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© Approximated EMPC with stability guarantees
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Optimal Control Problem
min
X0 UQy--es XN
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Optimal Control Problem
N—1
min Z (XK, uk) (Quadratic) stage cost
X0,UQ -y XN =

st. xo—X =0, Initial condition

Xpy1 — F(xk, uk) =0, System dynamics

xy — xp = 0. Terminal constraint
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o1 -
- . o
At each sampling time i- :2‘2 /W
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@ get the initial state x;
@ solve the MPC OCP ;
@ apply the first control ug

timestep
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Lyapunov stability

Tracking MPC: /(xs,us) =0 and Ja € K st a(x —x) < I(x,u), YVueU
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Lyapunov stability

Tracking MPC: /(xs,us) =0 and Ja € K st a(x —x) < I(x,u), YVueU
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Lyapunov stability

Tracking MPC: /(xs,us) =0 and Ja € K st a(x —x) < I(x,u), YVueU
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Lyapunov stability

Tracking MPC: /(xs,us) =0 and Ja € K st a(x —x) < I(x,u), YVueU
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Lyapunov stability

Tracking MPC: /(xs,us) =0 and Ja € K st alx —x) < I(x,u), YVueU
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Lyapunov stability

Tracking MPC: /(xs,us) =0 and Ja € K st alx —x) < I(x,u), YVueU

o Vi(f (%, ug))
;70? \/W’/
-0.2
0 5 10 15
1
>0
7‘ Fl_‘ﬁ—\ﬁ
0 5 10 15

timestep

V-1 (f(xi, u5)) = Vin(xi) — (X, ug)
VN(f()_(ia ua)) < VN()_Q) - /()_(i» US) ol I(Xsw Us)
=0
Vin(f (i, ug)) — Vn(xi) < —1(Xi, ug)
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Do we always want to track?
No!

Then why do we track?

@ It works

@ We have been doing it since the 80s

@ We have stability guarantees

What about Economic MPC?

@ Difficult to prove stability (2008-)

@ Increased “economic” gain
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Economic vs Tracking

@ Steady state: x; =0 = f(0,0)

@ Stage cost: Tracking vs Economic
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02 i i i i
-50 -40 -30 -20 -10

Ko

The classical stability theory does not apply!
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Economic Stage Cost

Steady state: (X, us) = min/(x, u) s.t. x = f(x, u)

I(x,u) (s, us)
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Economic Stage Cost
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Economic Stage Cost

Steady state: (X, us) = min/(x, u) s.t. x = f(x, u)

I(x, u) — I(xs, us) + AN (x—f(x,u))
~—~

Lagrange multiplier
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Economic Stage Cost

Steady state: (X, us) = min/(x, u) s.t. x = f(x, u)

L(X7 U):/(X~, U)_/(XS7US)+ AZ— (X*f(X,U))
~—

Lagrange multiplier

Kof
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Economic Stage Cost

Steady state: (X, us) = min/(x, u) s.t. x = f(x, u)

Rotated cost: L(x,u) = /(x, u) — I(xs, us) + A (x = f(x, u))
_ ~~

[Diehl et al. 2011] Lagrange multiplier
0.6
0.4r
~—~ 02
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Rotated MPC Problem

min L(xk, uk)
X05t0s | —o

st. xo—Xx =0,
Xpp1 — (X, u) = 0,

xy — xp = 0.
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Rotated MPC Problem

T
L

min L(Xk, uk)
X0,UQ -9 XN 0

»
I

st. xo—Xx =0,
Xk+1 — f(Xk, uk) = 0,

xy — xp = 0.

Rotated Problem = Original Problem

N—-1 N—-1

Z L(x,u) = Z I(x,u) + )\STXO - )\;rxN — (N = 1) I(xs, us)

k=0 k=0

constant



Economic MPC and Stability Analysis 9/22

Rotated MPC Problem

T
L

min L(Xk, uk)
X0,UQs -+ -3 XN 0

»
I

st. xo—X =0,
Xk+1 — f(Xk7 uk) = 0,

xy — xp = 0.

Rotated Problem = Original Problem

N—-1 N—-1
Z L(x,u) = Z 10x, 1) + A x0 — M xw — (N — 1) I(x, us)
k=0 k=0
constant
If
a(x) < L(x, u), aelk

the previous stability proof holds! [Diehl et al. 2011]



Economic MPC and Stability Analysis 10/22

Generalization [Amrit et al. 2011]

Nonlinear rotating function: A(x)



Economic MPC and Stability Analysis 10/22

Generalization [Amrit et al. 2011]

Nonlinear rotating function: A(x)
New rotated cost: L(x,u) = I(x, u) — I(xs, us) + A\(x) — A(f(x, v))



Economic MPC and Stability Analysis 10/22

Generalization [Amrit et al. 2011]

Nonlinear rotating function: A(x)
New rotated cost: L(x,u) = I(x, u) — I(xs, us) + A\(x) — A(f(x, v))

What conditions on A\(x)?



Economic MPC and Stability Analysis 10/22

Generalization [Amrit et al. 2011]

Nonlinear rotating function: A(x)
New rotated cost: L(x,u) = I(x, u) — I(xs, us) + A\(x) — A(f(x, v))

What conditions on A\(x)?

Strict Dissipativity
System strictly dissipative wrt the supply rate s(x, u) if 3 A(x) : X = R

A(f(x, 1)) = A(x) < =p(x =) + s(x, u),
V(x,u) e XxU

We are interested in s(x, u) = I(x, u) — I(xs, us)



Economic MPC and Stability Analysis 10/22

Generalization [Amrit et al. 2011]

Nonlinear rotating function: A(x)
New rotated cost: L(x,u) = I(x, u) — I(xs, us) + A\(x) — A(f(x, v))

What conditions on A\(x)?

Strict Dissipativity
System strictly dissipative wrt the supply rate s(x, u) if 3 A(x) : X = R

A(f(x, 1)) = A(x) < =p(x =) + s(x, u),
V(x,u) e XxU

We are interested in s(x, u) = I(x, u) — I(xs, us)

This entails

L(x, 1) = I(x, u) = [(xs, us) + A(x) = A(F(x, ) > plx — x)
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The Linear Quadratic Case

LQ-EMPC

Consider a linear MPC problem

N—-1 T
. X X
Pn(A B, Q,R,S, Py) = argmin E |: Ui :| H[ ui :|+XA7PNXN

X0,UQs -+ XN k=0
st. xo—Xx =0,
Xk+1 — AXk — Buk =0.

with
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The Linear Quadratic Case

LQ-EMPC

Consider a linear MPC problem

N—-1 T
Pn(A, B, Q,R,S, Py) = argmin Z { Zi } H[ )Lji } + Xy Puxn

X0,UQs -+ XN k=0
st. xo—Xx =0,
Xk+1 — AXk — Buk =0.

with
_[@ sT
H=| 9
@ If H 3£ 0 this is an Economic MPC problem

@ When is it stabilizing?
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Inifinite Horizon Case

This is an (indefinite) LQR

D(A,B,Q,R,S) = {(P,K)|Q+A"PA— P — (ST + ATPB)K =0,
K=(R+B'PB)'(S+ B'PA),
p(A— BK) < 1}

Stability if (strict dissipativity for the LQ case):
S+B"PA R+ B'PB

Tha_ P T s
3P st M:{Q—i—A PA—P S +A PB]}O

-
One can enforce stability by adding { Z } T { )lj } to the cost and solving

min | T st. M+ T =0,
P, T
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One can modify the cost-to-go without changing the problem

Poo(A, B, Q,R,S) = Poo(A, B, Qs, R, Sp),
with
Q=Q+ ATPA—P
Rs =R+ B'PB
5,3 =S+ BTPA
Pr=P—-P
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@ Kp = K, i.e. the feedback matrix is unchanged!
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One can modify the cost-to-go without changing the problem

Poo(Az B7 Q7 st) - 7300(A7 B7 Qﬁ’: RIE‘:S,E’)7

with
Qp = Q+A"PA-P
Rs =R+ B'PB
5,3 =S+ BTPA
Pr=P—-P

NOTE:

@ Kp = K, i.e. the feedback matrix is unchanged!

@ Pp =0, i.e. the cost-to-go can be zero!
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One Can Pre-stabilize the System

i.e. use ux = vk — Kxi

Then
Pwo(A, B, Q,R,S) = Puo(Ax, B, Qx, R, Sk),
with
Agx = A— BK
Qi=Q-S"K-K'S+K'RK
Sk =S —RK
Py =P

If one uses the optimal feedback gain K = K:
@ Kk =0
@ The DARE becomes a Lyapunov Equation: Qx + AfPAx — P =0
@ R can be replaced by any Rx(> 0)
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Positive Definite LQR Formulation

Lyapunov Stability Theorem
If p(Ak) < 1, then

vV Q-0 JPL > 0 st QL+ AEPLAK — PL =0

This is also the DARE for (A, B) = Choose Qx,p, = Qr >~ 0
Then

Pk,p, =P — Py
Rk, = Rk + B"PLB
SK,pL = Sk + BTPLA

Rk can be chosen arbitrarily large = Pos. def. LQR for (Ax, B).

Pos. def. is preserved when transforming back to (A, B)
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What About MPC?

In the unconstrained case, the solution is given by the Discrete Riccati
Equation (DRE)

Rn(A B, Q,R,S, Pn) ={(Po, P1,...,Pn, Ko, ..., Kn-1)|
Pio1=Q+ATPA— (ST + ATPB)Ki—1
Ki—1=(R+ BTP«B) *(S+ BT PLA)}
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What About MPC?

In the unconstrained case, the solution is given by the Discrete Riccati
Equation (DRE)

Rn(A B, Q,R,S,Py) = {(Po,P1,...,Pn,Ko,...,Kn_1)|
Pio1=Q+A"PLA— (ST + ATPB)Ki1
Ki-1 = (R+ BT PB) (S + B" PLA)}

DRE equivalence

RN(Aa B7 Qa R757 PN) = RN(A7 B? Qa R757 PN)

Py—P=pPy—P,
R+B™PB=R+ B'"PB,
5+B"PA=S+B"PA

with P and P computed from D(A,B,Q,R,S) and D(A, B, Q, R, §)
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A Practical View on the Problem

Solve the following SDP
min 1P — 12+ 1 — 1)

""""" 23]

[4)
s
I:
Il

o I
Y 1y

0
0
+ATPA-P— (5T + ATPB)K =0,
R+ B"PB)K — (5+ B"PA) =0,
R+B"PB=R+B"PB,
S+B"PA=S+B"PA

=~ o>

This problem is convex!
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Look at the Steady State Properties
Lagrangian of steady state problem
L=1I(x,u) = A" (x — f(x, u))

Lagrangian Hessian:

S R |~ a(x,u2?

@ sT >’L
”*[ } o(x, u)?

X, Us
Local linearization

_ Of (x, u)

B
ou

Xs,Us Xs,Us
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Look at the Steady State Properties
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Look at the Steady State Properties

Lagrangian of steady state problem
L=1I(x,u) = A" (x — f(x, u))

Lagrangian Hessian:

o[ Q@ ST]_ o«
“ls R T ok,
Local linearization
of (x, u) Of (x, u)
A= B= 2\
ox - ou et

Problem: H £ 0 is indefinite!
Solution:

@ Check for stability of the local LQ approximation
@ Compute H,P > 0st. Ru(A B,Q,S,R,Py) =Rn(A B,Q,S5,R, Py)
@ Formulate a tracking NMPC scheme using H
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Example

@ System dynamics: X = {5(1 — x) — 0.4x, (discr.: 50 RK4 steps, A = 0.5)
@ Stage cost: /(x,u) = —2ux — 1.5u + 0.1(u — 4)?
@ Steady state: (xs, us) = (0.5,4)
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Example

System dynamics: X = {5(1 — x) — 0.4x, (discr.: 50 RK4 steps, A = 0.5)

@ Stage cost: /(x,u) = —2ux — 1.5u + 0.1(u — 4)?
@ Steady state: (xs, us) = (0.5,4)
.
0 | x =X 14.227 0.825 X — Xs
® Approx. EMPC: fix(x, u) = { u— u } { 0.825 0.066 | | u—u
@ Naive tracking: % (x, u) = (x — x5)® + (u — us)?
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Thank you for your attention!
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