
HAL Id: hal-01054277
https://inria.hal.science/hal-01054277

Submitted on 5 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Time Efficient Dual-Field Unit for
Cryptography-Related Processing

Alessandro Cilardo, Nicola Mazzocca

To cite this version:
Alessandro Cilardo, Nicola Mazzocca. Time Efficient Dual-Field Unit for Cryptography-Related Pro-
cessing. 19th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), Oct 2008, Rhodes Island, India. pp.191-210, �10.1007/978-3-642-12267-5_11�. �hal-01054277�

https://inria.hal.science/hal-01054277
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Time Efficient Dual-Field Unit for

Cryptography-related Processing

Alessandro Cilardo and Nicola Mazzocca

Università degli Studi di Napoli Federico II
Dipartimento di Informatica e Sistemistica

via Claudio 21, 80125 Naples, Italy
acilardo@unina.it

Computational demanding public key cryptographic algorithms, such as Rivest-
Shamir-Adleman (RSA) and Elliptic Curve (EC) cryptosystems, are critically
dependent on modular multiplication for their performance. Modular multipli-
cation used in cryptography may be performed in two different algebraic struc-
tures, namely GF (N) and GF (2n), which normally require distinct hardware
solutions for speeding up performance. For both fields, Montgomery multipli-
cation is the most widely adopted solution, as it enables efficient hardware
implementations, provided that a slightly modified definition of modular mul-
tiplication is adopted. In this paper we propose a novel unified architecture
for parallel Montgomery multiplication supporting both GF (N) and GF (2n)
finite field operations, which are critical for RSA ad ECC public key cryptosys-
tems. The hardware scheme interleaves multiplication and modulo reduction.
Furthermore, it relies on a modified Booth recoding scheme for the multipli-
cand and a radix-4 scheme for the modulus, enabling reduced time delays even
for moderately large operand widths. In addition, we present a pipelined archi-
tecture based on the parallel blocks previously introduced, enabling very low
clock counts and high throughput levels for long operands used in cryptographic
applications. Experimental results, based on 0.18µm CMOS technology, prove
the effectiveness of the proposed techniques, and outperform the best results
previously presented in the technical literature.

1 Introduction

The increasing centrality of networking and Internet applications are stimulat-
ing an ever-growing demand for high-performance implementations of crypto-
graphic algorithms and protocols. Two widely adopted public-key cryptosys-
tems, in particular, are the Rivest-Shamir-Adleman (RSA) [11] and the Elliptic
Curve (EC) [1] cryptosystems. While various standardization bodies recom-
mend prime fields GF (N) or binary extension fields GF (2n) for elliptic curve
cryptosystems, RSA cryptography is essentially based on integer modular arith-
metic, similar in its implementation to GF (N) operations. Both types of finite
fields have in common that the multiplication of elements implies a reduction
operation, either modulo a prime N or modulo an irreducible binary polynomial

2 Alessandro Cilardo and Nicola Mazzocca

N(x) of degree n. The so-called Montgomery algorithm [9] has proved to be the
most effective implementation technique for modular multiplication [17, 2]. It
is in fact based on a slightly different definition of the modular product, which
enables particularly efficient implementations.

Originally introduced for integer numbers (and thus for GF (N) arith-
metic), Montgomery multiplication has been effectively extended to binary
fields GF (2n) [8]. As a consequence, during the last years several works
have addressed the problem of implementing unified arithmetic blocks, suit-
able for computing operations in both fields using the same underlying hard-
ware [14, 4, 18, 6, 13, 12].

In this paper, we propose a novel unified architecture for parallel Mont-
gomery multiplication supporting both GF (N) and GF (2n) operations. The
hardware unit interleaves multiplication and modulo reduction in a parallel
scheme. Furthermore, it relies on a modified Booth recoding technique for the
multiplicand and a radix-4 scheme for the modulus, enabling reduced time de-
lays for moderately large operand widths. We also present a pipelined architec-
ture based on the parallel component previously introduced, enabling very low
clock counts and high throughput levels for long operands used in cryptographic
applications. Experimental results, based on 0.18µm CMOS technology, prove
the effectiveness of the proposed techniques, and outperform the best results
previously presented in the technical literature.

The paper is structured as follows. Section 2 provides a brief introduction to
the properties of Montgomery multiplication algorithm. Section 3 presents the
state-of-the-art of architectures suitable for unified integer/GF (N) and GF (2n)
arithmetic. Section 4 describes the proposed parallel arithmetic unit support-
ing unified Montgomery multiplication. Section 5 presents a high-throughput
pipelined core based on the previously introduced parallel multiplier. Section 6
presents our results and compares them to the state-of-the-art. Section 7 con-
cludes the paper with some final remarks.

2 Modular Multiplication Algorithm

A slight variant of standard modular multiplication, Montgomery multiplication
performs the following operation:

A · B · R−1 mod N

where R = 2n is a power of two and n is equal to, or slightly larger than
the number of bits in the modulus N , ensuring R > N . The value R−1 is
the inverse of R modulo N , i.e. a number such that R−1R mod N = 1. In
order for such a number to exist, it suffices that gcd(N, R) = 1. Since in both
Elliptic Curve cryptography based on prime fields and in RSA cryptography N
is always an odd number, this condition is always satisfied when R is a power of
two. Montgomery multiplication can be performed with the following algorithm.

Time Efficient Dual-Field Unit for Cryptography-related Processing 3

Algorithm 1 Montgomery Modular Multiplication

Input:

N , R and Ñ such that R · R−1 − N · Ñ = 1,
A,B < N

Output:

P ≡ A · B · R−1 mod N , P < N
Algorithm:

1. Q = AB · Ñ mod R

2. P = AB+Q·N
R

3. if P > N then P = P − N

The above algorithm returns a quantity P which is congruent with AB ·R−1

modulo N (step 2), and is less than N (at step 2, P = AB+Q·N
R

< N ·N+Q·N
R

<
[

N
R

+ Q
R

]

· N < 2N). The multiple Q · N of the modulus is defined at step 1 in

such a way as to make the quantity AB + Q · N divisible by R [9].
An interesting property enabled by Montgomery multiplication is the pos-

sibility to work on N -residues of numbers, defined as A = A ·R mod N . It can
be easily seen that the Montgomery product of two numbers in N -residue form
is still in N -residue form: A ·B ·R−1 mod N = AR ·BR ·R−1 mod N = (AB) ·
R mod N = AB. This also holds true for modular addition: (A + B) mod N =
A + B. All operations used in RSA and EC cryptography can be reduced to
a composition of modular multiplications and additions, and can thus always
handle operands in Montgomery form.

Fig. 1. An example of Montgomery multiplication execution.

4 Alessandro Cilardo and Nicola Mazzocca

Notice that Algorithm 1 requires a magnitude comparison (Step 3) in or-
der to ensure the result is actually less than the modulus N . However, when
many consecutive multiplications are to be performed, we can allow interme-
diate results to be in the range [0, 2N [with a proper choice for R. In fact, if
we choose R > 4N , it can be easily seen that the reduction algorithm accepts
multiplicands A,B < 2N , i.e. not necessarily less than N : P = AB+Q·N

R
<

2N ·2N+Q·N
R

<
[

4N
R

+ Q
R

]

· N < 2N , so the algorithm preserves the invariant

that inputs and output are less than 2N . By avoiding magnitude comparison,
the above version of Montgomery algorithm greatly improves performance, so
we will refer to this version of the algorithm in the following. Figure 1 provides
an example of execution of the Montgomery algorithm variant exploiting the
above property.

The central operation of Montgomery algorithm, i.e. the computation of the
product A · B and the multiple of the modulus Q · N , can be implemented in
a very efficient way, as it is suitable for deeply pipelined and systolic imple-
mentations [17, 16, 2, 10]. For scalable implementations, a natural choice is to
partition operands into words, and process them separately. Precisely, we will
refer in this paper to the so-called finely integrated operand scanning (FIOS)
method [7], reported below.

Algorithm 2 FIOS method for w-bit words

Input:

A =
∑m−1

i=0 Ai(2
w)i, B =

∑m−1
i=0 Bi(2

w)i,

N =
∑m−1

i=0 Ni(2
w)i, Ñ =

∑m−1
i=0 Ñi(2

w)i,

with Ai, Bi, Ni, Ñi < 2w and
0 ≤ A,B < 2N , m · w ≥ 2 + ⌈log2 N⌉ (i.e. 2m·w > 4N)

Output:

P ≡ A · B · 2−n mod N , with n = m · w
Algorithm:

1. P = 0

2. for j = 0 to m − 1

3. C = 0

4. Qj = (P0 + BjA0)Ñ0 mod 2w

5. for i = 0 to m − 1

6. S := Pi + BjAi + QjNi + C

7. if (i 6= 0) then Pi−1 := S mod 2w

8. C := S/2w

9. Pm−1 := C

The w-bit words of operands A, B, and N are processed in two nested loops.

During the execution of the algorithm, temporary variables S and C can be
stored in a 2w + 1 bit and w + 1 bit register, respectively, while variable P

Time Efficient Dual-Field Unit for Cryptography-related Processing 5

needs a full precision register since it is shared among consecutive “rows” (i.e.,
m iterations of the inner loop with constant j).

Authors in [8] extended Montgomery multiplication to binary fields GF (2n),
by adopting polynomial representation and replacing the factor R−1 = 2−n with
x−n. With polynomial representation, GF (2n) field elements can be handled as
binary polynomials and multiplication can be performed modulo an irreducible
polynomial N(x). Addition of GF (2n) elements is performed as a bitwise XOR
of their components, while multiplication/division by powers of x are performed
by left/right-shifting an element’s components. As a result, the structure and
the basic operations of Montgomery algorithm in GF (2n) turn out to be very
similar to the integer/GF (N) case. Essentially, the control-flow of the algorithm
(including the above FIOS variant) remains unchanged, shift operations are also
identical, while integer addition is replaced by a bitwise XOR. The GF (2n)
counterpart of Algorithm 2 is presented, for example, in [13].

3 State-of-the-art in unified field arithmetic

Since the structure of Montgomery variants for GF (N) and GF (2n) are similar,
several authors have proposed unified hardware solutions for computing both
operations with the same processing unit. To enable this approach, Savaş et
al. proposed in [14] a basic building block able to perform a one-digit addition
in both GF (N) and GF (2n) fields. The basic component is the Dual Field

Adder, i.e. an ordinary full adder whose carry input can be disabled, so that
the sum output is simply the XOR of the two input bits (i.e., their GF (2)
sum). Figure 2 shows a possible implementation of such a component. Based on

Fig. 2. An implementation of the Dual Field Adder [5, 6].

a similar idea, Großschädl [4] proposed a bit-serial unified multiplier processing

6 Alessandro Cilardo and Nicola Mazzocca

the multiplicand in full precision. Montgomery modular reduction is computed
by interleaving the addition of partial products and the modulus. A hardware
solution for dual-field arithmetic is also presented by Wolkerstorfer in [18]. The
author introduces a low power design enabling short critical paths and high
clock frequencies by using carry save adders. In [6], the authors present the
design of a low-power multiply/accumulate (MAC) unit for efficient arithmetic
in finite fields. The unit combines integer and polynomial arithmetic into a single
functional unit supporting both GF (N) and GF (2n) fields. The emphasis is
mostly put on power consumption, as the authors show that a properly designed
unified multiplier may consume significantly less power if used in polynomial
mode compared to integer mode.

The fastest solution for unified field multiplication was proposed by Satoh
and Takano [13]. They present a scalable elliptic curve cryptographic processor
supporting both GF (N) and GF (2n) finite fields. The core of the processor
is a parallel dual-field multiplier, based on a Wallace tree scheme. The delay
for a multiplication is logarithmic in the input-size, although it is different for
the two types of fields. In fact, a sub-portion of the Wallace tree is used for
obtaining a GF (2n) product, while the whole structure, including a fast carry
propagation adder, is required for GF (N) operations. The authors evaluate dif-
ferent parallelisms, developing the multiplier for word sizes of 8, 16, 32, or 64
bits, depending on the desired trade-off between area requirements and perfor-
mance. One advantage of their approach is that it does not require any special
full adder, such as the dual-field adder, unlike works in [14, 6, 4] and others.
This makes it possible to optimize the partial product addition network. Fur-
thermore, at a higher level, the performance of point multiplication over an
elliptic curve is improved by converting on-the-fly the integer multiplicand in a
redundant form.

Finally, a recent solution proposes a fast modular arithmetic-logic unit [12]
that is scalable in the digit size and the field size. The datapath is based on
chains of carry save adders to speed up arithmetic operations over large inte-
gers in GF (N). This enables efficient execution of modular multiplication and
addition/subtraction. The unit is prototyped in FPGA technology achieving in-
teresting throughput levels, although inferior to the ASIC-based work presented
in [13].

4 Parallel Montgomery Multiplier

In this section, we propose a novel unified architecture for parallel Montgomery
multiplication supporting both GF (N) and GF (2n) operations. Unlike previ-
ously proposed parallel multipliers, such as the solution in [13, 6], the hardware
unit merges multiplication and Montgomery reduction, allowing a word-level
modular multiplication to be performed is a single cycle. The proposed multi-
plier relies on a modified Booth recoding scheme for integer multiplication, and
a radix-4 scheme for GF (2n) multiplication and Montgomery reduction. As a

Time Efficient Dual-Field Unit for Cryptography-related Processing 7

result, the number of partial products to be added in the parallel unit can be
approximately halved, resulting in both reduced area and improved speed.

The basic full-precision algorithm for a radix-4 digit-serial interleaved Mont-
gomery multiplication is given below (see for example [15]). For the sake of
clarity, we refer to the integer/GF (N) version of the algorithm. As explained
in Section 2, the extension to binary fields GF (2n) is straightforward, provided
that a dual-field data path is available.

Algorithm 3 Radix-4 Montgomery Modular Multiplication

Input:

2 < N < 4k,
Ñ such that 4k+1 · 4−(k+1) − N · Ñ = 1,
A =

∑k

i=0 Ai4
i < 2N , B =

∑k

i=0 Bi4
i < 2N , with Ai, Bi < 4

Output:

P ≡ A · B · 4−(k+1) mod N , P < 2N
Algorithm:

1. P = 0

2. for i = 0 to k

3. Qi = (P0 + Bi · A0) · Ñ0 mod 4

4. P = (P + Bi · A + Qi · N)/4

It can be easily proved that, by using k+1 iterations (i.e., by computing A ·B ·

4−(k+1) mod N , A,B < 2N) the final value of P is still less than 2N . In fact, we

have P = A·B+Q·N

4k+1 <
[

4N
4k+1 + Q

4k+1

]

· N < 2N , where Q =
∑k

i=0 Qi4
i. Notice

that Qi only depends on the two least significant bits of (P0 + Bi · A0) and N ,
so it can be computed by a simple circuit or a look-up table. Its value is defined
in such a way as to make the least significant digit of (P +BiA+QiN)4 zero at
each iteration. Figure 3 gives an example of radix-4 Montgomery multiplication
execution.

In the following, we will call AA(i) and NN (i) a partial product Bi · A and
a multiple of the modulus Qi · N , respectively. In the case of radix-4, Bi and
Qi are 2-bit numbers. Thus, the value sets of AA(i) and NN (i) are as follows:

AA(i) ∈ {0, A, 2A, 3A}, NN (i) ∈ {0, N, 2N, 3N}

requiring two extra adders to compute 3A and 3N on the fly. In the case of
GF (2n) operations, using polynomial representation, Bi(x) and Qi(x) are poly-
nomial of degree less than 2, so the value sets of AA(i)(x) and NN (i)(x) are as
follows:

AA(i)(x) ∈ {0, A(x), xA(x), xA(x) + A(x)}

NN (i)(x) ∈ {0, N(x), xN(x), xN(x) + N(x)}

In standard multipliers, Booth recoding scheme is normally used in order
to avoid the expensive calculation of the multiple 3A in the AA(i) value set.
The recoding scheme takes the bits of the multiplier (b2i+1, b2i, b2i−1) as input

8 Alessandro Cilardo and Nicola Mazzocca

Fig. 3. An example of radix-4 Montgomery multiplication execution.

Table 1. Partial product generation for integers and binary polynomials.

Field Three Recoded Recoded Control
Select input bits digit partial product signals

fsel b2i+1 b2i b2i−1 Bi AA(i) inv trp shl

1 0 0 0 0 0 − 0 0

1 0 0 1 1 +A 0 1 0

1 0 1 0 1 +A 0 1 0

1 0 1 1 +2 +2A 0 0 1

1 1 0 0 −2 −2A 1 0 1

1 1 0 1 −1 −A 1 1 0

1 1 1 0 −1 −A 1 1 0

1 1 1 1 0 0 − 0 0

0 0 0 0 0 0 − 0 0

0 0 0 1 0 0 − 0 0

0 0 1 0 1 A(x) 0 1 0

0 0 1 1 1 A(x) 0 1 0

0 1 0 0 x xA(x) 0 0 1

0 1 0 1 x xA(x) 0 0 1

0 1 1 0 x + 1 xA(x) + A(x) 0 1 1

0 1 1 1 x + 1 xA(x) + A(x) 0 1 1

and generates a recoded AA(i) according to Table 1, where b
−1 is defined to be

0. As a consequence, Booth recoding scheme transforms the value set of AA(i)

into {−2A,−A, 0, +A, +2A}. All elements in the set are calculated with sim-
ple operations such as bit inversion and/or bit shift. For GF (2n) operations,

Time Efficient Dual-Field Unit for Cryptography-related Processing 9

elements are handled as binary polynomials. In this case, a pure radix-4 poly-
nomial multiplication is adopted. In other words, multiples AA(i)(x), calculated
as in Table 1, only depend on radix-4 digits (b2i+1, b2i).

For the proposed parallel Montgomery multiplier, in addition to summing
partial products AA(i), we also need to sum modulus multiples NN (i) (or
NN (i)(x) for GF (2n) multiplication). In [15] authors adopt a method named
Montgomery recoding scheme to change the possible values of NN (i) so that
they can all be obtained by simple shifts and inversions, similar to Booth re-
coding. Let (sp1, sp0) be the 2 bits in the least significant digit (LSD) of the
partial product to be reduced SP = P+AA and (n1, n0) be the 2 bits in the LSD
of the modulus N . According to the input condition that N has to be odd, n0 is
always 1. Then, Montgomery recoding scheme takes (sp1, sp0, n1) as input and
generates a recoded NN (i) value according to Table 2, where Qi represents the
recoded quotient digit for an NN (i) multiple at the i-th iteration. Montgomery
recoding scheme transforms the value set of NN into {−N, 0, +N, +2N}.

In polynomial mode the addition becomes a bitwise XOR. For this reason,
we need to sum a different value of NN (i)(x) in order to reduce the least
significant digits (sp1, sp0)2 of SP (x) = P (x) + AA(x). Notice that, in order to
perform modular multiplication in GF (2n) with the same recoding scheme, we
use an additional control signal, fsel (field select), which allows us to switch
between integer-mode (fsel = 1) and polynomial mode (fsel = 0). In Table 2
we show the unified Montgomery recoding scheme, including polynomial mode
for GF (2n).

Table 2. Montgomery moduli generation for integers and binary polynomials.

Field Three Recoded Recoded Control
Select input bits quotient modulus signals

fsel sp1 sp0 n1 Qi NN (i) inv trp shl

1 0 0 0 0 0 − 0 0

1 0 0 1 0 0 − 0 0

1 0 1 0 −1 −N 1 1 0

1 0 1 1 +1 +N 0 1 0

1 1 0 0 +2 +2N 0 0 1

1 1 0 1 +2 +2N 0 0 1

1 1 1 0 +1 +N 0 1 0

1 1 1 1 −1 −N 1 1 0

0 0 0 0 0 0 − 0 0

0 0 0 1 0 0 − 0 0

0 0 1 0 1 N(x) 0 1 0

0 0 1 1 x + 1 xN(x) + N(x) 0 1 1

0 1 0 0 x xN(x) 0 0 1

0 1 0 1 x xN(x) 0 0 1

0 1 1 0 x + 1 xN(x) + N(x) 0 1 1

0 1 1 1 1 N(x) 0 1 0

10 Alessandro Cilardo and Nicola Mazzocca

Due to the two recoding schemes, it is easy to calculate all the elements in
the value sets of AA(i) and NN (i). Notice that, for integer multiplication, this
technique changes the range of the Montgomery algorithm output, which may
now be negative.

The core of the proposed parallel Montgomery multiplier is made of a se-
quence of Partial Product Generators (PPGs) and Montgomery Modulues Gen-

erators (MMGs), wired as in Figure 4. Their outputs are summed together,
making up an unrolled implementation of the loop in Algorithm 3.

Fig. 4. The basic row in the proposed radix-4 parallel Montgomery multiplier.

Fig. 5. The internal structure of a Partial Product Generator (PPG) [6]. A similar
circuit is used for the Montgomery Modulus Generator (MMG).

Time Efficient Dual-Field Unit for Cryptography-related Processing 11

The structures of PPGs and MMGs are identical, and are similar to that
described in [6]. The corresponding circuit is depicted in Figure 5. PPGs and
MMGs are controlled by an encoder via the three signals inv (invert), trp
(transport), and shl (shift left), which represent the recoded digit Bi and the
recoded quotients Qi, respectively. Precisely, when inv = 1, the corresponding
modulus is negative, i.e. NN (i) = −N . Control signal trp = 1 means NN (i) =
N (no left-shift). On the other hand, when shl = 1, a 1-bit left-shift has to be
performed, i.e. NN (i) = 2N . Finally, NN (i) = 0 is generated by trp = shl = 0.
Notice that in GF (2n) mode, i.e. when fsel = 0, the input value inv = 0,
trp = 1, shl = 1 generates the multiple xN(x) + N(x) needed for radix-4
Montgomery reduction. Similar considerations hold true for the Partial Product
Generator used to calculate the values of AA(i).

Selection signals inv, trp, and shl depend on the multiplier digit bits
b2i+1, b2i, b2i−1, in the case of PPG, and the two least significant bits (sp1, sp0)
of SP and n1, in the case of MMG, according to the equations below, derived
from Table 2. For PPGs, selection signals can be written as follows:

inv = fsel · b2i+1

trp = fsel · b2i + b2i · b2i−1 + fsel · b2i · b2i−1

shl = fsel · b2i+1 + b2i+1b2i · b2i−1 + fsel · b2i+1 · b2i · b2i−1

(1)

For MMGs, selection signals can be written as follows:

inv = fsel · sp1 · n1 + fsel · sp1 · sp0 · n1

trp = sp0

shl = sp1 · sp0 + fsel · sp1 · n1 + fsel · sp1 · sp0 · n1

(2)

A parallel (w × w)-bit multiplier for signed/unsigned modular multiplica-
tion contains ⌊w/2⌋ + 1 PPGs and ⌊w/2⌋ + 1 MMGs and the same number of
PPG/MMG encoder circuits generating selection signals inv, trp, and shl.

Partial products AA(i) and moduli NN (i) are w + 2 bits long as they are
represented in two’s complement form. Besides a bitwise complement of their
binary representation, negative multiples need a 1 to be added at the least
significant position of the partial product. Let ca(i), cn(i) denote such bits. We
will thus have ca(i) = 1 and cn(i) = 1 when the partial products AA(i) and the
Montgomery moduli NN (i) are negative, respectively.

Notice that the parallel multiplier handles internal operands in carry-save
form to reduce the architectural critical path. Special care must be put, in this
case, for summing negative numbers. In principle, we would need to sign extend
possibly negative partial products AA(i) and moduli NN (i) to full 2w-bit length,
causing a large waste of full-adders in each row of the multiplier. By recoding
the addends, however, we can have only positive-weight bits to be added in the
multiplier, provided that a suitable constant K is added along with them as the
last row in the multiplier array [3]. Let P = (−2n)pn +

∑n−1
i=0 2ipi be a two’s

complement number. Recoding works as follows:

12 Alessandro Cilardo and Nicola Mazzocca

P = (−2n)pn +

n−1
∑

i=0

2ipi = −2n +

[

2npn +

n−1
∑

i=0

2ipi

]

where all number’s components have a positive weight, while the only negative
term is constant. If we have many partial products P to be summed together,
we can thus recode them as shown above, sum their positive components pi

(including pn) by adopting a usual array multiplier, separate their constant
terms −2n and accumulate them in a single full-length constant K to be added
as the last row.

Some further optimizations can be applied to reduce the architectural critical
path of the design. Let (S,C) denote a carry-save pair. In a non-optimized
Montgomery multiplier with modified Booth recoding, the sum of the partial
products and the Montgomery moduli in the carry-save stages (CSAs) proceeds
as follows:

· · ·
(

Stmp(i), Ctmp(i)
)

= AA(i) + S(i) + C(i)
(

S(i+1), C(i+1)
)

= N (i) + Stmp(i) + Ctmp(i)
(

Stmp(i+1), Ctmp(i+1)
)

= AA(i+1) + S(i+1) + C(i+1)

· · ·

(Stmp(i), Ctmp(i)) is given by the sum of the i-th recoded partial product AA(i)

and the previous AA(j), 0 ≤ j < i with the recoded moduli NN (j), 0 ≤ j < i.
Recoding of partial products and moduli, however, also implies the sum of the
sign bits ca and cn. In principle, this would require the use of two additional
CSA stages. Indeed, since ca and cn are in the right-most positions of partial
products and moduli, we can juxtapose them with other partial products and
moduli down in the multiplier array, since these are left-shifted and so leave
free slots on the right. For the sake of clarity, Figure 6 gives a practical example
of this organization, for the case w = 6. The generic stage within the proposed
multiplier scheme performs the following operation:

· · ·
(

Stmp(i), Ctmp(i)
)

= S(i−1) + C(i−1) + AA(i+1) + ca(i)
(

S(i), C(i)
)

= Stmp(i) + Ctmp(i) + NN (i) + cn(i)

· · ·

Overall, we need:

– ⌊w/2⌋ + 1 CSA stages to compute Stmp(i), Ctmp(i)

– ⌊w/2⌋ + 1 CSA stages to compute S(i), C(i)

The main optimizations adopted consist in (see Figure 6):

– reorganizing the sum of the LSB ca(i) and cn(i) of the output carry vector in
order to avoid additional CSA stages. Notice that, although interchangeable
for the accumulation of partial products and moduli, bits ca(i) are needed for

Time Efficient Dual-Field Unit for Cryptography-related Processing 13

Fig. 6. Addition of Partial Products and Montgomery Moduli with Booth Recoding
in an optimized scheme for w = 6.

the determination of the next modulus NN (i+1) to be summed. The MMG

14 Alessandro Cilardo and Nicola Mazzocca

selection circuit must take this into account, and read also the bit ca(i) to
anticipate the evaluation of NN (i+1)

– postponing the sum of the least significant bits {s
(i)
1 , s

(i)
0 , c

(i)
0 } of S(i) and C(i)

respectively, to save area and CSA stages. Similar to the previous optimiza-
tion, these operations imply a complication of the MMG selection network,
which needs more inputs to infer the values of bits sp1, sp0, handled here in
redundant, carry-save form

– reversing the order of the sum of AA(i), NN (i), in order to improve the critical
path. This operation does not alter the computation of NN (i), due to the
encoding network previously described, which tests the bits needed for the
computation of the modulus before the addition of the AA(i+1) vector.

After the final stage, we need a Dual-Field Carry-Look-Ahead adder (not
shown in Figure 6) that converts the Carry/Sum pair back to non-redundant
form. The structure of the Dual-Field Carry Look-Ahead is depicted in Figure 7.
The essential idea is to disable carry generation throughout the adder structure
in GF (2n) mode, i.e. when fsel = 0. In this case, all internal carry signals Ci

are zero, independent of propagate conditions Pi. As a result, output bits Si

coincide with propagate signals Pi = ai ⊕ bi, i.e. a GF (2) sum. The fundamen-
tal advantage of this solution is that it enables the reuse of highly-optimized
fast carry look-ahead circuits which are normally available for a given target
technology.

5 Pipelined Montgomery Multiplier

Previous works (e.g. Satoh and Takano’s 64-bit multiplier [13]) suggest that it is
normally convenient to adopt a large parallelism for achieving higher through-
put levels. Our parallel architecture has a relatively complex selection network
and a linear critical path, which results in large time delays as the word size
increases. In order to achieve high throughput levels and propose a scalable
scheme, we present in this section a pipelined architecture, using the parallel
unit as the basic building block. The architecture can process single words of w
bits. By partitioning long operands into w-bit words, a full-length Montgomery
multiplication can be carried out based on the FIOS variant of the Montgomery
algorithm (see Algorithm 2).

We implemented the unit for a bit length w of 64 bits. Figure 8 shows the
internal structure of a 64x64-bit unit composed of eight pipelined modules. The
“smaller” multipliers on the right are in fact four instances of the parallel unit
presented in the previous section: in other words, they can generate the recoded
multiples (i.e. Qi recoded as the signals shl, trp, inv) of the modulus N and
the multiplicand A for the whole row, in addition to adding them. The four
“larger” multipliers on the left side of Figure 8, on the other hand, only need
to sum the multiples of N and A, as determined by right-multipliers. Since left-
multipliers are much simpler in their structure and have consequently a shorter

Time Efficient Dual-Field Unit for Cryptography-related Processing 15

Fig. 7. Dual-Field Carry Look-Ahead adder.

delay, they are designed so that they process longer data. Furthemore, right-
multipliers also need an additional input signal, called first word, which can
enable/disable the generation of multiples of the modulus Qi. This is necessary
to process intermediate words during a row scanning of the FIOS algorithm
(steps 5-8 in Algorithm 2), where we need to process new w-bit words in the
pipelined unit reusing a previously generated value of Qi.

As we use two’s complement representation in the carry-save form, it is de-
sirable to keep intermediate sums in carry-save form and convert the final result
back to binary form only at the end of the pipelined structure. We thus need
to transfer carry-save numbers between subsequent multiplier modules having
different output/input sizes. This required the use of a suitable technique [19]
to sign-extend the carry-save pair and properly propagate sign information.

Figure 9 describes how the pipelined unit is used to process multi-word
operands, showing how the portions of the operands are scheduled in the
pipeline. Numbers in parentheses indicate which of the eight blocks in the unit
works on which portion of operands A, N , and B at which clock cycle (starting
from cycle 1 for the top right-most multiplier). The unit has a latency of eight
cycles, introducing a stall at the end of each row only if the number of words m
is less than 8. This makes the unit particularly suitable for high-performance
multiplication on large multi-word operands, when many words on the same

16 Alessandro Cilardo and Nicola Mazzocca

Fig. 8. Pipelined architecture of the arithmetic core. Superscript numbers in paren-
theses indicate the different portions into which a single w-bit word is partitioned
inside the pipelined unit.

row are to be processed consecutively. The throughput of the architecture is
one multiplication word per clock cycle in this case.

Right modules in Figure 8 have a 16× 16 bit size, while left modules have a
48×16 bit size. The architecture is designed so that the single blocks, especially
the smaller right-multipliers, can be optimized to minimize the clock period.
Notice that, with a slight modification to the scheme of Figure 8, the first and
the last row (possibly connected to an external bus) may be designed with a
smaller height than the multipliers in the second and third row, so as to balance
the delay of each stage in the pipeline. The carry-save stages are followed by a
Dual-Field Carry-Look-Ahead adder, not shown in Figure 8, converting results
back to the non-redundant form.

The overall architecture of the dual-field multiplication unit is shown in
Figure 10. From the scheme in Figure 9 it is clear that at the beginning of

Time Efficient Dual-Field Unit for Cryptography-related Processing 17

............

............

(1)(2)

(3)(4)

(5)(6)

(7)(8)

(2)(3)

(4)(5)

(6)(7)

(8)(9)

(m)(m+1)

(m+3)

(m+5)

(m+7)

(m)+2

(m)+4

(m)+6

(m)+8

(m+2)

(m+4)

(m+6)

(m)+1

(m)+3

(m)+5

(m)+7

............

............

word

w
o
rd

A /Nm-1 m-1 A /N1 1 A0/N0

B0

B1

Fig. 9. Scheduling for a multi-word Montgomery multiplication. Ai, Ni, and Bj are w-
bit words. Word sub-portions enter the pipelined w-bit unit according to the schedule
indicated in parentheses.

Fig. 10. Overall architecture of the dual-field multiplication unit

each row we need to drive in the unit three different words, namely A0, N0,
and Bj , while the words of the intermediate result P are stored internally in a
dedicated memory. This is the only case when we need three concurrent accesses
to the external memory. To overcome this problem and limit the number of
external buses, we observe that it is convenient to store the first word of the
modulus N , N0, in an internal register. This trick only requires w additional

18 Alessandro Cilardo and Nicola Mazzocca

flip-flops and some selection logic, independent of the full size of the operands
and the modulus. N0 is stored before starting a multiplication (or a sequence of
multiplications sharing the same modulus). As a consequence, at the beginning
of each row in the multiplication pipeline we only need A0 and Bj , while for the
subsequent words we need Ai and Ni (Bj is constant through the row), which
are driven into the multiplication unit through the same pair of buses.

6 Experimental Results and Comparisons

The pipelined multiplier core of Figure 8 was described in VHDL and then syn-
thesized for a CM0S 0.18µm standard cell library technology by using Cadence
Build Gates synthesis tool. Post-synthesis area requirements are estimated to
be 1316kµm2, while the minimum clock period is 12.2ns.

Although there are different related works presenting unified Montgomery
multiplication (see Section 3), we only compare our results with the multiplier
introduced in [13], since it achieves the highest throughput among the various
works available in the literature. Both their work and ours are synthesized as
a CMOS ASIC, but the design in [13] relies on a 0.13µm technology, more
advanced than the 0.18µm target used in our design. When implemented in the
same technology, our solution is thus likely to enable even better improvements
than emphasized in the following discussion. The table below reports some
results referred to integer (i.e. GF (N)) modular multiplication for different
operand lengths, choosing the field sizes indicated by NIST standards for elliptic
curve cryptography. Performance improvements are especially evident in terms
of clock counts.

Satoh and Takano [13] This work

ASIC 0.13µm ASIC 0.18µm

clock period: 7.26 ns clock period: 12.2 ns

GF (N) clock throughput clock throughput
field
size

count [Mbit/s] count [Mbit/s]

192 45 587.7 27 582.9
224 66 467.5 36 510.0
256 66 534.3 36 582.9
284 91 429.9 45 517.3
521 231 310.7 90 474.5

Authors in [13] emphasize that a higher frequency could be used if the unified
multiplier were used only in GF (2n) mode, since the output of their unit is
connected, in this case, to a subportion of the Wallace tree in the multiplier. If
a dual clock frequency were allowed, GF (2n) operations would be worse in our
case, while remaining superior for the more critical integer/GF (N) arithmetic.
In the case a dual frequency implementation is not possible, on the other hand,
our multiplier has better performance also for GF (2m), and comparisons with

Time Efficient Dual-Field Unit for Cryptography-related Processing 19

the multiplier in [13] appear similar to those given in the above table for the
integer/GF (N) case.

7 Conclusions

The approach presented in this paper, based on dual-field parallel Montgomery
multiplication, proves to be a promising choice, especially for the reduction
in clock count. As a future work, we plan to study new techniques to further
reduce the delay of the parallel Montgomery unit, described in Section 4, thereby
improving the clock period and the throughput achievable by the pipelined unit.

Acknowledgements

This work was partially supported by Regione Campania and Ditron S.R.L. in
the framework of “Progetto Metadistretto del settore ICT - Misura 3.17: Sis-
tema di comunicazione per l’integrazione delle informazioni nella distribuzione
commerciale dei punti vendita”.

References

1. Blake IF, Seroussi G, Smart NP (1999), Elliptic Curves in Cryptography. Cam-
bridge University Press

2. Blum T, Paar C (2001) High-Radix Montgomery Modular Exponentiation on
Reconfigurable Hardware. IEEE Transactions on Computers 50:759–764

3. Burgess N (1990) Removal Of Sign-Extension Circuitry From Booth’s Algorithms
Multiplier-Accumulators. Electronics Letters 26:1413–1415

4. Großschädl J (2001) A bit-serial unified multiplier architecture for finite fields
GF (p) and GF (2n). In Cryptographic Hardware and Embedded Systems: Pro-
ceedings of CHES’01. Lecture Note in Computer Science, Springer-Verlag,
2162:206–223

5. Großschädl J, Kamendje GA (2003) Instruction set extension for fast elliptic
curve cryptography over binary finite fields GF (2m). In Proceedings of the 14th
IEEE Int. Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP 2003), IEEE Computer Society Press, 455-468.

6. Großschädl J, Kamendje GA (2003) Low Power Design of a Functional Unit
for Arithmetic in Finite Fields GF (p) and GF (2m). In Information Security
Applications - WISA’03. Lecture Notes in Computer Science, Springer-Verlag,
2908:227–243

7. Koç ÇK, Acar T, Kaliski, BS (1996) Analyzing and Comparing Montgomery
Multiplication Algorithms. IEEE Micro 16:26–33

8. Koç ÇK, Acar T (1998) Montgomery Multiplication GF (2n). Designs, Codes and
Cryptography 14:57–69

9. Montgomery PL (1985) Modular multiplication without trial division. Mathe-
matics of Computation, 44:519-521

20 Alessandro Cilardo and Nicola Mazzocca

10. Örs SB, Batina L, Preneel B, Vandewalle J (2003) Hardware Implementation
of a Montgomery Modular Multiplier in a Systolic Array. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS03) 184b

11. Rivest RL, Shamir A, Adleman L (1978) A Method for obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21:120–126

12. Sakiyama K, Preneel B, Verbauwhede I (2006) A Fast Dual-Field Modular Arith-
metic Logic Unit and its Hardware Implementation. In Proc. IEEE International
Symposium on Circuits and Systems (ISCAS 2006) 787-790

13. Satoh A, Takano K (2003) A Scalable Dual-Field Elliptic Curve Cryptographic
Processor. IEEE Transanctions on Computers 52:449–460

14. Savaş E, Tenca AF, Koç Ç.K (2000) A Scalable and Unified Multiplier Archi-
tecture for Finite Fields GF (p) and GF (2m). In Cryptographic Hardware and
Embedded Systems: Proceedings of CHES’00. Lecture Note in Computer Science,
Springer-Verlag, 1965:281–296

15. Son HK, Oh SG (2004) Design and Implementation of Scalable Low-Power Mont-
gomery Multiplier. In Proceedings of the IEEE International Conference on Com-
puter Design (ICCD’04) 524–531

16. Tsai WC, Shung CB, Wang SJ (2000) Two systolic architectures for modular mul-
tiplication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
8:103–107

17. Walter CD (1993) Systolic Modular Multiplication. IEEE Transactions on Com-
puters 42:376–378

18. Wolkerstorfer J (2002) Dual-field arithmetic unit for GF (p) and GF (2m). In
Cryptographic Hardware and Embedded Systems: Proceedings of CHES’02. Lec-
ture Note in Computer Science, Springer-Verlag, 2523:500–514

19. Tenca AF, Tawalbeh LA (2006) Carry-Save Representation is Shift-Unsafe: The
Problem and Its Solution. IEEE Transanctions on Computers 55:630–635

