M. Abouelhoda, S. Issa, and M. Ghanem, Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support, BMC Bioinformatics, vol.13, issue.1, p.77, 2012.
DOI : 10.1101/gr.5969107

E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko et al., Galaxy CloudMan: delivering cloud compute clusters, BMC Bioinformatics, vol.11, issue.Suppl 12, p.4, 2010.
DOI : 10.1186/1471-2105-11-S12-S4

M. Albrecht, P. Donnelly, P. Bui, and D. Thain, Makeflow, Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, SWEET '12, pp.1-1, 2012.
DOI : 10.1145/2443416.2443417

I. Altintas, O. Barney, and E. Jaeger-frank, Provenance Collection Support in the Kepler Scientific Workflow System, Int. Conf. on Provenance and Annotation of Data, pp.118-132, 2006.
DOI : 10.1007/11890850_14

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher et al., Kepler: an extensible system for design and execution of scientific workflows, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004., pp.423-424, 2004.
DOI : 10.1109/SSDM.2004.1311241

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher et al., Kepler: Towards a Grid-Enabled system for scientific workflows. The Workflow in Grid Systems Workshop in GGF10-The 10th Global Grid Forum, 2004.

C. Anglano and M. Canonico, Scheduling algorithms for multiple Bag-of-Task applications on Desktop Grids: A knowledge-free approach, 2008 IEEE International Symposium on Parallel and Distributed Processing, pp.1-8, 2008.
DOI : 10.1109/IPDPS.2008.4536445

K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard, Verifying a File System Implementation, 6th Int. Conf. on Formal Engineering Methods (ICFEM), pp.373-390, 2004.
DOI : 10.1007/978-3-540-30482-1_32

K. Belhajjame, S. Cresswell, Y. Gil, R. Golden, P. Groth et al., The prov data model and abstract syntax notation, 2011.

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi et al., Task scheduling strategies for workflow-based applications in grids, CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005., pp.759-767, 2005.
DOI : 10.1109/CCGRID.2005.1558639

L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez, Dynamic query scheduling in data integration systems, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073), pp.425-434, 2000.
DOI : 10.1109/ICDE.2000.839442

M. Bux and U. Leser, Parallelization in scientific workflow management systems. The Computing Research Repository (CoRR), abs/1303, 2013.

B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox, Mpj: Mpi-like message passing for java. Concurrency and Computation: Practice and Experience, pp.1019-1038, 2000.

W. Chen and E. Deelman, Integration of Workflow Partitioning and Resource Provisioning, 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp.764-768, 2012.
DOI : 10.1109/CCGrid.2012.57

W. Chen and E. Deelman, Partitioning and Scheduling Workflows across Multiple Sites with Storage Constraints, 9th Int. Conf. on Parallel Processing and Applied Mathematics - Volume Part II, pp.11-20, 2012.
DOI : 10.1007/978-3-642-31500-8_2

W. Chen, R. D. Silva, E. Deelman, and R. Sakellariou, Balanced Task Clustering in Scientific Workflows, 2013 IEEE 9th International Conference on e-Science, pp.188-195, 2013.
DOI : 10.1109/eScience.2013.40

A. L. Chervenak, D. E. Smith, E. Chen, and . Deelman, Integrating Policy with Scientific Workflow Management for Data-Intensive Applications, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, pp.140-149, 2012.
DOI : 10.1109/SC.Companion.2012.29

F. Chirigati, V. Silva, E. Ogasawara, D. De-oliveira, J. Dias et al., Evaluating parameter sweep workflows in high performance computing, Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, SWEET '12, pp.1-210, 2012.
DOI : 10.1145/2443416.2443418

URL : https://hal.archives-ouvertes.fr/lirmm-00749968

M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, Managing data transfers in computer clusters with orchestra, ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp.98-109, 2011.

W. M. Coalition, Workflow management coalition terminology and glossary, 1999.

S. Cohen-boulakia, J. Chen, P. Missier, C. A. Goble, A. R. Williams et al., Distilling structure in Taverna scientific workflows: a refactoring approach, BMC Bioinformatics, vol.15, issue.Suppl 1, p.12, 2014.
DOI : 10.1186/1471-2105-15-S1-S12

URL : https://hal.archives-ouvertes.fr/hal-00926827

F. Costa, D. De-oliveira, K. Ocala, E. Ogasawara, J. Dias et al., Handling Failures in Parallel Scientific Workflows Using Clouds, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, pp.129-139, 2012.
DOI : 10.1109/SC.Companion.2012.28

F. Costa, V. Silva, D. De-oliveira, K. A. Ocaña, E. S. Ogasawara et al., Capturing and querying workflow runtime provenance with PROV, Proceedings of the Joint EDBT/ICDT 2013 Workshops on, EDBT '13, pp.282-289, 2013.
DOI : 10.1145/2457317.2457365

F. Coutinho, L. De-carvalho, and R. Santana, A Workflow Scheduling Algorithm for Optimizing Energy-Efficient Grid Resources Usage, 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pp.642-649, 2011.
DOI : 10.1109/DASC.2011.115

D. Crawl, J. Wang, and I. Altintas, Provenance for MapReduce-based data-intensive workflows, Proceedings of the 6th workshop on Workflows in support of large-scale science, WORKS '11, pp.21-30, 2011.
DOI : 10.1145/2110497.2110501

D. De-oliveira, K. A. Ocaña, F. Baião, and M. Mattoso, A Provenance-based Adaptive Scheduling Heuristic for Parallel Scientific Workflows in Clouds, Journal of Grid Computing, vol.37, issue.Database issue, pp.521-552, 2012.
DOI : 10.1007/s10723-012-9227-2

D. De-oliveira, E. Ogasawara, F. Baião, and M. Mattoso, SciCumulus: A Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in Scientific Workflows, 2010 IEEE 3rd International Conference on Cloud Computing, pp.378-385, 2010.
DOI : 10.1109/CLOUD.2010.64

D. De-oliveira, E. Ogasawara, K. Ocaña, F. Baião, and M. Mattoso, An adaptive parallel execution strategy for cloud-based scientific workflows, Concurrency and Computation: Practice and Experience, vol.673, issue.11, pp.1531-1550, 2012.
DOI : 10.1002/cpe.1880

D. De-oliveira, V. Viana, E. Ogasawara, K. Ocana, and M. Mattoso, Dimensioning the virtual cluster for parallel scientific workflows in clouds, Proceedings of the 4th ACM workshop on Scientific cloud computing, Science Cloud '13, pp.5-12, 2013.
DOI : 10.1145/2465848.2465852

J. Dean and S. Ghemawat, MapReduce, 6th Symposium on Operating System Design and Implementation, pp.137-150, 2004.
DOI : 10.1145/1327452.1327492

E. Deelman, D. Gannon, M. Shields, and I. Taylor, Workflows and e-Science: An overview of workflow system features and capabilities, Future Generation Computer Systems, vol.25, issue.5, pp.528-540, 2009.
DOI : 10.1016/j.future.2008.06.012

E. Deelman, G. Juve, and G. B. Berriman, Using clouds for science, is it just kicking the can down the road?, Cloud Computing and Services Science (CLOSER), 2nd Int. Conf. on Cloud Computing and Services Science, pp.127-134, 2012.

E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, The cost of doing science on the cloud: The Montage example, 2008 SC, International Conference for High Performance Computing, Networking, Storage and Analysis, pp.1-12, 2008.
DOI : 10.1109/SC.2008.5217932

E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil et al., Pegasus: A Framework for Mapping Complex Scientific Workflows onto Distributed Systems, Scientific Programming, pp.219-237, 2005.
DOI : 10.1155/2005/128026

K. Deng, L. Kong, J. Song, K. Ren, and D. Yuan, A weighted k-means clustering based coscheduling strategy towards efficient execution of scientific workflows in collaborative cloud environments, IEEE 9th Int. Conf. on Dependable, Autonomic and Secure Computing (DASC), pp.547-554, 2011.

J. Dias, D. De-oliveira, M. Mattoso, K. A. Ocana, and E. Ogasawara, Discovering drug targets for neglected diseases using a pharmacophylogenomic cloud workflow, IEEE 8th Int. Conf. on E-Science (e-Science), pp.1-8, 2012.

J. Dias, E. S. Ogasawara, D. De-oliveira, F. Porto, P. Valduriez et al., Algebraic dataflows for big data analysis, 2013 IEEE International Conference on Big Data, pp.150-155, 2013.
DOI : 10.1109/BigData.2013.6691567

T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem et al., ASKALON: A Development and Grid Computing Environment for Scientific Workflows, Workflows for e-Science, pp.450-471, 2007.
DOI : 10.1007/978-1-84628-757-2_27

H. M. Fard, T. Fahringer, and R. Prodan, Budget-Constrained Resource Provisioning for Scientific Applications in Clouds, 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, pp.315-322, 2013.
DOI : 10.1109/CloudCom.2013.48

J. Felsenstein, Phylip -phylogeny inference package (version 3.2), Cladistics, vol.5, pp.164-166, 1989.

I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure, 2003.

J. Freire, D. Koop, E. Santos, and C. T. Silva, Provenance for Computational Tasks: A Survey, Computing in Science & Engineering, vol.10, issue.3, pp.11-21, 2008.
DOI : 10.1109/MCSE.2008.79

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, Condor-G: a computation management agent for multi-institutional grids, Proceedings 10th IEEE International Symposium on High Performance Distributed Computing, pp.55-63, 2001.
DOI : 10.1109/HPDC.2001.945176

K. Ganga and S. Karthik, A fault tolerent approach in scientific workflow systems based on cloud computing, 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering, pp.387-390, 2013.
DOI : 10.1109/ICPRIME.2013.6496507

S. Ghemawat, H. Gobioff, and S. Leung, The google file system, 19th ACM Symposium on Operating Systems Principles, pp.29-43, 2003.

Y. Gil, J. Kim, V. Ratnakar, and E. Deelman, Wings for pegasus: A semantic approach to creating very large scientific workflows, OWLED*06 Workshop on OWL: Experiences and Directions, 2006.

J. Goecks, A. Nekrutenko, and J. Taylor, Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biology, vol.11, issue.8, pp.1-13, 2010.
DOI : 10.1186/gb-2010-11-8-r86

J. Goecks, A. Nekrutenko, and J. Taylor, Lessons learned from Galaxy, a Web-based platform for high-throughput genomic analyses, 2012 IEEE 8th International Conference on E-Science, pp.1-6, 2012.
DOI : 10.1109/eScience.2012.6404442

J. A. Gonçalves, D. Oliveira, K. Ocaña, E. Ogasawara, and M. Mattoso, Using domainspecific data to enhance scientific workflow steering queries, Provenance and Annotation of Data and Processes, pp.152-167, 2012.

K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter, Conventional Workflow Technology for Scientific Simulation, Guide to e-Science, pp.323-352, 2011.
DOI : 10.1007/978-0-85729-439-5_12

Y. Gu, C. Wu, X. Liu, and D. Yu, Distributed Throughput Optimization for Large-Scale Scientific Workflows Under Fault-Tolerance Constraint, Journal of Grid Computing, vol.3, issue.3???4, pp.361-379, 2013.
DOI : 10.1007/s10723-013-9266-3

D. Gunter, E. Deelman, T. Samak, C. Brooks, M. Goode et al., Online workflow management and performance analysis with stampede, 7th Int. Conf. on Network and Service Management (CNSM), pp.1-10, 2011.

M. Hategan, J. Wozniak, and K. Maheshwari, Coasters: Uniform Resource Provisioning and Access for Clouds and Grids, 2011 Fourth IEEE International Conference on Utility and Cloud Computing, pp.114-121, 2011.
DOI : 10.1109/UCC.2011.25

F. Hernández and T. Fahringer, Towards workflow sharing and reusein the askalon grid environment Hofmann-Apitius. A new optimization phase for scientific workflow management systems, Proceedings of Cracow Grid Workshops (CGW) 8th IEEE Int. Conf. on E-Science, pp.111-119, 2008.

F. Horta, J. Dias, K. Ocana, D. De-oliveira, E. Ogasawara et al., Abstract: Using Provenance to Visualize Data from Large-Scale Experiments, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, pp.1418-1419, 2012.
DOI : 10.1109/SC.Companion.2012.228

E. Huedo, R. S. Montero, and I. M. Llorente, A framework for adaptive execution in grids. Software -Practice and Experience, pp.34631-651, 2004.

A. C. Hume, Y. Al-hazmi, B. Belter, K. Campowsky, L. M. Carril et al., BonFIRE: A Multi-cloud Test Facility for Internet of Services Experimentation, Testbeds and Research Infrastructure. Development of Networks and Communities, pp.81-96, 2012.
DOI : 10.1120/jacmp.v10i3.2998

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, Dryad: Distributed data-parallel programs from sequential building blocks, 2nd ACM SIGOPS/EuroSys European Conf. on Computer Systems, pp.59-72, 2007.

J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity et al., Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking, International Journal of Computational Science and Engineering, vol.4, issue.2, pp.73-87, 2009.
DOI : 10.1504/IJCSE.2009.026999

L. M. Jr, M. Wilde, M. Mattoso, and I. Foster, Provenance traces of the swift parallel scripting system, EDBT/ICDT Workshops, pp.325-326, 2013.

G. Juve and E. Deelman, Scientific workflows and clouds, Grids, Clouds and Virtualization, pp.71-91, 2011.
DOI : 10.1145/1734160.1734166

G. Juve and E. Deelman, Wrangler, Proceedings of the 20th international symposium on High performance distributed computing, HPDC '11, pp.277-278, 2011.
DOI : 10.1145/1996130.1996173

G. Juve, M. Rynge, E. Deelman, J. Vockler, and G. Berriman, Comparing FutureGrid, Amazon EC2, and Open Science Grid for Scientific Workflows, Computing in Science & Engineering, vol.15, issue.4, pp.20-29, 2013.
DOI : 10.1109/MCSE.2013.44

K. Karuna, N. Mangala, C. Janaki, S. Shashi, and C. Subrata, Galaxy Workflow Integration on Garuda Grid, 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp.194-196, 2012.
DOI : 10.1109/WETICE.2012.51

G. Karypis and V. Kumar, Multilevel Algorithms for Multi-Constraint Graph Partitioning, Proceedings of the IEEE/ACM SC98 Conference, pp.1-13, 1998.
DOI : 10.1109/SC.1998.10018

I. Korf, M. Yandell, and J. A. , BLAST -an essential guide to the basic local alignment search tool, 2003.

M. J. Litzkow, M. Livny, and M. W. Mutka, Condor-a hunter of idle workstations, [1988] Proceedings. The 8th International Conference on Distributed, pp.104-111, 1988.
DOI : 10.1109/DCS.1988.12507

B. Liu, B. Sotomayor, R. Madduri, K. Chard, and I. Foster, Deploying Bioinformatics Workflows on Clouds with Galaxy and Globus Provision, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, pp.1087-1095, 2012.
DOI : 10.1109/SC.Companion.2012.131

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems, Proceedings. Eighth Heterogeneous Computing Workshop (HCW'99), p.30, 1999.
DOI : 10.1109/HCW.1999.765094

M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, Cost-and deadline-constrained provisioning for scientific workflow ensembles in iaas clouds, Supercomputing (SC) Conf. on High Performance Computing Networking, Storage and Analysis, pp.1-11, 2012.

A. Mandal, Y. Xin, I. Baldine, P. Ruth, C. Heerman et al., Provisioning and evaluating multi-domain networked clouds for hadoopbased applications, Cloud Computing Technology and Science (CloudCom), IEEE 3rd Int. Conf. on Cloud Computing Technology and Science, pp.690-697, 2011.

M. Mattoso, K. O. Na, F. Horta, J. Dias, E. Ogasawara et al., User-steering of HPC workflows, Proceedings of the 2nd ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, SWEET '13, pp.1-4, 2013.
DOI : 10.1145/2499896.2499900

M. Mattoso, C. Werner, G. Travassos, V. Braganholo, E. Ogasawara et al., Towards supporting the life cycle of large scale scientific experiments, International Journal of Business Process Integration and Management, vol.5, issue.1, pp.79-82, 2010.
DOI : 10.1504/IJBPIM.2010.033176

P. Missier, S. Soiland-reyes, S. Owen, W. Tan, A. Nenadic et al., Taverna, Reloaded, Int. Conf. on Scientific and Statistical Database Management, pp.471-481, 2010.
DOI : 10.1007/978-3-642-13818-8_33

URL : https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:192017&datastreamId=PRE-PEER-REVIEW.PDF

A. Nagavaram, G. Agrawal, M. A. Freitas, K. H. Telu, G. Mehta et al., A Cloud-based Dynamic Workflow for Mass Spectrometry Data Analysis, 2011 IEEE Seventh International Conference on eScience, pp.47-54, 2011.
DOI : 10.1109/eScience.2011.15

D. Nguyen and N. Thoai, EBC: Application-level migration on multi-site cloud, 2012 International Conference on Systems and Informatics (ICSAI2012), pp.876-880, 2012.
DOI : 10.1109/ICSAI.2012.6223147

B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-amarie, BlobSeer, Proceedings of the 2009 EDBT/ICDT Workshops on, EDBT/ICDT '09, pp.169-184, 2011.
DOI : 10.1145/1698790.1698796

URL : https://hal.archives-ouvertes.fr/hal-00803430

K. A. Ocaña, D. Oliveira, E. Ogasawara, A. M. Dávila, A. A. Lima et al., SciPhy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug Targets in Protozoan Genomes, In Advances in Bioinformatics and Computational Biology, vol.39, issue.1, pp.66-70, 2011.
DOI : 10.1145/1496091.1496100

K. A. Ocaña, D. Oliveira, F. Horta, J. Dias, E. Ogasawara et al., Exploring Molecular Evolution Reconstruction Using a Parallel Cloud Based Scientific Workflow, In Advances in Bioinformatics and Computational Biology, vol.7409, pp.179-191, 2012.
DOI : 10.1007/978-3-642-31927-3_16

E. S. Ogasawara, D. De-oliveira, P. Valduriez, J. Dias, F. Porto et al., An algebraic approach for data-centric scientific workflows, Proceedings of the VLDB Endowment (PVLDB), pp.1328-1339, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00640431

E. S. Ogasawara, J. Dias, V. Silva, F. S. Chirigati, D. De-oliveira et al., Chiron: a parallel engine for algebraic scientific workflows, Concurrency and Computation: Practice and Experience, pp.252327-2341, 2013.
DOI : 10.1002/cpe.3032

URL : https://hal.archives-ouvertes.fr/lirmm-00806557

T. Oinn, P. Li, D. B. Kell, C. Goble, A. Goderis et al., Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community, Workflows for e-Science, pp.300-319, 2007.
DOI : 10.1007/978-1-84628-757-2_19

T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger et al., Taverna: a tool for the composition and enactment of bioinformatics workflows, Bioinformatics, vol.20, issue.17, pp.203045-3054, 2004.
DOI : 10.1093/bioinformatics/bth361

D. D. Oliveira, K. A. Ocaña, E. Ogasawara, J. Dias, J. Gonçalves et al., Performance evaluation of parallel strategies in public clouds: A study with phylogenomic workflows, Future Generation Computer Systems, vol.29, issue.7, pp.291816-1825, 2013.
DOI : 10.1016/j.future.2012.12.019

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, Pig latin, Proceedings of the 2008 ACM SIGMOD international conference on Management of data , SIGMOD '08, pp.1099-1110, 2008.
DOI : 10.1145/1376616.1376726

S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer, GroudSim: An Event-Based Simulation Framework for Computational Grids and Clouds, European Conf. on Parallel Processing (Euro-Par) Workshops, pp.305-313, 2011.
DOI : 10.1002/cpe.1307

S. Ostermann, R. Prodan, and T. Fahringer, Extending Grids with cloud resource management for scientific computing, 2009 10th IEEE/ACM International Conference on Grid Computing, pp.42-49, 2009.
DOI : 10.1109/GRID.2009.5353075

]. M. Ozsu and P. Valduriez, Principles of Distributed Database Systems, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00483354

K. Plankensteiner, R. Prodan, M. Janetschek, T. Fahringer, J. Montagnat et al., Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures, Journal of Grid Computing, vol.39, issue.5, pp.429-455, 2013.
DOI : 10.1007/s10723-013-9261-8

URL : https://hal.archives-ouvertes.fr/hal-00832214

K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson, E. Nygaard et al., A 64-bit, shared disk file system for Linux, 16th IEEE Symposium on Mass Storage Systems in cooperation with the 7th NASA Goddard Conference on Mass Storage Systems and Technologies (Cat. No.99CB37098), pp.22-41, 1999.
DOI : 10.1109/MASS.1999.829973

R. Prodan, Online Analysis and Runtime Steering of Dynamic Workflows in the ASKALON Grid Environment, Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07), pp.389-400, 2007.
DOI : 10.1109/CCGRID.2007.76

I. Raicu, Y. Zhao, I. T. Foster, and A. S. Szalay, Data diffusion: Dynamic resource provision and data-aware scheduling for data intensive applications. The Computing Research Repository (CoRR), abs/0808, 2008.

A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou et al., Scheduling Data-IntensiveWorkflows onto Storage-Constrained Distributed Resources, Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07), pp.401-409, 2007.
DOI : 10.1109/CCGRID.2007.101

T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve et al., Online Fault and Anomaly Detection for Large-Scale Scientific Workflows, 2011 IEEE International Conference on High Performance Computing and Communications, pp.373-381, 2011.
DOI : 10.1109/HPCC.2011.55

F. Schmuck and R. Haskin, GPFS: A shared-disk file system for large computing clusters, 1st USENIX Conf. on File and Storage Technologies, 2002.

G. Singh, M. Su, K. Vahi, E. Deelman, B. Berriman et al., Workflow task clustering for best effort systems with Pegasus, Proceedings of the 15th ACM Mardi Gras conference on From lightweight mash-ups to lambda grids: Understanding the spectrum of distributed computing requirements, applications, tools, infrastructures, interoperability, and the incremental adoption of key capabilities, MG '08, pp.1-9, 2008.
DOI : 10.1145/1341811.1341822

S. Smanchat, M. Indrawan, S. Ling, C. Enticott, and D. Abramson, Scheduling Multiple Parameter Sweep Workflow Instances on the Grid, 2009 Fifth IEEE International Conference on e-Science, pp.300-306, 2009.
DOI : 10.1109/e-Science.2009.49

M. Snir, S. Otto, S. Huss-lederman, D. Walker, and J. Dongarra, MPI-The Complete Reference, 1998.

M. Tanaka and O. Tatebe, Workflow scheduling to minimize data movement using multiconstraint graph partitioning, 12th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid Computing (Ccgrid), pp.65-72, 2012.
DOI : 10.1109/ccgrid.2012.134

I. Taylor, M. Shields, I. Wang, and A. Harrison, The Triana Workflow Environment: Architecture and Applications, Workflows for e-Science, pp.320-339, 2007.
DOI : 10.1007/978-1-84628-757-2_20

H. Topcuouglu, S. Hariri, and M. Wu, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Transactions on Parallel and Distributed Systems, vol.13, issue.3, pp.260-274, 2002.
DOI : 10.1109/71.993206

R. Tudoran, A. Costan, G. Antoniu, and H. Soncu, TomusBlobs: Towards Communication-Efficient Storage for MapReduce Applications in Azure, 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp.427-434, 2012.
DOI : 10.1109/CCGrid.2012.104

URL : https://hal.archives-ouvertes.fr/hal-00670725

P. U. -chupala, P. Uthayopas, K. Ichikawa, S. Date, and H. Abe, An implementation of a multi-site virtual cluster cloud, The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp.155-159, 2013.
DOI : 10.1109/JCSSE.2013.6567337

W. M. Aalst, M. Weske, and G. Wirtz, Advanced topics in workflow management: Issues, requirements, and solutions, Transactions of the SDPS, vol.7, issue.3, pp.49-77, 2003.

K. Vahi, I. Harvey, T. Samak, D. Gunter, K. Evans et al., A General Approach to Real-Time Workflow Monitoring, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, pp.108-118, 2012.
DOI : 10.1109/SC.Companion.2012.26

J. Wang and I. Altintas, Early Cloud Experiences with the Kepler Scientific Workflow System, Int. Conf. on Computational Science (ICCS), pp.1630-1634, 2012.
DOI : 10.1016/j.procs.2012.04.179

J. Wang, D. Crawl, and I. Altintas, Kepler + Hadoop, Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science, WORKS '09, pp.1-12, 2009.
DOI : 10.1145/1645164.1645176

T. White, Hadoop: The Definitive Guide, 2009.

P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour, Service Level Agreements for Cloud Computing, 2011.
DOI : 10.1007/978-1-4614-1614-2

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz et al., Swift: A language for distributed parallel scripting, Parallel Computing, vol.37, issue.9, pp.633-652, 2011.
DOI : 10.1016/j.parco.2011.05.005

K. Wolstencroft, R. Haines, D. Fellows, A. R. Williams, D. Withers et al., The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud, Nucleic Acids Research, vol.41, issue.W1, pp.557-561, 2013.
DOI : 10.1093/nar/gkt328

J. M. Wozniak, T. G. Armstrong, K. Maheshwari, E. L. Lusk, D. S. Katz et al., Turbine, Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, SWEET '12, pp.1-512, 2012.
DOI : 10.1145/2443416.2443421

U. Yildiz, A. Guabtni, and A. H. Ngu, Business versus Scientific Workflows: A Comparative Study, 2009 Congress on Services, I, pp.340-343, 2009.
DOI : 10.1109/SERVICES-I.2009.60

J. Yu and R. Buyya, A Taxonomy of Workflow Management Systems for Grid Computing, Journal of Grid Computing, vol.15, issue.5???6, pp.171-200, 2005.
DOI : 10.1007/s10723-005-9010-8

Z. Yu and W. Shi, An Adaptive Rescheduling Strategy for Grid Workflow Applications, 2007 IEEE International Parallel and Distributed Processing Symposium, pp.1-8, 2007.
DOI : 10.1109/IPDPS.2007.370305

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Yuan, Y. Yang, X. Liu, and J. Chen, A cost-effective strategy for intermediate data storage in scientific cloud workflow systems, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pp.1-12, 2010.
DOI : 10.1109/IPDPS.2010.5470453

H. Zhang, S. Soiland-reyes, and C. A. Goble, Taverna mobile: Taverna workflows on android. The Computing Research Repository (CoRR), abs, 1309.
DOI : 10.14806/ej.19.b.727

URL : http://arxiv.org/abs/1309.2787

Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von-laszewski et al., Swift: Fast, Reliable, Loosely Coupled Parallel Computation, 2007 IEEE Congress on Services (Services 2007), pp.199-206, 2007.
DOI : 10.1109/SERVICES.2007.63

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Zhao, I. Raicu, and I. T. Foster, Scientific Workflow Systems for 21st Century, New Bottle or New Wine?, 2008 IEEE Congress on Services, Part I, pp.467-471, 2008.
DOI : 10.1109/SERVICES-1.2008.79