Learning fully-connected CRFs for blood vessel segmentation in retinal images

Abstract : In this work, we present a novel method for blood vessel segmentation in fundus images based on a discriminatively trained, fully connected conditional random field model. Retinal image analysis is greatly aided by blood vessel segmentation as the vessel structure may be considered both a key source of signal, e.g. in the diagnosis of diabetic retinopathy, or a nuisance, e.g. in the analysis of pigment epithelium or choroid related abnormalities. Blood vessel segmentation in fundus images has been considered extensively in the literature, but remains a challenge largely due to the desired structures being thin and elongated, a setting that performs particularly poorly using standard segmentation priors such as a Potts model or total variation. In this work, we overcome this difficulty using a discriminatively trained conditional random field model with more expressive potentials. In particular, we employ recent results enabling extremely fast inference in a fully connected model. We find that this rich but computationally efficient model family, combined with principled discriminative training based on a structured output support vector machine yields a fully automated system that achieves results statistically indistinguishable from an expert human annotator. Implementation details are available at http://pages.saclay.inria.fr/matthew.blaschko/projects/retina/.
Type de document :
Communication dans un congrès
Medical Image Computing and Computer Assisted Intervention (MICCAI), Sep 2014, Boston, United States. Springer, 2014, 〈10.1007/978-3-319-10404-1_79〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01024226
Contributeur : Matthew Blaschko <>
Soumis le : jeudi 17 juillet 2014 - 10:35:41
Dernière modification le : vendredi 6 avril 2018 - 13:32:01
Document(s) archivé(s) le : lundi 24 novembre 2014 - 13:21:20

Fichier

OrlandoMICCAI2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

José Ignacio Orlando, Matthew Blaschko. Learning fully-connected CRFs for blood vessel segmentation in retinal images. Medical Image Computing and Computer Assisted Intervention (MICCAI), Sep 2014, Boston, United States. Springer, 2014, 〈10.1007/978-3-319-10404-1_79〉. 〈hal-01024226〉

Partager

Métriques

Consultations de la notice

658

Téléchargements de fichiers

2679