXNﬁj(O,pi),

H; (0,p;) = sup </[17”XA(—piai — £;(0,y, a)>du(y7a)> :

+
HEZ,

Zj = {,M € Z; s.t. / aidp(y, a) = 0} :
[-1,1]xA
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Hamilton-Jacobi on the network  (1/2)

What is the meaning of
Au(z )—|—H(£L’Z,dx ()=0 ze€J,

Xu(O) +max (B, H(O, $£(0),..., £2(0))) =0 ?

dx1

See YA-Camilli-Cutri-Tchou(2013), Imbert-Monneau-
-Zidani(2013), YA-Oudet-Tchou(2014), and Imbert-
-Monneau(2014).

Definition (Test functions)
o ¢:G — R is an admissible test-function if

o ¢ is continuous on G B
o forany j€1,...,N, ¢|7j eCl(J;)

o R(G): set of the admissible test-functions
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Hamilton-Jacobi on the network  (2/2)

o An usc function u : G — R is a sub-solution of (1) if for any
x € G and ¢ € R(G) s.t. u— ¢ has a local maximum in z,

then
Nu(z) + Hy(w, 2 (2)) < 0 if 2 € J;,
Au(0) + max (E H(&(0),..., 2 (0))) <0.

o A lsc function u : G — R is a super-solution of (1) if for any
xz € G and ¢ € R(G) s.t. u— ¢ has a local minimum in z,

then
A(a:)%—H(,E(x))ZO ifx e J;,
Au(O) + max (E H(%(O),...,%(O))) > 0.

Y. Achdou Dimension reduction



The effective Hamiltonians away from the junctions

Notation:  for # > 0,y € [-1,1],p € R?,

Hi(xa y7p) = Icrbleaj{(_p a4 — Ei(m7y7 CL))

Theorem (Alvarez-Bardi 2000)

Va; > 0, Vp; € R, there is a unique H;(z;,p;) s.t. the cell
problem

H;(z;,y,pie; + Dyxi(y)eir) > Hi(wi,pi)  y € [-1,1],

Hi(x,y, piei + Dyxi(y))ed < Hy(wi,pi) ye(=1,1)

has a viscosity solution x; € Lip([—1,1]).
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Limiting relaxed controls and limit control problem

For s > 0, the occupational measure s generated by (y(t), «(t))
is the Radon probability measure defined on [—1,1] x A by

1 S
s =3 / Oy(t),a(t)) It
2 J0

where 0(y(1).a(+)) i the Dirac mass concentrated at (y(t), a(t)).

Z(s;1,90): set of the occupational measures generated by the
trajectories (y(t),a(t)) up to time s.
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Limiting relaxed controls and limit control problem

For s > 0, the occupational measure s generated by (y(t), a(t))
is the Radon probability measure defined on [—1,1] x A by

1 *S
s =3 / Oy(t),a(t)) It
S Jo

where 0(y(1).a(+)) i the Dirac mass concentrated at (y(t), a(t)).
Z(s;1,90): set of the occupational measures generated by the
trajectories (y(t),a(t)) up to time s.

Theorem (Gaitsgory and Leisarowitz (1999))

There ezists a set Z; C P([—1,1] x A) s.t

Vyo € [71? 1]5 lim WH(Z(S’ZayO)aZl) = 07

S§—00

(g : Prokhoroff distance).
Z; 1is convex and compact for the weak-* topology.
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By using results from Terrone-2011 and Alvarez-Bardi-2000

Qo

Z; C {u € P([-1,1] x A), / ai-dpu(y, a) = 0}
[-1,1]xA

o Z; coincides with the set of limiting relaxed controls, i.e.

Hi(zi,pi)

= sup (—pi/ a;du(y, a) —/ &(wi,yﬂ)du(y,a))
HEZ; [-1,1]xA [-1,1]xA

Interpretation

Away from the junction, the effective Hamiltonian corresponds
to a control problem with controls in Z;.
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The effective Hamiltonian at the junction

Definition

The effective Hamiltonian at the junction is max(E, H(O,-))
where F is a suitable constant to be defined and

H(O,p1,...,pn) := max_H, (0,p;)

i=1,...,

=+
Hz’ (Oﬂpi)

= sup <p¢/ a;dp(y, a) / fi(O,y,a)du(yva)>
peZt [—1,1]xA [—1,1]xA

and

Zt=qpe Z st / a;dp(y,a) >0
[-1,1]xA
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Lemma: links between H,;(0, p) and F:r (0,p)

z9 .= {M € Z; s.t. / a;du(y,a) = 0}
[-1,1]xA

argminH;(0,-) = [p- ; @']

—1

" / The graphs of
EEt e p— HZ(Ovp) and
S s of p F;r (0,p)

=

o p<p = Hi0,p) = H, (0,p) is achieved for ;1 € Z;7\ 20
°op <p<p;= H;(0,p) = Fj(O,p) is achieved for 1 € Z¥
— T w5+ ==
o p>p; = H;i(0,p) > H, (0,p) =min H,(0, -)
Y. Achdou @ Dimension reduction



The constant E

Zoom near the junction point O

We extend the function £y to the whole domain Q by setting
lo(z,a) = £;(0, 2, a), if 2z > 7o, 2] < 1.

Ergodic constants in bounded subdomains

Define QF := QN Wg and the ergodic constant EF, which is the
unique number s.t.

Hy(z, Dw®(z)) > E®  in o
Ho(z, Dwi(2)) < ER  in QF,

has a viscosity solution w.
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The constant F

4C > 0 s.t.

|[Ef|<C VR,
|[Dwh||e < C VR,
R<R = ER<EY,

E:= lim EE.

R—o0



The constant F

Theorem

3C >0 s.t.  Vzo € Ko, Va € A,,, VT > 0,

if 2(s) := 20 + [, (0)dl satisfies z(T) € Ko, then

/eo (s))ds > —ET — C.

Lemma

Under the assumptions, Vi =1,..., N, min H;(0,p;) < E.
pi
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Proof of the convergence result

The main step is to prove the following theorem
Theorem

Consider the relaxed semilimits, of ue: for all x € G,

—  liminf o oa(z) =l ).
S o N )= e o e

Then, under the assumptions, u is a bounded supersolution of

0, ife=0,

Mu(z) + H(z, Du(x))

(AVARRY,

and w is a bounded subsolution of

Nu(x) + H(x, Du(z)) < 0, ifzeg\{O},
A(0) + max(E, H(O,Du(0))) < 0, ifz=0.

then use comparison results on G, [AOT2014] or [IM2014]
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Some ideas of the proof

o Not standard only at the junction

(4]

©

Try to use Evans’ method of perturbed test-functions

The test-functions ¢ have N slopes at O : p = (p1,...,pN)
Evans’ method requires the construction of bounded
correctors in unbounded domains, (ideally €2)

Bounded correctors may not exist in the full domain €2,
because, given a set of slopes at O, i.e. p= (p1,...,pnN),

optimal trajectories starting from z € S; should leave S;:
this leads to the fact that the corrector should not be
bounded when |z| — oo, z € S.

Hence, we construct the correctors in subdomain obtained
by truncating the half-strips S; if j ¢ Z(p).

is achieved by i € Z(p) C {1,..., N}. If j ¢ Z(p), then the
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The corrector (when H (O, p1,...,py) > E)

The truncated domain €2,

=

Forp e RN: H(O,p) > E. Let 1, be a smooth function such
that D, = p;e; in S;. Under the assumptions, 3x,, a bounded
and Lipschitz viscosity solution of

Theorem

Hy(z, Dy, + Dx,) — H(O,p) >0 in Qp,
Hoy(z, Dy, + Dx,) — H(O,p) <0 in Q.

Y. Achdou Dimension reduction



The further assumption

Assumption

1) For any real number p; such that p; < D,
there exist two constants L; > 0 and C; > 0 such that

Yyo € [—1,1], Vt > 0, there exists a control law & € A; y, with
/ di(T)dT Z —Li, YO0 S S é t,
0
t
/ (pici(s) + €:(0,y(s), a(s))) ds < v;(0,pi, yo, t) + C;
0

where y(t) = yo + fg &;-(s)ds.
Recall that

vz piyo,t) = inf {/Otpiozi(s) +€i(xi,y(s),a(s))ds}

aE.Ai,,yo
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