R. Agrawal, T. Imieli´nskiimieli´nski, and A. Swami, Mining association rules between sets of items in large databases, P. Buneman et S. Jajodia, éditeurs, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp.207-216, 1993.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, Fast discovery of association rules, chapitre 12, American Association for Artificial Intelligence, pp.307-328, 1996.

J. Azé, Extraction de connaissances à partir de données numériques et textuelles, Thèse de doctorat, 2003.

J. Boulicaut, A. Bykowski, and C. Rigotti, Approximation of Frequency Queries by Means of Free-Sets, Proceedings of the 2000 PKDD European Conference on Principles and Practice of Knowledge Discovery in Databases, pp.75-85, 2000.
DOI : 10.1007/3-540-45372-5_8

J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu, Learning Bayesian networks from data: An information-theory based approach, Artificial Intelligence, vol.137, issue.1-2, pp.309-347, 2002.
DOI : 10.1016/S0004-3702(02)00191-1

R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial Intelligence, vol.113, issue.1-2, pp.41-85, 1999.
DOI : 10.1016/S0004-3702(99)00059-4

M. J. Druzdzel and F. Diez, Criteria for combining knowledge from different sources in probabilistic networks, 2000.

M. J. Druzdzel, L. C. Van, and . Gaag, Building probabilistic networks: "Where do the numbers come from?" guest editors' introduction, IEEE Transactions on Knowledge and Data Engineering, vol.12, issue.4, pp.481-486, 2000.
DOI : 10.1109/TKDE.2000.868901

C. Fauré, S. Delprat, A. Mille, and J. Boulicaut, Utilisation des réseaux bayésiens dans le cadre de l'extraction de règles d'association, Actes de la conférence EGC'2006 pour l'Extraction et la Gestion des connaissances, 2006.

O. François and P. Leray, Etude comparative d'algorithmes d'apprentissage de structure dans les réseaux bayésiens, Journal électronique d'intelligence artificielle, vol.5, issue.39, pp.1-19, 2004.

D. Heckerman, A tutorial on learning with bayesian networks, 1995.

S. Jaroszewicz and D. A. Simovici, Interestingness of frequent itemsets using Bayesian networks as background knowledge, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.178-186, 2004.
DOI : 10.1145/1014052.1014074

B. Padmanabhan and A. Tuzhilin, A belief-driven method for discovering unexpected patterns, Proceedings of the 1998 KDD International Conference on Knowledge Discovery and Data Mining, pp.94-100, 1998.

B. Padmanabhan and A. Tuzhilin, Small is beautiful, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.54-63, 2000.
DOI : 10.1145/347090.347103

N. Pasquier, Data mining : algorithmes d'extraction et de réduction des règles d'association dans les bases de données, 2000.

J. Pearl, Probabilistic reasoning in intelligent systems : networks of plausible inference, 1988.

P. Smyth and R. M. Goodman, An information theoretic approach to rule induction from databases, IEEE Transactions on Knowledge and Data Engineering, vol.4, issue.4, pp.301-316, 1992.
DOI : 10.1109/69.149926

I. H. Witten and E. Frank, Data mining, ACM SIGMOD Record, vol.31, issue.1, 2005.
DOI : 10.1145/507338.507355