ITN SADCO

Indefinite Linear MPC and Approximated Economic MPC for Nonlinear Systems

Mario Zanon ${ }^{1}$, Sébastien Gros ${ }^{2}$, Moritz Diehl ${ }^{1}$

1. KU Leuven \& Univ. of Freiburg, 2. Chalmers Univ.

NetCo conference, Tours 2014

Outline

(1) Economic MPC and Stability Analysis
(2) The Linear Quadratic Case
(3) Approximated EMPC with stability guarantees
(1) Economic MPC and Stability Analysis
(2) The Linear Quadratic Case

3 Approximated EMPC with stability guarantees

Economic MPC and Stability Analysis

MPC
Optimal Control Problem

min

$x_{0}, u_{0}, \ldots, x_{N}$
s.t.

Economic MPC and Stability Analysis

MPC
Optimal Control Problem

$$
\min _{x_{0}, u_{0}, \ldots, x_{N}}
$$

$$
\text { s.t. } \quad x_{0}-\bar{x}_{i}=0
$$

Initial condition

Economic MPC and Stability Analysis

MPC

Optimal Control Problem
$\min _{x_{0}, u_{0}, \ldots, x_{N}}$

$$
\begin{array}{ll}
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0
\end{array}
$$

Initial condition
System dynamics

Economic MPC and Stability Analysis

MPC

Optimal Control Problem
$\min _{x_{0}, u_{0}, \ldots, x_{N}}$

$$
\begin{array}{ll}
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{array}
$$

Initial condition
System dynamics
Terminal constraint

Economic MPC and Stability Analysis

MPC

Optimal Control Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} I\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

(Quadratic) stage cost

Initial condition
System dynamics
Terminal constraint

Economic MPC and Stability Analysis

MPC

Optimal Control Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} I\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

(Quadratic) stage cost

Initial condition
System dynamics
Terminal constraint

Economic MPC and Stability Analysis

MPC

Optimal Control Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} I\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

(Quadratic) stage cost
Initial condition
System dynamics
Terminal constraint

At each sampling time i :

- get the initial state \bar{x}_{i}

- solve the MPC OCP
- apply the first control u_{0}^{\star}

Economic MPC and Stability Analysis

MPC

Optimal Control Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} I\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

(Quadratic) stage cost
Initial condition
System dynamics
Terminal constraint

At each sampling time i :

- get the initial state \bar{x}_{i}

- solve the MPC OCP
- apply the first control u_{0}^{\star}

Economic MPC and Stability Analysis

MPC

Optimal Control Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} I\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

(Quadratic) stage cost
Initial condition
System dynamics
Terminal constraint

At each sampling time i :

- get the initial state \bar{x}_{i}

- solve the MPC OCP
- apply the first control u_{0}^{\star}

Economic MPC and Stability Analysis

MPC

Optimal Control Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} I\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

(Quadratic) stage cost
Initial condition
System dynamics
Terminal constraint

At each sampling time i :

- get the initial state \bar{x}_{i}

- solve the MPC OCP
- apply the first control u_{0}^{\star}

Economic MPC and Stability Analysis

MPC

Optimal Control Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} I\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

(Quadratic) stage cost

Initial condition
System dynamics
Terminal constraint

At each sampling time i :

- get the initial state \bar{x}_{i}

- solve the MPC OCP
- apply the first control u_{0}^{\star}

Economic MPC and Stability Analysis

Lyapunov stability

Tracking MPC: $I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=0$ and $\exists \alpha \in \mathcal{K}$ s.t. $\alpha\left(x-x_{\mathrm{s}}\right) \leq I(x, u), \forall u \in \mathbb{U}$

Economic MPC and Stability Analysis

Lyapunov stability

Tracking MPC: $I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=0$ and $\exists \alpha \in \mathcal{K}$ s.t. $\alpha\left(x-x_{\mathrm{s}}\right) \leq I(x, u), \forall u \in \mathbb{U}$

Economic MPC and Stability Analysis

Lyapunov stability

Tracking MPC: $I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=0 \quad$ and $\quad \exists \alpha \in \mathcal{K}$ s.t. $\alpha\left(x-x_{\mathrm{s}}\right) \leq I(x, u), \forall u \in \mathbb{U}$

Economic MPC and Stability Analysis

Lyapunov stability

Tracking MPC: $I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=0 \quad$ and $\quad \exists \alpha \in \mathcal{K}$ s.t. $\alpha\left(x-x_{\mathrm{s}}\right) \leq I(x, u), \forall u \in \mathbb{U}$
(

$$
V_{N-1}\left(f\left(\bar{x}_{i}, u_{0}^{\star}\right)\right)=V_{N}\left(\bar{x}_{i}\right)-I\left(\bar{x}_{i}, u_{0}^{\star}\right)
$$

Economic MPC and Stability Analysis

Lyapunov stability

Tracking MPC: $I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=0 \quad$ and $\quad \exists \alpha \in \mathcal{K}$ s.t. $\alpha\left(x-x_{\mathrm{s}}\right) \leq I(x, u), \forall u \in \mathbb{U}$

$$
\begin{aligned}
V_{N-1}\left(f\left(\bar{x}_{i}, u_{0}^{\star}\right)\right)= & V_{N}\left(\bar{x}_{i}\right)-I\left(\bar{x}_{i}, u_{0}^{\star}\right) \\
& V_{N}\left(\bar{x}_{i}\right)-I\left(\bar{x}_{i}, u_{0}^{\star}\right)+\underbrace{I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)}_{=0}
\end{aligned}
$$

Economic MPC and Stability Analysis

Lyapunov stability

Tracking MPC: $I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=0 \quad$ and $\quad \exists \alpha \in \mathcal{K}$ s.t. $\alpha\left(x-x_{\mathrm{s}}\right) \leq I(x, u), \forall u \in \mathbb{U}$

$$
\begin{aligned}
V_{N-1}\left(f\left(\bar{x}_{i}, u_{0}^{\star}\right)\right) & =V_{N}\left(\bar{x}_{i}\right)-I\left(\bar{x}_{i}, u_{0}^{\star}\right) \\
V_{N}\left(f\left(\bar{x}_{i}, u_{0}^{\star}\right)\right) & \leq V_{N}\left(\bar{x}_{i}\right)-I\left(\bar{x}_{i}, u_{0}^{\star}\right)+\underbrace{I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)}_{=0}
\end{aligned}
$$

Economic MPC and Stability Analysis

Lyapunov stability

Tracking MPC: $I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=0$ and $\exists \alpha \in \mathcal{K}$ s.t. $\alpha\left(x-x_{\mathrm{s}}\right) \leq I(x, u), \forall u \in \mathbb{U}$

$$
\begin{aligned}
V_{N-1}\left(f\left(\bar{x}_{i}, u_{0}^{\star}\right)\right) & =V_{N}\left(\bar{x}_{i}\right)-I\left(\bar{x}_{i}, u_{0}^{\star}\right) \\
V_{N}\left(f\left(\bar{x}_{i}, u_{0}^{\star}\right)\right) & \leq V_{N}\left(\bar{x}_{i}\right)-I\left(\bar{x}_{i}, u_{0}^{\star}\right)+\underbrace{I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)}_{=0}
\end{aligned}
$$

$$
V_{N}\left(f\left(\bar{x}_{i}, u_{0}^{\star}\right)\right)-V_{N}\left(\bar{x}_{i}\right) \leq-I\left(\bar{x}_{i}, u_{0}^{\star}\right)
$$

Economic MPC and Stability Analysis

Do we always want to track?

Economic MPC and Stability Analysis

Do we always want to track?

Economic MPC and Stability Analysis

Do we always want to track?

Economic MPC and Stability Analysis

Do we always want to track?

Economic MPC and Stability Analysis

Do we always want to track?
No!

Economic MPC and Stability Analysis

Do we always want to track? No!

Then why do we track?

Economic MPC and Stability Analysis

Do we always want to track? No!

Then why do we track?

- It works

Economic MPC and Stability Analysis

Do we always want to track?
No!

Then why do we track?

- It works
- We have been doing it since the 80 s

Economic MPC and Stability Analysis

Do we always want to track?
No!

Then why do we track?

- It works
- We have been doing it since the 80 s
- We have stability guarantees

Economic MPC and Stability Analysis

Do we always want to track?
No!

Then why do we track?

- It works
- We have been doing it since the 80 s
- We have stability guarantees

What about Economic MPC?

Economic MPC and Stability Analysis

Do we always want to track? No!

Then why do we track?

- It works
- We have been doing it since the 80 s
- We have stability guarantees

What about Economic MPC?

- Difficult to prove stability (2008-)

Economic MPC and Stability Analysis

Do we always want to track? No!

Then why do we track?

- It works
- We have been doing it since the 80 s
- We have stability guarantees

What about Economic MPC?

- Difficult to prove stability (2008-)
- Increased "economic" gain

Economic MPC and Stability Analysis

Economic vs Tracking

Economic MPC and Stability Analysis

Economic vs Tracking

- Steady state: $x_{s}=0=f(0,0)$

Economic MPC and Stability Analysis

Economic vs Tracking

- Steady state: $x_{s}=0=f(0,0)$
- Stage cost: Tracking vs Economic

Economic MPC and Stability Analysis

Economic vs Tracking

- Steady state: $x_{\mathrm{s}}=0=f(0,0)$
- Stage cost: Tracking vs Economic

Economic MPC and Stability Analysis

Economic vs Tracking

- Steady state: $x_{\mathrm{s}}=0=f(0,0)$
- Stage cost: Tracking vs Economic

The classical stability theory does not apply!

Economic MPC and Stability Analysis

Economic Stage Cost

$$
\text { Steady state: } \quad\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=\min _{x, u} I(x, u) \text { s.t. } x=f(x, u)
$$

Economic MPC and Stability Analysis

Economic Stage Cost

Steady state: $\quad\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=\min _{x, u} I(x, u)$ s.t. $x=f(x, u)$

$$
I(x, u) \quad I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)
$$

Economic MPC and Stability Analysis

Economic Stage Cost

Steady state: $\quad\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=\min _{x, u} I(x, u)$ s.t. $x=f(x, u)$

$$
I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)
$$

Economic MPC and Stability Analysis

Economic Stage Cost

Steady state: $\quad\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=\min _{x, u} I(x, u)$ s.t. $x=f(x, u)$

$$
I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)
$$

Economic MPC and Stability Analysis

Economic Stage Cost

Steady state: $\quad\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=\min _{x, u} I(x, u)$ s.t. $x=f(x, u)$

$$
I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right) \underbrace{\lambda_{\mathrm{s}}^{T}}_{\text {Lagrange multiplier }}(x-f(x, u))
$$

Economic MPC and Stability Analysis

Economic Stage Cost

Steady state: $\quad\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=\min _{x, u} I(x, u)$ s.t. $x=f(x, u)$

$$
I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)+\underbrace{\lambda_{\mathrm{s}}^{T}}_{\text {Lagrange multiplier }}(x-f(x, u))
$$

Economic MPC and Stability Analysis

Economic Stage Cost

Steady state: $\quad\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=\min _{x, u} I(x, u)$ s.t. $x=f(x, u)$

$$
L(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)+\underbrace{\lambda_{\mathrm{s}}^{T}}_{\text {Lagrange multiplier }}(x-f(x, u))
$$

Economic MPC and Stability Analysis

Economic Stage Cost

$$
\text { Steady state: } \quad\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=\min _{x, u} I(x, u) \text { s.t. } x=f(x, u)
$$

$\underbrace{\text { Rotated cost: }}_{\text {[Diehl et al. 2011] }} L(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)+\underbrace{\lambda_{\mathrm{s}}^{T}}_{\text {Lagrange multiplier }}(x-f(x, u))$

Economic MPC and Stability Analysis

Rotated MPC Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} L\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

Economic MPC and Stability Analysis

Rotated MPC Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} L\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

Rotated Problem \equiv Original Problem

$$
\sum_{k=0}^{N-1} L(x, u)=\sum_{k=0}^{N-1} I(x, u)+\underbrace{\lambda_{\mathrm{s}}^{T} x_{0}-\lambda_{\mathrm{s}}^{T} x_{N}-(N-1) I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)}_{\text {constant }}
$$

Economic MPC and Stability Analysis

Rotated MPC Problem

$$
\begin{aligned}
\min _{x_{0}, u_{0}, \ldots, x_{N}} & \sum_{k=0}^{N-1} L\left(x_{k}, u_{k}\right) \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-f\left(x_{k}, u_{k}\right)=0 \\
& x_{N}-x_{N}^{s}=0
\end{aligned}
$$

Rotated Problem \equiv Original Problem

$$
\sum_{k=0}^{N-1} L(x, u)=\sum_{k=0}^{N-1} I(x, u)+\underbrace{\lambda_{\mathrm{s}}^{T} x_{0}-\lambda_{\mathrm{s}}^{T} x_{N}-(N-1) I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)}_{\text {constant }}
$$

If

$$
\alpha(x) \leq L(x, u), \quad \alpha \in \mathcal{K}
$$

the previous stability proof holds! [Diehl et al. 2011]

Economic MPC and Stability Analysis

Generalization [Amrit et al. 2011]
Nonlinear rotating function: $\lambda(x)$

Economic MPC and Stability Analysis

Generalization [Amrit et al. 2011]
Nonlinear rotating function: $\lambda(x)$
New rotated cost: $L(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)+\lambda(x)-\lambda(f(x, u))$

Economic MPC and Stability Analysis

Generalization [Amrit et al. 2011]
Nonlinear rotating function: $\lambda(x)$
New rotated cost: $L(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)+\lambda(x)-\lambda(f(x, u))$

What conditions on $\lambda(x)$?

Economic MPC and Stability Analysis

Generalization [Amrit et al. 2011]
Nonlinear rotating function: $\lambda(x)$
New rotated cost: $L(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)+\lambda(x)-\lambda(f(x, u))$

What conditions on $\lambda(x)$?

Strict Dissipativity

System strictly dissipative wrt the supply rate $s(x, u)$ if $\exists \lambda(x): \mathbb{X} \rightarrow \mathbb{R}$

$$
\lambda(f(x, u))-\lambda(x) \leq-\rho\left(x-x_{s}\right)+s(x, u)
$$

$$
\forall(x, u) \in \mathbb{X} \times \mathbb{U}
$$

We are interested in $s(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)$

Economic MPC and Stability Analysis

Generalization [Amrit et al. 2011]
Nonlinear rotating function: $\lambda(x)$
New rotated cost: $L(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)+\lambda(x)-\lambda(f(x, u))$

What conditions on $\lambda(x)$?

Strict Dissipativity

System strictly dissipative wrt the supply rate $s(x, u)$ if $\exists \lambda(x): \mathbb{X} \rightarrow \mathbb{R}$

$$
\lambda(f(x, u))-\lambda(x) \leq-\rho\left(x-x_{s}\right)+s(x, u)
$$

$$
\forall(x, u) \in \mathbb{X} \times \mathbb{U}
$$

We are interested in $s(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)$

This entails

$$
L(x, u)=I(x, u)-I\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)+\lambda(x)-\lambda(f(x, u)) \geq \rho\left(x-x_{\mathrm{s}}\right)
$$

(1) Economic MPC and Stability Analysis
(2) The Linear Quadratic Case

3 Approximated EMPC with stability guarantees

LQ-EMPC

Consider a linear MPC problem

$$
\begin{aligned}
\mathcal{P}_{N}\left(A, B, Q, R, S, P_{N}\right)=\underset{x_{0}, u_{0}, \ldots, x_{N}}{\operatorname{argmin}} & \sum_{k=0}^{N-1}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]^{T} H\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]+x_{N}^{T} P_{N} x_{N} \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0, \\
& x_{k+1}-A x_{k}-B u_{k}=0 .
\end{aligned}
$$

with

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]
$$

LQ-EMPC

Consider a linear MPC problem

$$
\begin{aligned}
\mathcal{P}_{N}\left(A, B, Q, R, S, P_{N}\right)=\underset{x_{0}, u_{0}, \ldots, x_{N}}{\operatorname{argmin}} & \sum_{k=0}^{N-1}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]^{T} H\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]+x_{N}^{T} P_{N} x_{N} \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-A x_{k}-B u_{k}=0 .
\end{aligned}
$$

with

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]
$$

- If $H \nsucc 0$ this is an Economic MPC problem

LQ-EMPC

Consider a linear MPC problem

$$
\begin{aligned}
\mathcal{P}_{N}\left(A, B, Q, R, S, P_{N}\right)=\underset{x_{0}, u_{0}, \ldots, x_{N}}{\operatorname{argmin}} & \sum_{k=0}^{N-1}\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]^{T} H\left[\begin{array}{l}
x_{k} \\
u_{k}
\end{array}\right]+x_{N}^{T} P_{N} x_{N} \\
\text { s.t. } & x_{0}-\bar{x}_{i}=0 \\
& x_{k+1}-A x_{k}-B u_{k}=0 .
\end{aligned}
$$

with

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]
$$

- If $H \nsucc 0$ this is an Economic MPC problem
- When is it stabilizing?

The Linear Quadratic Case

Inifinite Horizon Case

The Linear Quadratic Case

Inifinite Horizon Case

This is an (indefinite) LQR

$$
\begin{aligned}
\mathcal{D}(A, B, Q, R, S):=\{(P, K) \mid & Q+A^{T} P A-P-\left(S^{T}+A^{\top} P B\right) K=0, \\
& K=\left(R+B^{T} P B\right)^{-1}\left(S+B^{T} P A\right), \\
& \rho(A-B K)<1\}
\end{aligned}
$$

Inifinite Horizon Case

This is an (indefinite) LQR

$$
\begin{aligned}
\mathcal{D}(A, B, Q, R, S):=\{(P, K) \mid & Q+A^{T} P A-P-\left(S^{T}+A^{T} P B\right) K=0 \\
& K=\left(R+B^{T} P B\right)^{-1}\left(S+B^{T} P A\right) \\
& \rho(A-B K)<1\}
\end{aligned}
$$

Stability if (strict dissipativity for the LQ case):

$$
\exists \bar{P} \text { s.t. } \quad M=\left[\begin{array}{ll}
Q+A^{T} \bar{P} A-\bar{P} & S^{T}+A^{T} \bar{P} B \\
S+B^{T} \bar{P} A & R+B^{T} \bar{P} B
\end{array}\right] \succ 0
$$

Inifinite Horizon Case

This is an (indefinite) LQR

$$
\begin{aligned}
\mathcal{D}(A, B, Q, R, S):=\{(P, K) \mid & Q+A^{T} P A-P-\left(S^{T}+A^{T} P B\right) K=0 \\
& K=\left(R+B^{T} P B\right)^{-1}\left(S+B^{T} P A\right) \\
& \rho(A-B K)<1\}
\end{aligned}
$$

Stability if (strict dissipativity for the LQ case):

$$
\exists \bar{P} \text { s.t. } \quad M=\left[\begin{array}{ll}
Q+A^{T} \bar{P} A-\bar{P} & S^{T}+A^{T} \bar{P} B \\
S+B^{T} \bar{P} A & R+B^{T} \bar{P} B
\end{array}\right] \succ 0
$$

One can enforce stability by adding $\left[\begin{array}{l}x \\ u\end{array}\right]^{T} T\left[\begin{array}{l}x \\ u\end{array}\right]$ to the cost and solving

$$
\min _{P, T}\|T\|^{2} \quad \text { s.t. } M+T \succeq 0
$$

One can modify the cost-to-go without changing the problem

$$
\mathcal{P}_{\infty}(A, B, Q, R, S)=\mathcal{P}_{\infty}\left(A, B, Q_{\bar{P}}, R_{\bar{P}}, S_{\bar{P}}\right),
$$

with

$$
\begin{aligned}
Q_{\bar{P}} & =Q+A^{T} \bar{P} A-\bar{P} \\
R_{\bar{P}} & =R+B^{T} \bar{P} B \\
S_{\bar{P}} & =S+B^{T} \bar{P} A \\
P_{\bar{P}} & =P-\bar{P}
\end{aligned}
$$

One can modify the cost-to-go without changing the problem

$$
\mathcal{P}_{\infty}(A, B, Q, R, S)=\mathcal{P}_{\infty}\left(A, B, Q_{\bar{P}}, R_{\bar{P}}, S_{\bar{P}}\right),
$$

with

$$
\begin{aligned}
Q_{\bar{P}} & =Q+A^{T} \bar{P} A-\bar{P} \\
R_{\bar{P}} & =R+B^{T} \bar{P} B \\
S_{\bar{P}} & =S+B^{T} \bar{P} A \\
P_{\bar{P}} & =P-\bar{P}
\end{aligned}
$$

NOTE:

- $K_{\bar{P}}=K$, i.e. the feedback matrix is unchanged!

One can modify the cost-to-go without changing the problem

$$
\mathcal{P}_{\infty}(A, B, Q, R, S)=\mathcal{P}_{\infty}\left(A, B, Q_{\bar{P}}, R_{\bar{P}}, S_{\bar{P}}\right),
$$

with

$$
\begin{aligned}
Q_{\bar{P}} & =Q+A^{T} \bar{P} A-\bar{P} \\
R_{\bar{P}} & =R+B^{T} \bar{P} B \\
S_{\bar{P}} & =S+B^{T} \bar{P} A \\
P_{\bar{P}} & =P-\bar{P}
\end{aligned}
$$

NOTE:

- $K_{\bar{P}}=K$, i.e. the feedback matrix is unchanged!
- $P_{P}=0$, i.e. the cost-to-go can be zero!

One Can Pre-stabilize the System
i.e. use $u_{k}=v_{k}-\bar{K} x_{k}$

One Can Pre-stabilize the System

i.e. use $u_{k}=v_{k}-\bar{K} x_{k}$

Then

$$
\mathcal{P}_{\infty}(A, B, Q, R, S)=\mathcal{P}_{\infty}\left(A_{\bar{K}}, B, Q_{\bar{K}}, R, S_{\bar{K}}\right)
$$

with

$$
\begin{aligned}
A_{\bar{K}} & =A-B \bar{K} \\
Q_{\bar{K}} & =Q-S^{T} \bar{K}-\bar{K}^{T} S+\bar{K}^{T} R \bar{K} \\
S_{\bar{K}} & =S-R \bar{K} \\
P_{\bar{K}} & =P
\end{aligned}
$$

One Can Pre-stabilize the System

i.e. use $u_{k}=v_{k}-\bar{K} x_{k}$

Then

$$
\mathcal{P}_{\infty}(A, B, Q, R, S)=\mathcal{P}_{\infty}\left(A_{\bar{K}}, B, Q_{\bar{K}}, R, S_{\bar{K}}\right)
$$

with

$$
\begin{aligned}
A_{\bar{K}} & =A-B \bar{K} \\
Q_{\bar{K}} & =Q-S^{T} \bar{K}-\bar{K}^{T} S+\bar{K}^{T} R \bar{K} \\
S_{\bar{K}} & =S-R \bar{K} \\
P_{\bar{K}} & =P
\end{aligned}
$$

If one uses the optimal feedback gain $\bar{K}=K$:

One Can Pre-stabilize the System

i.e. use $u_{k}=v_{k}-\bar{K} x_{k}$

Then

$$
\mathcal{P}_{\infty}(A, B, Q, R, S)=\mathcal{P}_{\infty}\left(A_{\bar{K}}, B, Q_{\bar{K}}, R, S_{\bar{K}}\right)
$$

with

$$
\begin{aligned}
A_{\bar{K}} & =A-B \bar{K} \\
Q_{\bar{K}} & =Q-S^{T} \bar{K}-\bar{K}^{T} S+\bar{K}^{T} R \bar{K} \\
S_{\bar{K}} & =S-R \bar{K} \\
P_{\bar{K}} & =P
\end{aligned}
$$

If one uses the optimal feedback gain $\bar{K}=K$:

- $K_{K}=0$

One Can Pre-stabilize the System

i.e. use $u_{k}=v_{k}-\bar{K} x_{k}$

Then

$$
\mathcal{P}_{\infty}(A, B, Q, R, S)=\mathcal{P}_{\infty}\left(A_{\bar{K}}, B, Q_{\bar{K}}, R, S_{\bar{K}}\right)
$$

with

$$
\begin{aligned}
A_{\bar{K}} & =A-B \bar{K} \\
Q_{\bar{K}} & =Q-S^{\top} \bar{K}-\bar{K}^{\top} S+\bar{K}^{\top} R \bar{K} \\
S_{\bar{K}} & =S-R \bar{K} \\
P_{\bar{K}} & =P
\end{aligned}
$$

If one uses the optimal feedback gain $\bar{K}=K$:

- $K_{K}=0$
- The DARE becomes a Lyapunov Equation: $Q_{K}+A_{K}^{T} P A_{K}-P=0$

One Can Pre-stabilize the System

i.e. use $u_{k}=v_{k}-\bar{K} x_{k}$

Then

$$
\mathcal{P}_{\infty}(A, B, Q, R, S)=\mathcal{P}_{\infty}\left(A_{\bar{K}}, B, Q_{\bar{K}}, R, S_{\bar{K}}\right)
$$

with

$$
\begin{aligned}
A_{\bar{K}} & =A-B \bar{K} \\
Q_{\bar{K}} & =Q-S^{T} \bar{K}-\bar{K}^{T} S+\bar{K}^{T} R \bar{K} \\
S_{\bar{K}} & =S-R \bar{K} \\
P_{\bar{K}} & =P
\end{aligned}
$$

If one uses the optimal feedback gain $\bar{K}=K$:

- $K_{K}=0$
- The DARE becomes a Lyapunov Equation: $Q_{K}+A_{K}^{T} P A_{K}-P=0$
- R can be replaced by any $R_{K}(\succ 0)$

Positive Definite LQR Formulation

Lyapunov Stability Theorem
If $\rho\left(A_{K}\right)<1$, then

$$
\forall Q_{\mathrm{L}} \succ 0 \quad \exists P_{\mathrm{L}} \succ 0 \text { s.t. } \quad Q_{\mathrm{L}}+A_{K}^{T} P_{\mathrm{L}} A_{K}-P_{\mathrm{L}}=0
$$

Positive Definite LQR Formulation

Lyapunov Stability Theorem

If $\rho\left(A_{K}\right)<1$, then

$$
\forall Q_{\mathrm{L}} \succ 0 \quad \exists P_{\mathrm{L}} \succ 0 \text { s.t. } \quad Q_{\mathrm{L}}+A_{K}^{T} P_{\mathrm{L}} A_{K}-P_{\mathrm{L}}=0
$$

This is also the DARE for $\left(A_{K}, B\right) \Rightarrow$ Choose $Q_{K, P_{\mathrm{L}}}=Q_{\mathrm{L}} \succ 0$

Positive Definite LQR Formulation

Lyapunov Stability Theorem

If $\rho\left(A_{K}\right)<1$, then

$$
\forall Q_{\mathrm{L}} \succ 0 \quad \exists P_{\mathrm{L}} \succ 0 \text { s.t. } \quad Q_{\mathrm{L}}+A_{K}^{T} P_{\mathrm{L}} A_{K}-P_{\mathrm{L}}=0
$$

This is also the DARE for $\left(A_{K}, B\right) \Rightarrow$ Choose $Q_{K, P_{\mathrm{L}}}=Q_{\mathrm{L}} \succ 0$
Then

$$
\begin{aligned}
P_{K, P_{\mathrm{L}}} & =P-P_{\mathrm{L}} \\
R_{K, P_{\mathrm{L}}} & =R_{K}+B^{T} P_{\mathrm{L}} B \\
S_{K, P_{\mathrm{L}}} & =S_{K}+B^{T} P_{\mathrm{L}} A
\end{aligned}
$$

Positive Definite LQR Formulation

Lyapunov Stability Theorem

If $\rho\left(A_{K}\right)<1$, then

$$
\forall Q_{\mathrm{L}} \succ 0 \quad \exists P_{\mathrm{L}} \succ 0 \text { s.t. } \quad Q_{\mathrm{L}}+A_{K}^{T} P_{\mathrm{L}} A_{K}-P_{\mathrm{L}}=0
$$

This is also the DARE for $\left(A_{K}, B\right) \Rightarrow$ Choose $Q_{K, P_{\mathrm{L}}}=Q_{\mathrm{L}} \succ 0$
Then

$$
\begin{aligned}
P_{K, P_{\mathrm{L}}} & =P-P_{\mathrm{L}} \\
R_{K, P_{\mathrm{L}}} & =R_{K}+B^{T} P_{\mathrm{L}} B \\
S_{K, P_{\mathrm{L}}} & =S_{K}+B^{T} P_{\mathrm{L}} A
\end{aligned}
$$

R_{K} can be chosen arbitrarily large \Rightarrow Pos. def. LQR for $\left(A_{K}, B\right)$.

Positive Definite LQR Formulation

Lyapunov Stability Theorem

If $\rho\left(A_{K}\right)<1$, then

$$
\forall Q_{\mathrm{L}} \succ 0 \quad \exists P_{\mathrm{L}} \succ 0 \text { s.t. } \quad Q_{\mathrm{L}}+A_{K}^{T} P_{\mathrm{L}} A_{K}-P_{\mathrm{L}}=0
$$

This is also the DARE for $\left(A_{K}, B\right) \Rightarrow$ Choose $Q_{K, P_{\mathrm{L}}}=Q_{\mathrm{L}} \succ 0$
Then

$$
\begin{aligned}
P_{K, P_{\mathrm{L}}} & =P-P_{\mathrm{L}} \\
R_{K, P_{\mathrm{L}}} & =R_{K}+B^{T} P_{\mathrm{L}} B \\
S_{K, P_{\mathrm{L}}} & =S_{K}+B^{T} P_{\mathrm{L}} A
\end{aligned}
$$

R_{K} can be chosen arbitrarily large \Rightarrow Pos. def. LQR for $\left(A_{K}, B\right)$.
Pos. def. is preserved when transforming back to (A, B)

What About MPC?

In the unconstrained case, the solution is given by the Discrete Riccati Equation (DRE)

$$
\begin{aligned}
& \mathcal{R}_{N}\left(A, B, Q, R, S, P_{N}\right)=\left\{\left(P_{0}, P_{1}, \ldots, P_{N}, K_{0}, \ldots, K_{N-1}\right) \mid\right. \\
& P_{k-1}=Q+A^{T} P_{k} A-\left(S^{T}+A^{T} P_{k} B\right) K_{k-1} \\
&\left.K_{k-1}=\left(R+B^{T} P_{k} B\right)^{-1}\left(S+B^{T} P_{k} A\right)\right\}
\end{aligned}
$$

What About MPC?

In the unconstrained case, the solution is given by the Discrete Riccati Equation (DRE)

$$
\begin{aligned}
& \mathcal{R}_{N}\left(A, B, Q, R, S, P_{N}\right)=\left\{\left(P_{0}, P_{1}, \ldots, P_{N}, K_{0}, \ldots, K_{N-1}\right) \mid\right. \\
& P_{k-1}=Q+A^{T} P_{k} A-\left(S^{T}+A^{T} P_{k} B\right) K_{k-1} \\
&\left.K_{k-1}=\left(R+B^{T} P_{k} B\right)^{-1}\left(S+B^{T} P_{k} A\right)\right\}
\end{aligned}
$$

DRE equivalence

$$
\mathcal{R}_{N}\left(A, B, Q, R, S, P_{N}\right)=\mathcal{R}_{N}\left(A, B, \tilde{Q}, \tilde{R}, \tilde{S}, \tilde{P}_{N}\right)
$$

if

$$
\begin{aligned}
& \tilde{P}_{N}-\tilde{P}=P_{N}-P \\
& \tilde{R}+B^{T} \tilde{P} B=R+B^{T} P B \\
& \tilde{S}+B^{T} \tilde{P} A=S+B^{T} P A
\end{aligned}
$$

with P and \tilde{P} computed from $\mathcal{D}(A, B, Q, R, S)$ and $\mathcal{D}(A, B, \tilde{Q}, \tilde{R}, \tilde{S})$.

A Practical View on the Problem

Solve the following SDP

$$
\begin{aligned}
\min _{\tilde{P}, \tilde{Q}, \tilde{R}, \tilde{S}, \tilde{H}} & \|\tilde{P}-I\|^{2}+\|\tilde{H}-I\|^{2} \\
\text { s.t. } & \tilde{H}=\left[\begin{array}{cc}
\tilde{Q} & \tilde{S}^{T} \\
\tilde{S} & \tilde{R}
\end{array}\right] \\
& \tilde{H} \succeq 0 \\
& \tilde{P} \succeq 0 \\
& \tilde{Q}+A^{T} \tilde{P} A-\tilde{P}-\left(\tilde{S}^{T}+A^{T} \tilde{P} B\right) K=0, \\
& \left(\tilde{R}+B^{T} \tilde{P} B\right) K-\left(\tilde{S}+B^{T} \tilde{P} A\right)=0, \\
& \tilde{R}+B^{T} \tilde{P} B=R+B^{T} P B, \\
& \tilde{S}+B^{T} \tilde{P} A=S+B^{T} P A .
\end{aligned}
$$

This problem is convex!

Approximated EMPC with stability guarantees

(1) Economic MPC and Stability Analysis

(2) The Linear Quadratic Case
(3) Approximated EMPC with stability guarantees

Look at the Steady State Properties

Lagrangian of steady state problem

$$
\mathcal{L}=I(x, u)-\lambda^{T}(x-f(x, u))
$$

Lagrangian Hessian:

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]=\left.\frac{\partial^{2} \mathcal{L}}{\partial(x, u)^{2}}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Local linearization

$$
A=\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}} \quad B=\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Look at the Steady State Properties

Lagrangian of steady state problem

$$
\mathcal{L}=I(x, u)-\lambda^{T}(x-f(x, u))
$$

Lagrangian Hessian:

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]=\left.\frac{\partial^{2} \mathcal{L}}{\partial(x, u)^{2}}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Local linearization

$$
A=\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}} \quad B=\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Problem: $H \nsucc 0$ is indefinite!

Look at the Steady State Properties

Lagrangian of steady state problem

$$
\mathcal{L}=I(x, u)-\lambda^{T}(x-f(x, u))
$$

Lagrangian Hessian:

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]=\left.\frac{\partial^{2} \mathcal{L}}{\partial(x, u)^{2}}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Local linearization

$$
A=\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}} \quad B=\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Problem: $H \nsucc 0$ is indefinite!
Solution:

Look at the Steady State Properties

Lagrangian of steady state problem

$$
\mathcal{L}=I(x, u)-\lambda^{T}(x-f(x, u))
$$

Lagrangian Hessian:

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]=\left.\frac{\partial^{2} \mathcal{L}}{\partial(x, u)^{2}}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Local linearization

$$
A=\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}} \quad B=\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Problem: $H \nsucc 0$ is indefinite! Solution:

- Check for stability of the local LQ approximation

Look at the Steady State Properties

Lagrangian of steady state problem

$$
\mathcal{L}=I(x, u)-\lambda^{T}(x-f(x, u))
$$

Lagrangian Hessian:

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]=\left.\frac{\partial^{2} \mathcal{L}}{\partial(x, u)^{2}}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Local linearization

$$
A=\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}} \quad B=\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Problem: $H \nsucc 0$ is indefinite!
Solution:

- Check for stability of the local LQ approximation
- Compute $\tilde{H}, \tilde{P} \succ 0$ s.t. $\mathcal{R}_{N}\left(A, B, Q, S, R, P_{N}\right)=\mathcal{R}_{N}\left(A, B, \tilde{Q}, \tilde{S}, \tilde{R}, \tilde{P}_{N}\right)$

Look at the Steady State Properties

Lagrangian of steady state problem

$$
\mathcal{L}=I(x, u)-\lambda^{T}(x-f(x, u))
$$

Lagrangian Hessian:

$$
H=\left[\begin{array}{ll}
Q & S^{T} \\
S & R
\end{array}\right]=\left.\frac{\partial^{2} \mathcal{L}}{\partial(x, u)^{2}}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Local linearization

$$
A=\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}} \quad B=\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{\mathrm{s}}, u_{\mathrm{s}}}
$$

Problem: $H \nsucc 0$ is indefinite!
Solution:

- Check for stability of the local LQ approximation
- Compute $\tilde{H}, \tilde{P} \succ 0$ s.t. $\mathcal{R}_{N}\left(A, B, Q, S, R, P_{N}\right)=\mathcal{R}_{N}\left(A, B, \tilde{Q}, \tilde{S}, \tilde{R}, \tilde{P}_{N}\right)$
- Formulate a tracking NMPC scheme using \tilde{H}

Approximated EMPC with stability guarantees

Example

- System dynamics: $\dot{x}=\frac{u}{10}(1-x)-0.4 x$, (discr.: 50 RK4 steps, $\left.\Delta=0.5\right)$

Approximated EMPC with stability guarantees

Example

- System dynamics: $\dot{x}=\frac{u}{10}(1-x)-0.4 x$, (discr.: 50 RK4 steps, $\left.\Delta=0.5\right)$
- Stage cost: $I(x, u)=-2 u x-1.5 u+0.1(u-4)^{2}$

Approximated EMPC with stability guarantees

Example

- System dynamics: $\dot{x}=\frac{u}{10}(1-x)-0.4 x$, (discr.: 50 RK4 steps, $\left.\Delta=0.5\right)$
- Stage cost: $I(x, u)=-2 u x-1.5 u+0.1(u-4)^{2}$
- Steady state: $\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=(0.5,4)$

Approximated EMPC with stability guarantees

Example

- System dynamics: $\dot{x}=\frac{u}{10}(1-x)-0.4 x$, (discr.: 50 RK4 steps, $\left.\Delta=0.5\right)$
- Stage cost: $I(x, u)=-2 u x-1.5 u+0.1(u-4)^{2}$
- Steady state: $\left(x_{\mathrm{s}}, \mu_{\mathrm{s}}\right)=(0.5,4)$
- Approx. EMPC: $1_{\mathrm{tr}}^{0}(x, u)=\left[\begin{array}{l}x-x_{\mathrm{s}} \\ u-u_{\mathrm{s}}\end{array}\right]^{T}\left[\begin{array}{rr}14.227 & 0.825 \\ 0.825 & 0.066\end{array}\right]\left[\begin{array}{l}x-x_{\mathrm{s}} \\ u-u_{\mathrm{s}}\end{array}\right]$

Approximated EMPC with stability guarantees

Example

- System dynamics: $\dot{x}=\frac{u}{10}(1-x)-0.4 x$, (discr.: 50 RK4 steps, $\left.\Delta=0.5\right)$
- Stage cost: $I(x, u)=-2 u x-1.5 u+0.1(u-4)^{2}$
- Steady state: $\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=(0.5,4)$
- Approx. EMPC: $I_{\mathrm{tr}}^{0}(x, u)=\left[\begin{array}{l}x-x_{\mathrm{s}} \\ u-u_{\mathrm{s}}\end{array}\right]^{T}\left[\begin{array}{rr}14.227 & 0.825 \\ 0.825 & 0.066\end{array}\right]\left[\begin{array}{l}x-x_{\mathrm{s}} \\ u-u_{\mathrm{s}}\end{array}\right]$
- Naive tracking: $I_{\mathrm{tr}}^{1}(x, u)=\left(x-x_{\mathrm{s}}\right)^{2}+\left(u-u_{\mathrm{s}}\right)^{2}$

Approximated EMPC with stability guarantees

Example

- System dynamics: $\dot{x}=\frac{u}{10}(1-x)-0.4 x$, (discr.: 50 RK4 steps, $\left.\Delta=0.5\right)$
- Stage cost: $I(x, u)=-2 u x-1.5 u+0.1(u-4)^{2}$
- Steady state: $\left(x_{\mathrm{s}}, u_{\mathrm{s}}\right)=(0.5,4)$
- Approx. EMPC: $I_{\mathrm{tr}}^{0}(x, u)=\left[\begin{array}{l}x-x_{\mathrm{s}} \\ u-u_{\mathrm{s}}\end{array}\right]^{T}\left[\begin{array}{rr}14.227 & 0.825 \\ 0.825 & 0.066\end{array}\right]\left[\begin{array}{l}x-x_{\mathrm{s}} \\ u-u_{\mathrm{s}}\end{array}\right]$
- Naive tracking: $I_{\text {tr }}^{1}(x, u)=\left(x-x_{\mathrm{s}}\right)^{2}+\left(u-u_{\mathrm{s}}\right)^{2}$

Thank you for your attention!

