Data assimilation of time under-sampled measurements using observers, the wave-like equation example

Abstract : We propose a sequential data assimilation scheme using Luenberger type observers when only some space restricted time under-sampled measurements are available. More precisely, we consider a wave-like equation for which we assume known the restriction of the solution to an open non-empty subset of the spatial domain and for some time samples (typically the sampling step in time is much larger than the time discretization step). To assimilate the available data, two strategies are proposed and analyzed. The first strategy consists in assimilating data only if they are available and the second one in assimilating interpolation of the available data at all the discretization times. In order to tackle the spurious high frequencies which appear when we discretize the wave equation, for both strategies, we introduce a numerical viscous term. In this case, we prove some error estimates between the exact solution and our observers. Numerical simulations illustrate the theoretical results in the case of the one dimensional wave equation.
Type de document :
Article dans une revue
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2015, pp.35. 〈10.1051/cocv/2014042〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01054551
Contributeur : Philippe Moireau <>
Soumis le : jeudi 7 août 2014 - 11:59:10
Dernière modification le : jeudi 10 mai 2018 - 02:03:35
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 01:40:56

Fichier

UnderSamplingCOCVR2.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Nicolae Cindea, Alexandre Imperiale, Philippe Moireau. Data assimilation of time under-sampled measurements using observers, the wave-like equation example. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2015, pp.35. 〈10.1051/cocv/2014042〉. 〈hal-01054551〉

Partager

Métriques

Consultations de la notice

868

Téléchargements de fichiers

267