Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint

Abstract : We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally-optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional inter-sequences inclusion constraint by adding directed infinite links between pixels of dependent image structures.
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2014, 23 (9), pp.3829-3840
Liste complète des métadonnées


https://hal.inria.fr/hal-01052543
Contributeur : Yuliya Tarabalka <>
Soumis le : lundi 28 juillet 2014 - 09:12:38
Dernière modification le : mercredi 14 décembre 2016 - 01:07:19
Document(s) archivé(s) le : mardi 25 novembre 2014 - 19:05:57

Fichier

2014_IEEETIP_Tarabalka.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01052543, version 1

Collections

Citation

Yuliya Tarabalka, Guillaume Charpiat, Ludovic Brucker, Bjoern Menze. Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2014, 23 (9), pp.3829-3840. <hal-01052543>

Partager

Métriques

Consultations de
la notice

372

Téléchargements du document

325