
HAL Id: hal-01054477
https://inria.hal.science/hal-01054477

Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dependency-Driven Distribution of Synchronous
Programs

Daniel Baudisch, Jens Brandt, Klaus Schneider

To cite this version:
Daniel Baudisch, Jens Brandt, Klaus Schneider. Dependency-Driven Distribution of Synchronous
Programs. 7th IFIP TC 10 Working Conference on Distributed, Parallel and Biologically Inspired
Systems (DIPES) / 3rd IFIP TC 10 International Conference on Biologically-Inspired Collaborative
Computing (BICC) / Held as Part of World Computer Congress (WCC) , Sep 2010, Brisbane, Aus-
tralia. pp.169-180, �10.1007/978-3-642-15234-4_17�. �hal-01054477�

https://inria.hal.science/hal-01054477
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Dependency-Driven Distribution

of Synchronous Programs

Daniel Baudisch, Jens Brandt, and Klaus Schneider

Embedded Systems Group

Department of Computer Science

University of Kaiserslautern

http://es.cs.uni-kl.de

Abstract In this paper, we describe an automatic synthesis procedure that dis-

tributes synchronous programs on a set of desynchronized processing elements.

Our distribution procedure consists of three steps: First, we translate the given

synchronous program to synchronous guarded actions. Second, we analyze their

data dependencies and represent them in a so-called action dependency graph

(ADG). Third, the ADG is subsequently partitioned into of sub-graphs where cuts

can be made horizontal (for a pipelined execution) or vertical (for a concurrent

execution). Finally, we generate for each sub-graph a corresponding component

and automatically synthesize a communication infrastructure between these com-

ponents.

1 Introduction

Synchronous programming languages like Esterel [5], Lustre [22] or Quartz [30] are

all based on the synchronous model of computation [3]. Its core is the synchronous

hypothesis, which divides the program execution into micro and macro steps. Thereby,

micro steps, which represent computation and communication, are all executed in zero

time. Consumption of time is explicitly modeled by grouping a finite number of micro

steps to macro steps, which all consume the same amount of logical time. As a conse-

quence, all threads of the program run in lockstep, i. e. they automatically synchronize

at the end of each macro step. Since all micro steps of a macro step are executed at the

same point of time (at least from the semantical point of view), their ordering within

the macro step is irrelevant. Therefore, values of variables are determined with respect

to macro steps instead of micro steps, i. e. variables do not change within a macro-step.

This abstraction guarantees many properties which are desirable for the develop-

ment of safety-critical embedded systems. It enforces deterministic concurrency, which

has many advantages in system design, e.g. to avoid Heisenbugs (i.e. bugs that disappear

when one tries to simulate/test them), and it is the key to a straightforward translation of

synchronous programs to hardware circuits [4,27,30]. Furthermore, the concise formal

semantics of synchronous languages makes them particularly attractive for reasoning

about program properties [33,28], correctness and worst-case execution time [26,7].

However, the other side of the coin is that the synchronous model of computation

makes both the compilation and synthesis quite difficult. While causality [6,36] and



170 Daniel Baudisch, Jens Brandt, and Klaus Schneider

schizophrenia [33] problems already challenge compilers, the synthesis procedures of-

ten have to map a synchronous program to a target architecture that does not provide

perfect synchrony. This mismatch between the synchronous model used for the deve-

lopment of a system and most real-world implementation environments poses serious

problems, in particular for distributed and parallel embedded applications (as in the au-

tomotive or avionic industries), where the target architecture is a heterogeneous set of

interconnected processing elements.

Using these architectures, it is often not reasonable to maintain a global clock, which

synchronizes all components. In addition to communication latencies, which would

slow down the execution, the varying speeds of the individual components would lead

to unnecessary idle times. As the slowest component in each step defines the global

speed, the resulting performance would often become unacceptable.

In general, there are many ways to partition and distribute a synchronous program

into single components. The simplest approach requires that the structure of the system

description corresponds to the one of the final target architecture. However, this very

simple approach has several drawbacks: first, it is not in the spirit of model-based de-

sign, where the system description should be independent of the target system as long

as possible. Second, it allows one only to partition the set of modules used in the sys-

tem description into components, and therefore, it does not allow one to split a single

module into different components. Finally, the communication among the sub-systems

that correspond to the identified components has to be adapted since there is no longer

a global clock.

The contribution of this paper is therefore twofold: First, it presents a partitioning

of synchronous programs into concurrent, desynchronized parts. Second, it provides

an automatic synthesis of a generic communication infrastructure between these com-

ponents, which ensures that the implementation still complies with the synchronous

semantics of the original source program.

Thereby, it integrates and extends our previous approaches: [1] extracts independent

parts of a synchronous program to extract concurrent threads, whereas [2] slices chains

of dependencies to create a pipelined system. In this paper, we integrate both partitio-

ning approaches so that an arbitrary combination of concurrent and pipelined execution

becomes possible. Furthermore, we do not rely on a specific synthesis target: the parti-

tioning and the communication infrastructure are constructed in a target-independent in-

termediate format so that each component can be later mapped to hardware or software,

as well as the communication between them can be mapped to appropriate protocols.

There is some previous work which has already considered the automatic distribu-

tion of synchronous programs to an asynchronous network of processing elements: In

[20,14], a clock-driven distribution of Lustre programs is presented which partitions

and distributes the system according to the clock that triggers each part. While this

approach has shown to produce quite efficient implementations, it may suffer from a

significant drawback: Mutual data dependencies between components may require that

some component must be further decomposed into smaller components, which may re-

quire in turn additional communication and synchronization effort. In our approach, this

is avoided by construction.



Dependency-Driven Distribution of Synchronous Programs 171

Related work appeared also in the implementation of digital circuits where the num-

ber of cycles required to transmit a signal from one component to another can only be

done when the final layout has been derived. To this end, latency-insensitive [10,12,11]

and synchronous elastic systems [18,17,24] have been proposed to make the communi-

cation between the synchronous modules independent of a global clock. We also make

use of these ideas for distributing a given synchronous system description into desyn-

chronized components.

The rest of the paper is organized as follows: Section 2 briefly introduces synchro-

nous guarded actions, which serve as a starting point for the synthesis procedure of this

paper. Section 3 explains how we analyze the data-dependencies of the guarded actions

by means of an action-dependency graph (ADG), which gives rise to a partition of the

guarded actions. Section 4 explains the construction of the communication infrastruc-

ture. Finally, Section 5 concludes with a short summary.

2 Synchronous Guarded Actions

Synchronous systems [3,21] as implemented by synchronous languages like Esterel [5]

and Quartz [30,33,29] divide their computation into single reactions. Within each reac-

tion, new inputs are synchronously read from all input ports, and new outputs are syn-

chronously generated on all output ports with respect to the current state of the system

and the current inputs. Furthermore, the reaction determines the state for the next reac-

tion. It is very important for synchronous languages that variables do not change during

the macro step. For this reason, all micro steps are viewed to be executed at the same

point of time (as they are executed in the same variable environment). The instanta-

neous feedback due to immediate assignments to outputs can therefore lead to so-called

causality problems [6,34,35]. Compilers check the causality of a program at compile

time with a fixpoint analysis that essentially corresponds to those used for checking the

speed-independence of asynchronous circuits via ternary simulation [9]. Besides the

causality analysis, compilers for synchronous languages often perform further checks

to avoid runtime exceptions like out-of-bound overflows or division by zero. Moreover,

most compilers for synchronous languages also allow the use of formal verification,

usually by means of model checking.

The compiler of our Averest system1 is split into several compile phases: The front-

end translates a synchronous program into an equivalent set of (synchronous) guarded

actions [16,19,23,25] of the form 〈γ ⇒ A〉 (see [33,8,30]). The Boolean condition γ is

called the guard and A is called the action of the guarded action, which corresponds to

an action of the source language. In this paper, these are the assignments of the source

language, i. e. the guarded actions have either the form 〈γ ⇒ x = τ〉 (for an immediate

assignment) or 〈γ ⇒ next(x) = τ〉 (for a delayed assignment). In each macro step,

the guards γ of all actions (of all variables) are checked simultaneously. If a guard γ

is true, the right-hand side τ of the action is immediately evaluated. Immediate actions

x = τ assign the computed value immediately to the variable x, while the updates of

delayed actions next(x) = τ are deferred to the following macro step. If no action sets

1 http://www.averest.org



172 Daniel Baudisch, Jens Brandt, and Klaus Schneider

the value of a variable in the current step, it is determined by the so-called reaction

to absence, which usually keeps the value of the previous step. In general, a different

behavior (like resetting to a default value) is possible, but for the sake of simplicity, we

do not elaborate these cases in the following.

Hence, if an immediate assignment x = τ is enabled in the current macro step,

the current value of x must be equal to the value of τ . Implementations must therefore

make sure that x is not read before the value of τ is evaluated so that one implements

the programmer’s view that the assignment was performed in zero time.

Synchronous systems are always deterministic, because there is no choice among

activated guarded actions, since all of the enabled actions must be fired. Hence, any

system is guaranteed to produce the same outputs for the same inputs. However, for-

cing conflicting actions to fire simultaneously may lead to causality problems. This is

a well-studied problem for synchronous systems and many analysis procedures have

been developed to spot and eliminate these problems [32,35,31,36]. In the following

section, we assume that a program is causally correct and that for each variable at most

one action is active in a macro step.












a = x+ y b = x− y

c = z · z r ⇒ x = p

s ⇒ next(x) = a s ⇒ y = q

¬s ⇒ y = o next(r) = s

next(o) = a · b m = b+ c













Figure 1. Synchronous Guarded Actions

Figure 1 shows a set of synchronous guarded actions, which will serve as a running

example in the following. Note that the translation of synchronous programs into guar-

ded actions is already the first step towards our distribution, since it allows us to split

the system into subsets of guarded actions that will form the distributed components.

3 Partitioning System Descriptions into Components

As we already mentioned in the previous section, synchronous guarded actions must be

executed according to their causal data dependencies. As we want to map the actions

onto a network of asynchronous processing elements, the partition must also reflect

the causal order. Before we explain our approach, we first need to give some basic

definitions about the dependencies between actions and the variables accessed by them.

Definition 1 (Read and Write Dependencies). Let FV(τ) denote the free variables

occurring in the expression τ . Then, the dependencies from actions to variables are

defined as follows:

rdVars (γ ⇒ x = τ) := FV(τ) ∪ FV(γ)
rdVars (γ ⇒ next(x) = τ) := FV(τ) ∪ FV(γ)
wrVars (γ ⇒ x = τ) := {x}
wrVars (γ ⇒ next(x) = τ) := {next(x)}

The dependencies from variables to actions are determined as follows:



Dependency-Driven Distribution of Synchronous Programs 173

rdActs (x) := {γ ⇒ A | x ∈ rdVars (γ ⇒ A)}
wrActs (x) := {γ ⇒ A | x ∈ wrVars (γ ⇒ A)}

π1 π2

π3

π4 π5

p

r

s q z

r ⇒

x = p

next(r) = s

s ⇒

y = q

¬s ⇒

y = o

x y

c = z · za = x + y b = x − y

a b c

s ⇒

next(x) = a

next(o) =
a · b

m = b + c

o m

π⊥

π1 π2

π3

π4 π5

π⊤

p s q z

p1 r1 s1 q1 o1

r1 ⇒

x3 = p1

next(r1)

= s1

s4 = s1

s1 ⇒

y3 = q1

¬s1 ⇒

y3 = o1

o⊤ = o1

z2

c5 =z2·z2

x3 y3

a4,5 =

x3 + y3
b5 =

x3
− y3

a4 s4 a5 b5 c5

s ⇒

next(x3)

= a4

next(o1) =

a5
· b5

m⊤ = b5 + c5

o⊤ m⊤

o m

Figure 2. Left: Partitioned ADG, Right: Partioned ADG with Intermediate Variables

For a given set of guarded actions, the dependencies between all individual elements

can be illustrated by an Action Dependency Graph (ADG), which is a bipartite graph

consisting of vertices V representing variables, vertices A representing the guarded

actions and labeled edges representing the dependencies. Thereby, a solid (or dashed)

edge from 〈γ ⇒ A〉 to x denotes that action A writes x in the current step (or next step).

Similarly, a solid edge from x to 〈γ ⇒ A〉 expresses that x is read in A, i. e. it appears

in the guard γ or in the right-hand side of action A. Thus, this graph exactly encodes

the restrictions for the execution of the guarded actions of a synchronous system. An

action can be only executed if all read variables are known. Similarly, a variable is only

known if all actions writing it in the current step have been evaluated before.

The dependencies encoded in the ADG give rise to possible distributions of the

original synchronous system. In the following, we do not focus on the question how

to find an optimal solution for a given realization (e. g. software threads or hardware

circuits) or target platform. Naturally, the concrete partition generally has a significant

impact on the performance of the implementation. However, the appropriate data can

be only provided by an external analysis tool, which knows many internals about the



174 Daniel Baudisch, Jens Brandt, and Klaus Schneider

target platform. We do not focus on that but provide a general method how the results

of such an analysis can be exploited for desynchronization. Our approach is generally

applicable and it only requires a legal partition, which is defined in the following.

Definition 2 (Legal Partition of an ADG). A partition Π of an ADG is a mapping

from actions to classes π ∈ Π . Let class(A) denote the class of an action A ∈ A,

and let gacts(π) denote all the actions occurring in class π. Let ⊑ be the reflexive and

transitive closure of the following relation R ⊆ A×A: (A1, A2) ∈ R ⇔ wrVars (A1)∩
rdVars (A2) 6= {}. A partition is legal iff ⊑ is a partial order.

Note that, according to Definition 1, the intersection of wrVars (A1) and rdVars (A2)
is empty if A1 is a delayed action for a variable read in A2. For example, the left hand

side of Figure 2 shows the ADG of the actions of Figure 1. It is partitioned into five

classes, which can be easily verified to be legal, since they form a partial order. This

ensures that the partitioned implementation will be free of deadlocks.

Since all classes of the partition should run in a desynchronized way, they must

be able to process data of different macro steps. This data is stored in communication

channels between the classes in the later realization, which are modeled by additional

variables in our model. Therefore, for each variable x of the original system, we declare

several intermediate variables, one for each class that reads x, or formally:

Definition 3 (Read Access and Activity). For all classes π ∈ Π and for all variables

x ∈ V , the predicate read(x, π) denotes whether x is read in class π, i. e. read(x, π) =
∃G. G ∈ gacts(π) ∧ x ∈ rdVars (G). Additionally, we consider two virtual classes

π⊥ ⊏ π ⊏ π⊤ for all π ∈ Π , and we assume read(i, π⊥) and read(o, π⊤) for each

input variable i and output variable o, respectively.

If read(x, π) holds, an intermediate variable for x is inserted in class π, which provides

the current input value of x. To distinguish all the different intermediate variables of x,

we add a superscript π, where xπ represents the intermediate variable for x in class π.

Among all the different copies of x, we select a set of stable incarnations. The stable

incarnations mark the points in the partitioned system where a variable x must have

become known, i. e. stable(x) = {π | read(x, π) ∧ ∄ρ ⊏ π.read(x, π)}. Due to the

concurrency of classes, there can be more than one incarnation. All write accesses to

a variable will be forwarded to these stable incarnations leading to a high overhead in

communication. Fortunately, each stable incarnation will get the same value for a defi-

ned macro step. Hence, communication overhead can be reduced by adding a canonical

incarnation for x, written canon(x), that distributes the values for variable x to its stable

incarnations.

Since all original variables have now been replaced by intermediate variables, the

guarded actions must be rewritten to refer to them. Apparently, all actions (immediate

and delayed) of the original system that are put in class π read variables with superscript

π. Furthermore, all write accesses of a class π are forwarded to the canonical incarnation

of this variable. We rewrite the actions as given in the function Transform shown in

Figure 3. Thereby, let [γ]π be the operations that relabels all variables x ∈ FV(γ) with

their superscripted counterparts xπ .



Dependency-Driven Distribution of Synchronous Programs 175

function Transform(G)
G′ := {}
forall G ∈ G

π := class(G)
case G :
γ ⇒ x = τ :

G′ := G′∪

〈[γ]π ⇒ [x]canon(x) = [τ ]π〉
γ ⇒ next(x) = τ :

G′ := G′∪

〈[γ]π ⇒ next([x]canon(x)) = [τ ]π〉
return G′

function CreateTransport(G)
for π = 1, . . . , N

forall xπ ∈ V
G := G ∪ {true ⇒ xπ = pre(xπ)}

return G

function CreateTransport′(G)
for π = 1, . . . , N

wrπ =
⋃

A∈gacts(π) wrVars (A)

forall x ∈ wrπ
guard := (validin(π) ∨ valid(π))

∧stopin(π) ∧ ¬fire(π)
G := G ∪ {guard ⇒ next(x) = x}

return G

function DistributedSystem(G)
G := Transform(G)
G := CreateTransport(G)
G := CreateTransport′(G)
return G

Figure 3. Functions to Distribute a Synchronous System

However, this causes a problem since all the classes generally process different

macro steps, and each class can write to the same variable. Hence, values may not arrive

in-order according to their logical time so that they have to be reordered explicitly. In

our approach, this is accomplished by a merge component Mergex, which provides an

input for each class that may write to x. Such a component is attached to canon(x).
In the current section, it does not play any role, since in a fully synchronous model,

the merge component just implements the identity function. Its behavior is explained in

detail in the next section.

Finally, we have to add the transport of the intermediate variables, which corres-

ponds to the reaction to absence of a synchronous system: a class π that reads an inter-

mediate variable xπ obtains its values from that class that precedes π and writes to x

as soon as a set of variables is processed by this preceding class. The preceding class

of class π is formally given by classPre(xπ) = max⊏{j | read(x
j , j) ∧ j ⊏ π} with

max⊏(A) = {π |π ∈ A∧¬(∃ν ∈ A. : π ⊏ ν)}. Additionally, we define pre(xπ) = xj ,

j ∈ classPre(xπ) as an arbitrary but determined predecessor of xπ . Due to concurrency

of classes, a class may have more than one predecessor. Each predecessor generates for

each set of inputs exactly one value for x. Furthermore, all incarnations of x are co-

pies, i. e. they contain the same value for each input set with a defined logical time step.

Hence, it is sufficient to forward the values for a variable x only from one preceding

incarnation of x.

Note that incarnations following the stable ones do not require a Mergex. Due to

the Mergex, the stable incarnation obtains the variable’s values in the correct temporal

ordering, and it will proceed sets of variables in-order. Hence, the stable incarnations

will forward a variable’s values in order and as a result of this, each succeeding incar-

nation obtains these values also in the correct temporal ordering. The right-hand side of

Figure 2 shows the transformed set of guarded actions including the transport actions



176 Daniel Baudisch, Jens Brandt, and Klaus Schneider

for our running example. The ten original actions are rewritten so that they refer to the

superscripted variables, and the remaining actions are due to the transfer of variables.

4 Communication Infrastructure

The previous section partitioned the system into a set of components, which are desyn-

chronized in this section by introducing an appropriate communication infrastructure.

Thereby, each class can be first synthesized separately and independently of the others.

The individual classes are finally connected by channels that follow a generic desyn-

chronizing protocol. We do not rely on a specific one but only require that it can model

the validity of data values and the congestion of buffers (back-pressure). This is provi-

ded by latency insensitive protocols [12,15], synchronous elastic circuits [13] or almost

any asynchronous communication infrastructure based on buffers.

In the following, we demonstrate how to apply the SELF protocol as described by

Carmona et al. in [13] to the partitioned system to gain a synchronous elastic system.

First, the classes require additional control logic for communication. The control logic

guarantees the correct flow of information between the classes. The interface of each

class π ∈ Π is extended by two Boolean input signals. The input validin(π) indicates

that the current inputs of class π contain valid values, whereas the input stopin(π) tells

the class whether its outputs can be processed by subsequent classes. Similarly, each

class has two output signals, which drive the status signals of other classes: validout(π)
gives notice of the validity of the current outputs, while stopout(π) indicates whether

the class is able to handle new inputs.

To control these flags, each class makes use of two additional variables valid(π) and

fire(π), which memorize the validity of the current outputs and signalizes that class π

can fire its actions, respectively:

1. If a class obtains valid inputs but currently has no valid outputs, it must read the

inputs and fire its actions. Formally: fire(π) = validin(π) ∧ ¬valid(π).
2. If a class obtains valid inputs or already has valid outputs, it has valid outputs in

both cases. Formally: validout(π) = (validin(π) ∨ valid(π)).
3. If a class has valid outputs and a stop signal comes in, the internal output vali-

dity flag has to be set for the next step. Formally: next(valid(π)) = (validin(π) ∨
valid(π)) ∧ stopin(π).

4. If a class obtains valid inputs but already has valid outputs or obtains a stop signal,

then the class must set its own stop signal. Formally: stopout(π) = validin(π) ∧
(valid(π) ∨ stopin(π)).

All guarded actions are modified to take notice of the class’s fire condition. The fire

condition fire(class(A)) is added as an additional clause to the guards of all actions

A ∈ G of the class’s build as the conjunction of its old guard and the corresponding

class’s fire condition. Finally, if a class contains an action writing to a variable x and

the class does not fire, but has to keep the value valid, it has to transport (copy) explicitly

its value (see Function CreateTransport′ in Figure 3).

In a simple chain of classes π1, π2, . . . , πN (as in a pipeline), the status signals can

be simply connected between successive elements, i. e. validin(πi+1) = validout(πi)



Dependency-Driven Distribution of Synchronous Programs 177

and stopin(π) = stopout(πi+1). For a general topology of the distribution, which is

targeted in our approach, a more general solution is necessary. Each class that obtains

its inputs from several others or sends its outputs to several others, needs to provide join

or fork elements, respectively, as already explained in [13]. In the following, we explain

the functioning of these elements in terms of our approach.

A join element is needed if a single class π obtains its inputs from several other

classes π1, . . . , πn. Obviously, it can only fire iff all inputs are valid. The valid flag of

class π is set to validin(π) =
∧

i=1,...,n validout(πi). Values do not have to be stored

internally in a join element since a valid input value is provided by the producing class

until it is read, i. e. when all inputs are valid. The stop signals from class π to the

preceding classes π1, . . . , πn are determined as follows: if class π stalls, the stall signal

is simply broadcasted to all preceding classes. Furthermore, if some of these classes πi

already serves valid inputs but some other class πj does not provide valid inputs yet,

the class πi must be also stalled, formally: stopout(πi) = stopin(π) ∨ (validin(πi) ∧∨
j∈{1,...,n},i 6=j validout(πj)).

A fork element is used if a single class π writes a variable x which is read by several

other classes π1, . . . , πn. Since π1, . . . , πn are unrelated, they may read x in different

macro steps. Without the fork element, this leads to a critical situation: On the one hand,

the value of x would have to be invalidated to prevent the reading classes to read the

same value again, and on the other hand, the value of x would have to be kept valid so

the stalling classes can read this value as soon as they are able to fire. Therefore, the fork

broadcasts the valid signal as soon as a new value arrives from class π but individually

determines the acknowledge for each class π1, . . . , πn. Hence, each one has its own

signals validout(πi) and stopin(πi).

Join and fork elements can be also used to provide a wrapper to the environment,

which reconstructs a synchronous interface. If we insert a fork element in front of all

system classes (with respect to the classical order ⊆ as defined in the previous section),

and a join element behind of all classes, which implement two virtual classes π⊥ and

π⊤, reading and distributing all inputs and collecting and writing all outputs so that

the interaction with the environment is synchronized. The right-hand side of Figure 1

shows these virtual classes.

Merger for variable x

Immediate/Delayed

actions in stage 1

v
a
lid

in (1
)

sto
p
o
u
t (1

)
x
1

n
e
x
t(x

1
)

Immediate/Delayed

actions in stage 2

v
a
lid

in (2
)

sto
p
o
u
t (2

)
x
2

n
e
x
t(x

2
)

Absence notification

of immediate actionsv
a
lid

o
u
t (A

)
sto

p
in (A

)
A

b
sen

ce(x
)

Absence notification

of delayed actions

A
b
sen

ce(
n
e
x
t(x

))
sto

p
in (B

)
v
a
lid

o
u
t (B

)

v
a
lid

o
u
t (C

)
sto

p
in (C

)
sta

b
le(x

)

Actions that read from stable incarnation of x

Figure 4. Merge Component for Variable x



178 Daniel Baudisch, Jens Brandt, and Klaus Schneider

As already mentioned, each class of the implementation may process another ma-

cro step but they all write to the same variables. Hence, for each variable x, a merge

component Mergex is needed to reorder values of x according to their macro steps. In

principle, Mergex waits until the value with the desired logical time arrives and for-

wards it. All other classes providing values which do not have the desired logical time

stamp are stalled.

Figure 4 shows an exemplary structure of a Mergex. In this example, two classes

may write to x; therefore, each of these classes gets an interface to communicate with

Mergex. As the figure shows, Mergex provides two input channels for each class -

one for immediate and one channel for delayed writes to x. This distinction is neces-

sary since immediate and delayed actions address different macro steps. However, both

channels share the valid and stop signals because they stem from the same macro step.

Additionally, the interface also includes the valid and stop flags as already described

above. With their help, the merge component Mergex checks all incoming values for

validity and the required logical time stamp. As long as the valid value for the required

step is not available, validout(Mergex) is unset. When the requested value becomes

available, it is forwarded and the validity signal is set. Whenever a valid value arrives

but does not have the requested time stamp, a stop signal is sent back, i. e. the sending

class is stalled until the value is read. The logical time stamp for the currently required

value is determined by an internal counter. As explained Section 2, each variable is

written exactly once in each macro step, i. e. if a value arrives, the counter can be safely

incremented by one.

Finally, the Mergex is also responsible for the reaction to absence of variable x. It is

implemented by two special input signals Absence(x) and Absence(next(x)), which are

set iff no immediate action and delayed action can fire for a given macro step, respec-

tively. These signals are driven by the class that succeeds the last class(es) containing

immediate or delayed actions writing to x. In this case, Mergex can assign a value to x,

e. g. a default value or the value from the preceding macro step.

To the end, all required elements are available for creating the desynchronized sys-

tem. The last step is to choose the correct channels, i. e. the connection of classes, in de-

pendence of the target platform. In hardware synthesis, one would insert relay stations,

and in software synthesis one can use queues with Lamport’s clock synchronization to

obtain a lightweight thread communication as already used in [2].

5 Summary

In this paper, we presented an approach to partition a synchronous program into de-

synchronized classes. The key for desynchronizing a partitioned system is the adap-

tion of the system’s classes to a defined protocol, i. e. each class must be able to wait

for inputs, to signalize the validity of its outputs, and to wait for succeeding classes.

In particular, the interface of each class has to be extended by four flags (validin(π),
validout(π), stopin(π), stopout(π)). Finally, attaching the join and fork elements to the

classes enables us to use relay stations or queues to run our classes desynchronized. The

advantage of our approach is the ability to use it in both hardware and software synthe-

sis by only extending it by inserting corresponding channels, i. e. a hardware synthesis



Dependency-Driven Distribution of Synchronous Programs 179

would insert relay stations between classes to obtain a latency insensitive system, and a

software synthesis would insert queues to obtain decoupled threads.

References

1. D. Baudisch, J. Brandt, and K. Schneider. Multithreaded code from synchronous programs:

Extracting independent threads for OpenMP. In Design, Automation and Test in Europe

(DATE), Dresden, Germany, 2010. EDA Consortium.

2. D. Baudisch, J. Brandt, and K. Schneider. Multithreaded code from synchronous programs:

Generating software pipelines for OpenMP. In Methoden und Beschreibungssprachen zur

Modellierung und Verifikation von Schaltungen und Systemen (MBMV), Dresden, Germany,

2010.

3. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The

synchronous languages twelve years later. Proceedings of the IEEE, 91(1):64–83, 2003.

4. G. Berry. A hardware implementation of pure Esterel. Sadhana, 17(1):95–130, March 1992.

5. G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,

Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 1998.

6. G. Berry. The constructive semantics of pure Esterel. http://www-sop.inria.fr/

esterel.org/, July 1999.

7. M. Boldt, C. Traulsen, and R. von Hanxleden. Compilation and worst-case reaction time

analysis for multithreaded Esterel processing. EURASIP Journal on Embedded Systems,

2008. Article ID 594129.

8. J. Brandt and K. Schneider. Separate compilation for synchronous programs. In H. Falk,

editor, Software and Compilers for Embedded Systems (SCOPES), volume 320 of ACM In-

ternational Conference Proceeding Series, pages 1–10, Nice, France, 2009. ACM.

9. J.A. Brzozowski and C.-J.H. Seger. Asynchronous Circuits. Springer, 1995.

10. L.P. Carloni. The role of back-pressure in implementing latency-insensitive systems. Elec-

tronic Notes in Theoretical Computer Science (ENTCS), 146(2):61–80, 2006.

11. L.P. Carloni, K.L. McMillan, and A. Sangiovanni-Vincentelli. Latency insensitive protocols.

In N. Halbwachs and D. Peled, editors, Computer Aided Verification (CAV), volume 1633 of

LNCS, pages 123–133, Trento, Italy, 1999. Springer.

12. L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory of latency-

insensitive design. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 20(9):1059–1076, 2001.

13. J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin. Elastic circuits. IEEE Tran-

sactions on Computer Aided Design of Integrated Circuits and Systems, 28(10):1437–1455,

October 2009.

14. P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactive systems for asynchro-

nous networks of processors. IEEE Transactions on Software Engineering, 25(3):416–427,

1999.

15. M.R. Casu and L. Macchiarulo. A new approach to latency insensitive design. In Design

Automation Conference (DAC), pages 576–581, San Diego, CA, USA, 2004. ACM.

16. K.M. Chandy and J. Misra. Parallel Program Design. Addison Wesley, Austin, Texas, May

1989.

17. J. Cortadella, M. Kishinevsky, and B. Grundmann. SELF: Specification and design of syn-

chronous elastic circuits. In International Workshop on Timing Issues in the Specification

and Synthesis of Digital Systems (TAU), 2006.

18. J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of synchronous elastic architec-

tures. In Design Automation Conference (DAC), pages 657–662, San Francisco, CA, USA,

2006. ACM.



180 Daniel Baudisch, Jens Brandt, and Klaus Schneider

19. D.L. Dill. The Murphi verification system. In R. Alur and T.A. Henzinger, editors, Computer

Aided Verification (CAV), volume 1102 of LNCS, pages 390–393, New Brunswick, NJ, USA,

1996. Springer.

20. A. Girault and X. Nicollin. Clock-driven automatic distribution of Lustre programs. In

R. Alur and I. Lee, editors, International Conference on Embedded Software (EMSOFT),

volume 2855 of LNCS, pages 206–222, Philadelphia, PA, USA, 2003. Springer.

21. N. Halbwachs. Synchronous programming of reactive systems. Kluwer, 1993.

22. N. Halbwachs. A synchronous language at work: the story of Lustre. In International Confe-

rence on Formal Methods and Models for Co-Design (MEMOCODE), pages 3–11, Verona,

Italy, 2005. IEEE Computer Society.

23. H. Järvinen and R. Kurki-Suonio. The DisCo language and temporal logic of actions. Tech-

nical Report 11, Tampere University of Technology, Software Systems Laboratory, 1990.

24. S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary. Synchronous elastic networks. In

A. Gupta and P. Manolios, editors, Formal Methods in Computer-Aided Design (FMCAD),

pages 19–30, San Jose, California, USA, 2006. IEEE Computer Society.

25. L. Lamport. The temporal logic of actions. Technical Report 79, Digital Equipment Coope-

ration, 1991.

26. G. Logothetis and K. Schneider. Exact high level WCET analysis of synchronous programs

by symbolic state space exploration. In Design, Automation and Test in Europe (DATE),

pages 10196–10203, Munich, Germany, 2003. IEEE Computer Society.

27. F. Rocheteau and N. Halbwachs. Pollux, a Lustre-based hardware design environment. In

P. Quinton and Y. Robert, editors, Conference on Algorithms and Parallel VLSI Architectures

II, Chateau de Bonas, 1991.

28. K. Schneider. Embedding imperative synchronous languages in interactive theorem provers.

In Conference on Application of Concurrency to System Design (ACSD), pages 143–154,

Newcastle upon Tyne, UK, 2001. IEEE Computer Society.

29. K. Schneider. Proving the equivalence of microstep and macrostep semantics. In V. Carreño,

C. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order Logics (TPHOL), volume

2410 of LNCS, pages 314–331, Hampton, VA, USA, 2002. Springer.

30. K. Schneider. The synchronous programming language Quartz. Internal Report 375, Depart-

ment of Computer Science, University of Kaiserslautern, Kaiserslautern, Germany, 2009.

31. K. Schneider and J. Brandt. Performing causality analysis by bounded model checking. In

Conference on Application of Concurrency to System Design (ACSD), pages 78–87, Xi’an,

China, 2008. IEEE Computer Society.

32. K. Schneider, J. Brandt, and T. Schuele. Causality analysis of synchronous programs with

delayed actions. In Compilers, Architecture, and Synthesis for Embedded Systems (CASES),

pages 179–189, Washington, DC, USA, 2004. ACM.

33. K. Schneider, J. Brandt, and T. Schuele. A verified compiler for synchronous programs with

local declarations. Electronic Notes in Theoretical Computer Science (ENTCS), 153(4):71–

97, 2006.

34. K. Schneider, J. Brandt, T. Schuele, and T. Tuerk. Improving constructiveness in code ge-

nerators. In Synchronous Languages, Applications, and Programming (SLAP), pages 1–19,

Edinburgh, Scotland, UK, 2005.

35. K. Schneider, J. Brandt, T. Schuele, and T. Tuerk. Maximal causality analysis. In J. Desel and

Y. Watanabe, editors, Application of Concurrency to System Design (ACSD), pages 106–115,

St. Malo, France, 2005. IEEE Computer Society.

36. T.R. Shiple. Formal Analysis of Synchronous Circuits. PhD thesis, University of California

at Berkeley, Berkeley, CA, USA, 1996.


