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1. Introduction

The discipline of data assimilation historically appeared in the context of meteorology and oceanography
{ see for example the surveysq, 28] { but has also reached new elds of research for instance in life sanees pJ.
The two main ingredients in a data assimilation formulation are the modd and the data. On the one hand,
the model regroups physical information on the system under considation encapsulated in a mathematical
dynamical system { mostly based on (nonlinear) evolution partial di erential equations in the data assimilation
community { and allows after discretization to simulate various con gur ations of interest. However, the model
contains a various range of potential errors, for example: on the operator drivig the dynamical system, on the
boundary conditions or on the initial conditions. On the other hand, the data bring complementary and valuable
information on the studied system but they are often partial { in space and time { and are likely to be corrupted
by the noise inherent to any measurement process. Data assimilatioaims at providing a reconstruction of the
(observed) real trajectory by coupling the information contained in the model and in the data, hence lItering
their respective uncertainties.

To reach this goal several strategies have been considered which coldé classi ed into two main families.
The two approaches can be considered in a stochastic or deterministiformalism but we will focus here on
the deterministic one. On the one hand, the variational approach popularzed by the 4D-Var method [27],
consists, in essence, in minimizing a { usually least square basddcost function integrating during a period
of time a compromise between (1) some priori on the model and initial conditions and (2) the observation
discrepancy between the actual measurements and the synthetic datproduced by the model. This cost function
is minimized under the constraint of the model dynamics with, in most cases, the help of a descent algorithm
involving successive iterations of the model and the dynamics of thao-called adjoint variable. On the other
hand, there is the family of ltering methods, where the discrepancy between the simulated system and the
data at hand acts in time as a controlled correction of the dynamics of the shulated system to adjust its
trajectory to the pursued trajectory. The resulting system is often called an observer of the exact trajectory
in the deterministic context { more often referred to as an estimator in the stochastic context. The evolution
satis ed by this observer is written in a general form of a dynamical sytem with a feedback law based on
the discrepancy between the model and the data. The most popular obseer is the Kalman Iter formulated
by equivalence with an optimal criterion minimization for nite dime nsional systems or in nite dimensional
systems i, 20], hence applicable to any system. However it ultimately leads to opeators which are after
discretization numerically intractable. As an alternative for this \cu rse of dimensionality”, numerous strategies
have been proposed for example the Ensemble Kalman Filterlp] or Reduced Order Kalman-like Iters [34].
In the speci ¢ context of the conservative wave-like equation, however, several works T, 23,27, 31] have rather
proposed simpli ed but e ective feedback laws directly based on he physical properties of the system at hand
which stabilize at a certain rate { potentially sub-optimal { any errors . This idea follows the path proposed by
Luenberger's work p5] for nite dimensional systems and is popularized for PDEs with the nudging appellation
as initiated in [1,19] { a complete historical perspective can be found in 21].

In general, these observers are de ned in an abstract continuous-timéramework assuming that the model
and the data are available at any time. This clearly represents the asymtotic of any real con guration where in
general the data are time-sampled. Eventually the model should be caidered with its time-discretization which
has no reason to be dependent of the time-sampling of the data. Therefer we must analyze the impact of the
data discretization in the observer de nition. In particular, we are concerned by coarse data in time with respect
to the model discretization and we will speci cally focus in this work on the speci ¢ but fundamental case where
the data have a constant time-sampling which is much larger than the nodel time-step. As an illustration, we
can cite the case of image sequences assimilation for cardiovascular systs { describede.g. in [6] { where the
time-sampling of the data is of one or two orders of magnitude larger than themodel time-step discretization.
Facing this situation, we can think of two alternatives. The rst one { considered for example in27] { consists in
interpolating the data in time in order to regenerate a time-continuous sequence which can then be compatible
with any time discretization of the model. This approach is very attractive from an abstract standpoint, and,
therefore, can be directly analyzed in the light of the literature abou the time-discretization of time-continuous
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observer { typically in our case following the works p,12,13,16,30]. However it is at the price of an additional
time-interpolation error perturbing the observer dynamics as any other measurement noise. This perturbation
has the consistency of the data sampling period. Moreover, the re#ing observer is non-causal and, therefore,
can not integrate the data in real-time. A second approach { often used in pactice without even mentioning
it { is to compute the discrepancy only when the data are available. THs intermittent correction is potentially
error free but may induce correction shocks which limit the stablization of the error between the observer
trajectory and the pursued trajectory. We mention that the stabili ty of some dissipative partial di erential
evolution equations with intermittent damping was recently studied in [17].

In this paper, we address the issue of analyzing a data assimilation poedure where an intermittent feedback
law is de ned and compared to a procedure where a time interpolatin of the data is considered. The comparison
is carried out both theoretically { since convergence estimates are mvided in both cases { and numerically
{ using a simple one-dimensional wave equation model. Indeed, wesstrict our analysis to the speci ¢ case of
a wave-like system and the Luenberger associated observer proposed[27]. However, this work is intended to
illustrate how the data time-sampling in uences the de nition of any data assimilation sequential strategy.

The outline of the paper is as follows. In Section2 we introduce the observer methodology in the case of
wave-like systems and we propose two types of time discretizationrpsented in a general form. In Section3
we provide convergence estimates of both observers. Sectignand Section4.2 are then devoted to numerical
illustrations where (1) we analyze the spectra of the stabilized opetors appearing in the dynamical systems
satis ed by the estimation error in order to provide an optimal gain for bot h observers and (2) we provide time
simulations which illustrate the robustness of the two strategies m mainly two di erent contexts: a rst one
with low data noise but high sampling period, and a second one with reamable sampling period but noisy
data.

2. Discrete-time observer design

2.1. Nudging for wave-like systems

We consider in this work a general class of second order hyperbolic sgshs in bounded domain characteristic
of wave equations or elasticity systems. These models typically cogspond to simpli ed situations of those
encountered in the cardiac modeling context, where a heart mechacal model is registered on coarse data
obtained from a sequence of few medical image$§][ Formally, we introduce a Hilbert space H endowed with
the inner product ~; « and we denote byY Ythe associated norm. Then, we de ne a self adjoint operator
Ao D Age H, positive-de nite with compact resolvent and we consider the geneal class of systems

;‘?w‘t- AogW'te  O;

5 )

W0 wo o; WO wp g
where x_denotes the time derivative of any variablex, = o; 1¢ represent some potential errors on the initial

conditions and “wg;wze are some knowna priori. We point out that ( 1) represents a conservative system and,
therefore, any errors on the initial conditions are conserved in time.Denoting by

't &1 sx DrAke H
W te

we can rewrite (1) as a rst-order system

¢ Xt AXte;  tAO
! 2

g X0 Xo
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wherexo % wWiZ, %o 1Z andA D"Ae X is de ned by
N N " 1
D"Ae D Ag* D™ Aje; A &E -

On this system we consider a particular target systenmxy associated with a speci ¢c unknown y. Moreover, we
assume that some measurements { also called observations { are available and de ned by

Z'te  HXy'te; t AQ; )

whereH >L"X ;Ze is the so-calledobservation operatorand Z is the Hilbert space associated with the obser-
vations endowed with its norm Y Y. For the sake of simplicity, we restrict ourselves to bounded obsemation
operators but a more general class of admissible observation operators can alse considered 35. The obser-
vation operator can be applied to any solution of ¢) and we assume that the pair"A; H ¢ is exactly observable
in a time Tops AO, i.e. there exists a constantCqy,s AO such that every solution of (2) satis es

Tobs

s, YHXteY2 dt CCopsYK"0°Y2;  X"0e >X: (4)

In order to benet from the available data z"te and considering only the availablea priori X that we have
on the initial condition, we consider the Luenberger observek’te [7] { see also similar formulations in [L3, 31]
{ estimating xy"te from the dynamics

$ Kte ARte H I Zte HRAtes: t AO
! (5)

o A0 Xo;

where H* >L"Z : X+ is the adjoint of the observation operator and A0 is a gain parameter. We justify the
use of this observer by noticing that the estimation error€’te  xy"te  RA'te satis es the { damped { dynamics

$ gt %M HIHZte: tAO
; ®)
g €0 Y-

Provided that H satis es (4) it is well known { see e.g. [24] { that the error is exponentially stable, namely
there exist two constantsM A0 and AO such that

YC teYx BM exp™ t oY OeYy ; t AO: @)

Remark 2.1. In the ltering strategy described by (5) we see that the initial dynamics (2) is modied by a
feedback law where the so-callegain operator is, here, simply given byG  H *. In comparison, in the context
of Kalman ltering [ 4,32), the gain is given byG P“teH* where P te >L"X ; X+ satis es the Riccati equation

P AP PA* PH'HP; P"0 Py;

in the mild sense.

Remark 2.2. We may distinguish in the wave-like equation context two classes obbservation operators. The
one corresponding to velocity observations, namelyH % HoZ and the one corresponding to the direct
observation of the eld, i.e. H %, OZ It should be noted that in the context of poor time resolution of the
data the two cases are indeed two independent situations since théata cannot be di erentiated with respect to



TITLE WILL BE SET BY THE PUBLISHER 5

time without dramatically amplifying the measurement noise. We point out that the exponential convergence
of these two classes of observers have been demonstrated. The rst@iis standard see 0, 18,26]. The second
one is less classical since the adjoirtl ¥ induces a modi cation of the identity between the time-derivati on of
the eld and the velocity. This observer can therefore only be conglered as a virtual system and has been
demonstrated to converge in T, 8]. Ultimately the exponential convergence of both observer systemsequires
the geometric control conditions to be satis ed { see B] for the wave equation and [L1] for the elasticity system.

2.2. Discrete-time observer

In the rst section, we have introduced an abstract observer whichassumes that the data at hand are available
at any time. However in practice, they are time-sampled and we want to sudy the in uence of their discretization
in the de nition of the observer. In this respect, we decide to drectly introduce the time-discretization avoiding
the technicalities induced by potential Dirac distributions associated with the data time-sampling. However,
we should consider an observer time-discretization which conserseat the time-discrete level { and uniformly
with respect to the time-discretization { the stability propert ies of the estimation error. Unfortunately, when
discretizing in time systems such as €) spurious high-frequency modes may arise provoking the loss of the
uniform decay rate of the error { seee.g.[13,36,37]. These modes cannot be captured by the localized observation
operator, thus leading to a loss of uniform observability. In other words a direct discretization of the observer
(5) for example using conservative mid-point rule
An 1 An
2

AS
t 2

aAn 1 4n An 1 an n1i n
oML Y=L L LV, 22 HS : ®)

may not satisfy at the discrete-level a time-discrete counterpat of the observation inequality (4) of the form

Nobs
Q YHX'nt Y3 CCobs EWoY , Ywi¥": (9)
no D Ag -

Note that in ( 8) we still avoid to consider the time sampling of the data and denote by

Zn

Hxy'nt e; (10)
a discrete (in time) observation potentially available at any model time-step.

To circumvent the loss of observability at a time-discrete level,authors in [13] propose two main options. The
rst possibility is to impose a (restrictive) CFL condition that d iscards these undesired high frequency modes.
The second option consists in adding an arti cial viscous term consistet with the order of the numerical scheme
and responsible for the dissipation of the spurious modes { see als®(, 33 for a similar proposition. Note that it
is also possible to de ne speci c compatible spaces and discretiziins { with, for example a mixed formulation
for the space discretization { that o er uniform stabilization properti es, see, for example?] or [14] and reference
therein. However, these discretizations are less usual and thus merintricate to use in practical applications.
Among the various possibilities detailed in [L3], we retain for instance the discretization

¢can 1 AN V‘n 1 AN
i R R ASA R . nAoO
t 2
An 1 An 1 . R R
L o (HIS" T HA e AZAN L nAO (12)
oW
A0 ;
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where some numerical viscosity is introduced with the speci ¢ ¥scous operator (suggested byl[3])
[ (12)

and , controls the amount of this numerical viscosity. In order to respect he order of consistency of this time
scheme { and as advised in13] { we ought to set , O"t 2e. This time discretization can be understood as
a prediction-correction scheme where the dynamics of the model deling to A" is then corrected by computing
a model-data interaction to produce A" .

Once the time discretization of the observer is chosen, we can go back bur considerations on the data time-
sampling. Here, we should rst point out that the observation inequality (9) can be expected to be obtained
from its continuous counterpart (4) only with a time discretization step small enough so that there are seeral
time steps included in the characteristic time associated with he smallest frequency of the system. Otherwise,
we could imagine a degenerate situation where the measurements are calesed at the exact same frequency
than a system mode making it unobservable, see alsd ] about the observability of intermittent stabilized
systems. This condition on the data sampling will be assumed to be sited in the rest of the article. We
dene "jrersn - N as a strictly increasing sequence of natural numbers so that the aviaible measurements are

' Lyt o r >N: (13)
We then consider two strategies to introduce these time-samplediata in (11). The rst one is to consider the
data only when they are available, hence in essence, 0 when the dataz" is not available. The second one
consists in interpolating the data to generate an approximatedz" for all n. We summarize these two strategies
by

¢ an 1 AN AN 1 AN

i R R AS R .; nAOQO

i t 2

:|: An ! An ! n 1 Fomn 1 AN 15 240 1.

b H * % HA" 1Z , A2A" % nAO (14)
L Qo

o Wy %o

where™ "¢, .y and “d" e,y Will be referred to as the switching coe cients and the interpolated data respectively.
For the rst idea { named on/o switch and where the correction term only appears when measurements are
available { we have

n oel 4 z' if &r>N n j,

0 0 otherwise (15)

The second choice where we interpolate in time the data reads, in thparticular case of linear interpolation,

L T O LU L S TLUID | T - T T T (16)
Jr1 Jr Jra )

Then in the next sections, we propose to study the convergence of thime-discrete observer given by (4)-(15)
{ see Theorem3.2 { and given by (14)-(16) { see Theorem3.6.

Remark 2.3. There is also an exact counterpart at the time-discrete level of the ppular Kalman observer
mentioned in Remark 2.1. The resulting time-discrete observer for the system ?)-(3) { called Kalman-Bucy
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estimator [20] { is also based on a prediction-correction paradigm reading

¢

A LOAL gAY
(Prediction) 4 _,, "0 . (17)
EPN LA, 9P A o
¢ - - A s
] AN 1 An 1 t PN 1H10/®n 1 H A 15
(Correction) % (18)

;;Pnl ~phlel HiHe. 1;

where we denoted byA, g the state transition operator corresponding to a stable and consistent tcretization
of the dynamical system ) for instance in the case of a mid-point discretization

t t .
A, 15 % 7Azl%L AL

One can prove { seee.g. [29 { that the time-discrete observer derives from seeking the mitmum value of the
functional

3" G %\@»ﬁ,ol 5(S\rzk HxKV ¢t (19)
k 1

with x¥ subject to xk Ayg 1xK T and x° xo €. Hence, an on/o version of the Kalman-Bucy observer
corresponds to the minimum of the adequately adjusted functional

1 16 i . .
UG S¥¥%: QY HX T et (20)
0 r 1
with
C, card’j; 1Bj Bn; ; 1e: (22)

We expect that the proof that we will present for the nudging observe can be directly adapted to the Kalman
approach, hence justifying in the general context of sequential data asmilation methods the choice of inter-
polating or intermittently Itering the under-sampled data or cont inuously ltering a reconstructed data by
interpolation.

3. Convergence estimate for the estimation error

3.1. Convergence estimate for the on/o switch

Let us de ne the corrected estimation error by
¢ xynt e A" (22)
and the corresponding predicted estimation error by
£ xy'nt e A" (23)

where xy is the exact solution of (2) and A" and A" satisfy (14)-(15). We start by giving the dynamical system
satis ed by this estimation error in the following proposition.
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Proposition 3.1.  Assuming that xo > D"A3e D" Aé-, the estimation errors de ned by (22) and (23) satisfy
the following discrete dynamical system

L N S

: t 2 ’
Ll ' 24
igfﬂtg’ﬂ aniH@nl tAzclunl; ()
o £ Xo Ao;
where the consistency terms are
t 2 5.1 . 1 . 5 : .
n 1 TA3%§XY the SXv rheZ with th;ra > nt, "n 1st ;
(25)
Nl AN 1t e

Proof. Starting from the de nition of the predicted estimation error and from the correction phase of the
observer (L4) we obtain

€L oxyn lete A'I Nlp HEG L OHA L A2 L
“1 "1t HEHeg" 1 tAZan !
Al n lt HiH . tA2°@n 1 t..n 1;

which is exactly the second equation in 24). Secondly, to obtain the remaining equation it su ces to notice
that
@1 g;n XYMn Jet o Xynnt‘ ﬂ?\nl An.
t t t '
Hence, using a rst-order nite di erence approximation of xy" n 1et e, from the above equality { assuming
enough regularity on the initial condition { we can assure that there exig a time t, and atimer, > nt; "n
1t such that

1 Xy"n let e xynte AT1 A 2 1. 1. .
qut £ t2 o t t7%§XYAt”' PR

Therefore, from (2) and the rst equation of ( 14) we conclude the proof.

From this rst result we can now give the convergence estimate for theon/o observer in the speci c but
fundamental case where the data have a constant time-sampling whicts much larger than the model time-step.

Theorem 3.2. Let A be a skew-adjoint operator with compact resolvent anti >L"X;Z+ be a bounded linear
observation operator such that the observability inequalit{4) holds. Assume that there exists a strictly positive
integer N such that

erCA—AAB:(j, Nt ; n>N; (26)
where "j, ;s\ is the sequence appearing in(13). Then, for every xo > D A3e D “Aé- there exist positive
constantsMyp; "N+, C; and C,, independent of t >"0;1s and n, such that&" solution of (24) satis es

t

Ys BMgexp” t oYY
Y& Yy 0€XP~  oCn @)Xlexp“ot

%k ’Cr . CoZ 27)
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where ¢, is given by (21), and, using (26) is equal to % , and %

Proof. From the system (24) we can explicitly compute € * function of €', "" * and "" ! by the following
relation

@’1 1 Pn 1Q@n t %9n 1nn 1 Rn 1.-n lz (28)
whereP,; Q; Ry >L" X are given by

Note that since both semigroups generated by operators, A2 H *He+ and A respectively are semigroups of
contraction we have that P, and R, are well de ned and YP,Y-x. B1 and YR,Y-~. B1. Hence, using this
notation we can write (24) as follows

1N “ n 1 i “ . L
£ ,MPQ& t Q MPQ MW """' Ry " 'Z (29)
i1 * i0 j1 ¢

Remark thatif " 0 then P,Q is the operator driving the system

S AN L
i t 2 '

(30)

AL AR

0@0 Xo Ro;

The product of non-commutative operators, involving or not the feedback interferes with a direct use of the
exponential results obtained in [L3]. However, the proof made in [L3], where observations are available at
each time step can be directly adapted { using also1Z] { with a similar decomposition between low and high
frequencies. The low frequencies can still be controlled by oumtermittent feedback as soon as the frequency
cut-o is chosen with respect to the maximum data sampling time-step. Then, the resulting high frequencies
are handled by the numerical viscosity which acts at every time-stp t. We refer to Appendix A for a complete
proof of the existence of the two positive constantdMy and o, with o depending onN, such that

n
%A‘P,Q-g BMoexp™ oCt e,  n>N: (31)
1 Yo

Combining (29), (31) and the fact that YP,Y . B1 and YR,Y . B1, we obtain the following estimate

n 1l ) ) _
YE' Y% BMoexp” ot t Y% t Q exp’ oGt +%" % Y i%Z

Q

i 0

t . -
max%‘o’"Yx YIIY)(ZZ

BMgexp t eYE'Y,
0EXP oCn (e 1T exp o U+ ioon
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Finally, from ( 25) combined with the conservation of the energy associated with Z), we obtain the nal esti-
mate (27) of Theorem 3.2 with

Ci %YA3XOYX and C, YAZxoYy: (32)

The estimate (27) gives the convergence (in the energy norm) of the time semi-discte observer (L4) to the
solution of the continuous system @) whenn 2 and t 0. Moreover, this estimate provides an explicit
dependence between the error and the ratio associated with the sampling frequency. Considering46) to be
satis ed the data time-sampling is a constant equalto T N t, and

.
T
Therefore if T is large with respect to t, then is close to zero , the rst term of the estimate (27) right-

hand sidec, tends to 0, and the second term iSO T ~t 2 , es. Therefore the overall asymptotic estimate
reads

K'Y O%Wl, T "t tz

From this asymptotic estimate, we see in the estimate 27) that the numerical viscosity coe cient appears as
a consistency term, which is consistent with the fact that this arti cial term is in fact a perturbation of the
standard and consistent discretization of ). For this reason we clearly understand why the viscosity coe ciert
should be kept , Ot 2e. Furthermore, the term Mg indicates that the initial condition error can not be
stabilized. Moreover even ifMy 0 we see that the data time-sampling T control the error estimate. If T is
typically of the same order of magnitude as the global simulation timeT , we retrieve the standard numerical error
estimate which deteriorates with the simulation time. We point out t hat when 1 we retrieve the estimate
in [8] which rst exhibit the gain o ered by data assimilation strategies in numerical analysis estimates. More
precisely, in this particular case, authors in B] have shown that the numerical error between the exact solution
and the numerical solution is bounded and independent of the total simiation time. The input of data in the
observer dynamics balances the accumulation of numerical errors. Whenx 1, this remark is still valid but the
time-sampling of the data also governed the estimation. We providen Section 4.2 a numerical illustration of
this phenomenon.

The result obtained in Theorem 3.2 can be extended to take into account potential data noise. For instance,
let us consider the case of additive noise so thatl(0) becomes

z" Hxy'nt e “nt s (33)

where is a time dependent function belonging toZ. In the case of the intermittent observer, the second
equation of System @4) reads

1 1
g;n tg:n anngnl 1’A\Zg;nl nn 1 ani""n 1't': (34)
The data noise directly enters as a source term in the estimation eor dynamical system, hence the demonstra-
tion proposed in Theorem 3.2 directly applies, entailing the following estimate

. t n .
YE' 'Y BMoexp™ oCht Y&V 1 ~ % °C; ,C, Cg max Y it Yz Z (35)
exp ot 1BiBnS' 1

where C; and C, are as in Theorem3.2 and C3 is given by

Cs WY x.: (36)
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Remark 3.3. Theorem 3.2 can be extended to obtain error estimates for a fully discrete obsemr, combining
(14) with Galerkin method. The idea is to adapt the proof of Theorem 3.2 using the method described in §].

Remark 3.4. We believe that Theorem 3.2 could be extended in order to tackle non-constant time-sampling
rates, in particular as soon as the ratio between two measurements anché time discretization step is bounded
with respect to time. In any case we should carefully investigate wht it is the \good" distribution of the
samples such that all the system frequencies are stabilized.

3.2. Convergence estimate using interpolated observations

Similarly to what we have proposed for the on/o strategy we analyze the time-discrete observer that assim-
ilates interpolated data { i.e. System (14)-(16). For the sake of clarity we will use the same notation for the

estimation error, namely
g xynt e A (37)

for the corrected estimation error and
g xynt e A (38)

for the predicted estimation error.

3
Proposition 3.5.  Assuming that xo > D"A3¢ D" Aj e then the estimation error de ned by (37) and (38)
satis es the following discrete dynamical system

A AN SR

t T2 ’
1| M HiHE ! A2t "m 1 H ¢..g 1. (39)
U £ xo A
where"" 1 and "" ! are given by (25) and "4 is the interpolation error, namely
"1 Hxy"n 2ot e d" L (40)

Proof. From the de nition of the predicted estimation error and from the corre ction phase of the observer {4)

we obtain R R R
'l xy'n Lete AL t HFA" HA"I |t AZAM !

1ot HYHe" Y | t A2 ¢t H*d" 1 Hxy"n 1ot e
1ot HFH t A%t ottt HERh
What remains of the proof follows the demonstration of Proposition3.1.

We can now give the convergence estimate in the case of interpolated da@nd, as a rst step, we do not
make assumptions on the type of interpolation scheme.

Theorem 3.6. Making the same assumptions o\, H and Xo than Theorem 3.2 and denoting by
a1 .
SaS Ve

we can state that there exist positive constant®ly; o, C;, C, and Cg, independent of t >"0;1e and n, such
that,

Y'Yy BMoexp™ ont «Y&oY % °C1 . C, C33¢& (41)

1 exp” ot
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Proof. From the discrete dynamical system (B9) satis ed by the estimation error we can extract the explicit
relation
¢ ouvwg' t WVt umnt o oH D1z (42)
where U; V; W >L"Xe are given by

% t ,A®> t H'HZ

(1 LA. ;
2

Following the same arguments as for Theorens.2

- . t Y y TRV
Y'Y BMgoexp™ ont Ygf’Yx 1T exp ot .<{TB1%§Y Yk {EiaB)éY Y« Cgm%ﬁYde : (43)

Hence we obtain the desired results withC,; and C, expressed in 82) and C3 given by (36).

Note that estimate (41) directly follows intuition since, as we could imagine, when only fev data are available
the interpolation error naturally increases hence the right-hand sig of (41) grows larger. Moreover, the gain
appears as a coe cient on this part of the upper-bound which clearly implies that the interpolation error enters
in the observer dynamical system as some additive noise on the data. To ally illustrate this phenomenon we
propose to give ana priori bound of the interpolation error in the case of linearly interpolated data.

~

Proposition 3.7. If we associate the sampling time't, ¢, -y
tr jrt and if we denote by

N to the sampling time steps”j srsn ~ N, by

T max"t tre;
max ' & r 1 r

then there exists a constantC, depending only on the observation operatoH and the initial condition X such
that

S4SB C4 T 2.: (44)

Proof. To simplify the presentation we rst focus our attention on the inte rval to;t; . To start with we remark
that d' in (16) can be written as

d H«<

t
Xy tgee : 45
1o g, (Y o (45)

Furthermore, there existsro > tg;it andry> it ;t; such that

- . . N . . . “to it e?
y toe Xyt to 1t e Xylte to 1t eXylt e 0 5 Xy Io®,
- . . . . . . “tpoit e
vy 1o XyIt g It e Xyit e t1 1t exXylt e fXY rie:
Therefore, replacingxy toe and xy"ti¢ in (45) we obtain
i n Ctp it Tty it e Tt toe"ty it e .
d H®& it e ! 0 o 1 Xy'it e
1 to -
"ty it Sty it 2 | “it tety it e

Xy Io® Xy ry

2At1 to' 2At1 to'
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hence

it Sty it e “it teetty it e?
~ Xy Io® ~
2t1 to' 2tl tO'

Using now the conservation of the energy associated with2 this leads to

. . At .
d Hxyites HGEZ Xy rqe

“it ety it e Tttty it 2
2At1 to'

Y'Y, BYH Y% 7. YAZX o Yy

and therefore

Y4LY, BYH Y% .

2
YAZXo Y : (46)

We conclude the demonstration by giving the expression of the constantnamely

t1 to°

1
(o é\rH Yox .z YA%XoYx

As previously presented for the intermittent observer, the convegence estimate in Theorem3.6 can be
extended to take into account data noise of the form of 83). In this case, the second equation of the dynamical
system (39) veri ed by the estimation error of the observer using interpolated data becomes

1 1
g‘l n g;n H :}:H@ 1 . AZg;n 1 wn 1 H i”g; l; (47)

where

"TCLle Hxy'n It el Tn o lete "§RTn Lot e (48)
In the previous equation we denoted byl the interpolation operator which, in the case of linear interpolation, is
given by (16) and by "] * the interpolation error of the observations without noise, as presentedn Theorem 3.6.
In a general case, assuming that >L"Z ;Ze« is a bounded linear operator, the proof of Theorem3.6 remains
valid, so that the estimate (41) reads

WYX BMoexp“ oht 'Y%Yx

— St ?%C; ,C, C3%iS C3MY-y 7. maxY "it eYze: (49
1 eXpA Ot . 1 2 3<d 3 L'z ;Z 1B Bn z ( )

In the light of Theorem 3.2 and Theorem 3.6 we understand that choosing a strategy { interpolated or on/o
{ relies on a compromise between stability and consistency. On the amhand, the observer with intermittent
correction phases bear an exact consistency with respect to the data,ovever corrections shocks may occur
thus leading to potential instabilities. On the other hand, the observer fed with interpolated data admits a
correction phase at each model time-step { hence its greater stabilt { but arti cially induces noise in the
observer dynamical system due to data interpolation error.

4. Numerical illustrations

We proceed in this section with the illustration of our theoretical results on a simple 1D wave model. Our
objective is to show how the two strategies can o er two di erent alt ernatives depending on the data sampling.
Namely, the on/o time discretization is a consistent formulation with r espect to the data sampling whereas
the interpolated strategy ensures a stability at every time-step. We will proceed with two classes of numerical
results. First we will present a spectrum analysis to numericdly demonstrate the stability properties of the
proposed feedback laws. This will in particular help us to x the optimal gains of each method with respect
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to the other. Secondly, we will present time evolution of the estination errors for various sources of initial
uncertainties in order to show the impact of the data time-samplingin practical data assimilation procedures.
The example of the one-dimensional wave equation reads

£ wixite weXte 0 “X;te >70;1e © 0;%
LWy 0 te wyT1te O t>"0; 2
Ewox; 00 wpTxe  g7Xe; X >"0; 1e (50)
o WX; 00 Wi Xe  1"Xe; X >"0; 1e:
In this setting we have
L2°0;1s;
“Aos W>H0;1e Twyy >L270;1¢%;
oW Wy w>D"Age:

It is easy to see that this particular case ts exactly in the abstract framework described in Sectior2. Concerning
the observations, we follow the example presented ing8] and we assume that

Z'te W teS; t>70;2 o; (51)
with 1 o 0:3;0:7 ° "0; 1+ an open and non-empty interval. Hence, the observation space reads
Z HYM1ge: (52)
Following [7] we endowZ with the inner-product
Ut >HY e T g e, TEXE T 1o EXE T 20 g (53)

where the extension operatoru Ext, ,~' » >H!"0; 1+ is de ned for all ' >H"! o+ as the solution of

¢ Uy O; X >"0;1f!

U X >Tg
o U0 u"1e O

For the inner-products ™ ; =, and " ; ¢,;1~.,., One can prove [] that the adjoint of the observation operator is

. H'"0; 1
HO ~
F(Ext e

and therefore the observer, decomposed intd %& A7 , reads



TITLE WILL BE SET BY THE PUBLISHER 15

71 1,000
- 500
-0 E
- 500
+ 1,000
= i5h? h = h3
— 11,000
500
° E
500
| o4 | | | (TPIE] OIS 11000
10 8 0 10 8 6 4 2 0

Real( )

Figure 1. Evolution with respect to the viscous coe cient  of the spectrum of the
operator driving the continuous-time dynamical system for a xed value of the gain 5 and
a space step oh ﬁ. In (black j) the operator without numerical viscosity, and in (gray
A) with numerical viscosity.

4.1. Spectral analysis

As the Luenberger lter aims at stabilizing the estimation error system it is natural to assess the quality of
the gain Iter by evaluating its damping impact on the otherwise conservative system. Following [25], this can
be done after full discretization by observing the evolution of the poés of the stabilized operator in both cases,
namely using time interpolation or the on/o switch.

To start with, the most natural spectrum to analyze is certainly the spectrum associated with the time-
continuous observer formulation, namely with only its spatial discretization. Then, the numerical results can
be compared to the existing literature in particular with [ 8,27]. This case is the asymptotic limit of the time
discretization and should be considered as our ultimate goal when we expeto produce the most accurate
simulations. We will then see the impact of the time discretization in a second set of results. Note that we
must proceed with caution here since the on/o time discretization is in essence a time-discrete strategy where
we have to compose di erent operators over the sampling period.
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4.1.1. Spectral analysis of the continuous-time observer

Firstly, we comment the loss of uniform stability after discretization and our choice of an added numerical
viscosity to circumvent this limitation. In fact, after spatial dis cretization, the estimation error dynamical
system (6) reads

Gt %A H[THLZG"te; (54)
whereAy, and Hy, are consistent discretization {w.r.t a space stefh { of the model and the observation operator.
In practice, for our numerical experiments we have chosen a reasonabbkpace discretization oth ﬁ. Even

though the observability inequality (4) is satis ed at a continuous level, this discretization procedure already
produces { similarly to what we have mentioned in the case of time dicretization { some spurious modes
inducing the loss of the exponential stability of (54) { see [L3]. To circumvent this di culty we have introduced
some arti cial viscosity for the time discretization which should also take into account the spatial discretization.
When t 0 we obtain the time-continuous error dynamics studied in [3], namely

G te % H [ HL  hAZZG te: (55)

Therefore, we start our numerical investigations with Figure 1 where we plot the evolution of the spectrum of
the operator driving the dynamical system (55) w.r.t. various values of the arti cial viscosity coe cient. These
spectra are compared with the spectrum of the operator without numercal viscosity. By these examples we
illustrate { in the particular case of the spatial discretization of 1D wave equation using rst order nite element
method { the creation of spurious high-frequencies that cannot be stallized by the feedback operatoerth.
Hence, stabilizing the complete frequency range is then performetdy decomposing the tasks. The feedback
operator manages the low frequencies whereas the high frequencies a@ntrolled by the numerical viscosity.
It should be noted, however, that since this arti cial viscosity corresponds to a perturbation of the standard
discretization of the problem it should be kept as low as possible. In gactice the choice of the coe cient |
can be done with ana priori knowledge (or estimation) of the frequencies appearing in the speci problem of
interest. However, in the rest of our following investigation we wil keep a numerical viscosity strong enough to
produce unclouded gures.

Secondly, we discuss the well known overdamping e ect which catraints the optimal choice of the gain. We
plot in Figure 2 the spectra for various values of the gain parameter {in (black j ) the operator without
numerical viscosity and in (gray A) the operator with numerical viscosity. We x in these examples , h?.
As the gain increases, the frequencies, after being shifted towasdthe left half plane, start to go back to the
imaginary axis. This is particularly critical for the low frequencies. This e ect is crucial when choosing an
adequate value of the gain with an order of magnitude of

[o]

2l g

with ! ¢ the lower frequency of the system, see?[/]. This indicates that, rst, even in the unrealistic case of an
outstanding data-to-noise ratio, the gain cannot be chosen \as large as possible'ln other words, after some
particular value of the gain the ability of the observer to stabilize these low frequency modes looses its e ciency.
Hence, the choice of the gain is a compromise between the di erent rangef frequencies we aim at stabilizing.
In our work we opt for a sort of \mean" strategy by choosing such that a maximum of frequencies are shifted
signi cantly to the left half plane without compromising too much th e low frequencies which are more present
in the potential errors in practice. As an example in Figure 2 we choose 9.

4.1.2. Spectral analysis of the discrete-time observers

Once we have understood the behaviour of the time-continuous obseer and chosen a target optimal gain
we can now proceed to the numerical study of our di erent choices ofitne-discretization. Firstly, we evaluate
the relation between the optimal gain found in the time-continuous framework and the sampling period. In
this purpose, we need to de ne the twotransition operators driving the homogeneous equivalent of system3Q)



TITLE WILL BE SET BY THE PUBLISHER

=5 =6
c 711,000
-1 500
410 :E,
- 500
.4 1,000
211,000
-1 500
410 :E,
- 500
.+ 1,000
=9 =10
T T 0 0 00 T T 1 1:000
-1 500
410 \_é/
- 500
| | ! FHoe o 00 ] | | | HPe e o 004 1;000
10 8 6 4 2 0 10 8 6 4 2 0

Figure 2. Evolution with respect to the gain  of the spectrum of the operator driving the

continuous-time dynamical system with h ﬁ and ;, h?. In (black j) the operator

without numerical viscosity, with numerical viscosity in (gray A).
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Figure 3. Comparison between the spectra of the continuous-time operator (ir(black j))
and the time-discrete observer using interpolated data (in(black [ )) with time overkill. The
discretization parameters areh 1=, t h?and  h2

either with numerical viscosity or not, namely

e %t HHGZ % %t AnZ "% %t AnZ:
e %t A2t Hh'HZ % %t AnZ % %t AnZ,
where, if € is the solution of the system @9) with * " "4 0, then
A €
and, if , 0in (39), then
g1 A LK

Note that in the de nition of A_ o, the parameter aims at adjusting the amount of numerical viscosity
in order to discard spurious modes arising from the time discretiation but also the space discretization {
see Sectiond.1.1. Combining the necessary restrictions arising from both time and spce discretization, we
understand that we need to choose here the global viscosity coe ciehas

O max™ t 2:h2ee:

We now link the eigenvalues and  of the discrete-time observer to the one corresponding to the comiuous-
time observer. Therefore, let us denote by an eigenvalue of the operatorA;, H ,th to be compared with
. If we initialize the discrete-time and continuous-time systemwith the corresponding eigenvectorsvy and u

then (from the explicit form of the dynamics) we obtain that, at a given timent

v'nte vexpnte
Vﬁn u n.
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hence seekingg "nt » u" induces . To numerically validate these arguments we plot in Figure3

the values

log” - log~ -

(gray A) and

(black [ ):

In order to be able to compare with the time-continous spectrum we set h? { this con guration can be
understood as anoverkill in time { and we observe a perfect match between the two plots. In Figure4 we

500

o
Im( )

500

Real( )

Figure 4. Comparison between the spectra of the continuous-time operator (in(black j))
and the time-discrete observer using interpolated data (in(black [ )) with h ﬁ, t h
and t 2.

represent a con guration where t  h. Here the spectrum di ers from the time-continuous analysis. We se
that additional spurious high frequencies are not controlled by the stalilization operator. This justi es even
more the use of numerical viscosity which allows to keep the gain chosdn the time-continuous setting. But
ultimately, the choice of the gain made with respect to the time-coninuous case is very robust to all time-step
discretizations.

We can now move to the analysis of the on/o discrete operator in order to deermine the associated optimal
gain. In this perspective it is convenient to seek for the time-cotinuous limit, therefore we consider a time
overkill situation by setting t h2. Then, to x the ideas, we consider the case where T 5t, namely

i r>N Tjr 1 g 5
We introduce the transition operators from time t,, to t, s as

~ ~ ~ 4v ~ ~ ~
ST %t AnZ "% %t AnZe St Hy'HLZ ‘% %t AnZ "% %t AnZs:
. § 1 . 1 .4
St AZZ % ot AnZ "% St AnZ:

S t A2 t HptHhZ ‘% %t AnZ "% %t ApZs:

and we denote byQ and € the corresponding eigenvalues. These operators should be compared thetr
equivalent transition operators from time t, to t, 5 in the interpolated case, namely the simple composition

An 5% %Q‘n 155125 and An 5% %Q‘n 13125;
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with corresponding eigenvaluesC and C . Then, in Figure 5 we show

log"C »
T

m_I_AC'(gray A) and (black );

compared with C and C in the time overkill con guration. We set the gain value for the on/o obser ver

T
=9+ —9
" 1,000

500

| O E

1 500

.. 1,000
0

Real( ) Real( )

Figure 5. Comparison between the time-discrete on/o observer (in(black )) and the
time-discrete observer using interpolated data (in(black [ )) to illustrate the relation
between the optimal gains in a time overkill context. The complete &t of discretization
parameters is as followsh %, t h?,  h?and T 5t

ve times larger than in the interpolated case and we observe a perfectnatch. Consequently these numerical
arguments con rm the intuition that, in order to obtain similar damping rates between the two strategies, the
gain value qitch for the on/o switch needs to be ve times larger than the gain value . for the interpolation
strategy. In a general context we can infer the empirical law

e (56)
Int.

and we point out that we do not face any overdamping phenomena which coulthave limited the increase of the
gain in the on/o switch which is an important contribution of our numerical investigations.

Once the optimal gain of each observer is carefully chosen, we can asselsit stabilization properties. We
can now analyze a more intricate case where t h. We continue to x the ratio T 5t and the spectra of
both observers are presented in Figuré. We observe that additionally to the peculiar form of the spectra more
spurious high frequencies appear, validating once again the use of nunieal viscosity. Moreover, concerning
the on/o observer, we remark some high frequencies that are less stalided. This can be interpreted as an
illustration of the fact that this observer may su er from a decreased stability on some modes { corresponding
to these high frequencies. At last in Figure7 we set t h? and T 5h. This situation is relevant with
practical cases where the time-step of the numerical algorithm is mutlower than the sampling time-step of the
data but more importantly that it is, in essence, meant to reach small \alues whereas the sampling rate is xed.
The conclusion stated previously remains valid since we still obsee a slight deterioration of the damping of
some high frequency modes for the on/o estimator.

To conclude with this section we can say that the time-continuous sgpctrum analysis remains a very useful
tool to x the optimal gain. It is obvious for the time-interpolated con gu ration but in fact it is also the case
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Figure 6. Comparison between the time-discrete on/o observer (in(black )) and the
time-discrete observer using interpolated data (in(black [ )) with h ﬁ, t h, t ?
and T 5t

with the on/o switch. The only modi cation with the on/o switch con gur  ation is that we have to multiply
the gain found during the time-continuous spectrum analysis by the atio of the data time-step over the model
time-step. The stability property is preserved globally and we do rot face any overdamping phenomena by

increasing the value of the gain in this case.

T
=9 _g
200 200
100 100
E ° ° E
100 100
200

200

Real( ) Real( )

Figure 7. Comparison between the time-discrete on/o observer (in(black )) and the
time-discrete observer using interpolated data (in(black [ )) with h 5%, t h?, ~ h?
and T  5h.
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4.2. Assessing robustness from numerical examples

We propose in this section to assess the e ectiveness of the two obysers usingsynthetic data. More precisely,
we consider the functions

3s 4s8 if $>70;0:5¢:

~ce 24 2. e
Wo'st 1651 s=% Wi's* 5 102 g5 if 55705 1o

(57)

that we use to initiate a direct model of the form of (50). The solution of this direct model can be computed

analytically .

Wx;te Q 2%y coS kt e b sin” kt «Zsin® kx e;
k

with . .
2 2% 12°coS ke 1 48 2sirm £
515 and b —

ak

from which we extract our synthetic observations. Then we simulate he observer where we arti cially introduce
some errors by setting

A o W ..
do&° Y

where w is a given perturbation of the initial condition (in displacement) and is a scalar value representing
the perturbation amplitude. Hence, the estimation error dynamical system is initialized with

L &

In our numerical simulation, we set ;. 9, the optimal value discussed in Section4 and suiich IS Obtained
from the ratio (56).

M*..nqw"ﬂ’k)F“M*«mﬁdﬂ\d“‘wqﬂﬂmgwf

1d ° | | | | r | | |
0 1 2 3 4 5 0 20 40 60
time (s) time (s)
— On/O! Switch ---- Interpolation Direct simulation

Figure 8. Estimation error with h %, t  h, t 2, — 20and O.



TITLE WILL BE SET BY THE PUBLISHER 23

1

0.5

W(%,t)
o

105

Exact solution --- Linear interpolation
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Figure 9. lllustration of the impact of time interpolation.

4.2.1. Improving standard numerical convergence using observers

First, we propose to consider the case where 0, namely we initiate the numerical algorithm with the
exact { up to some projection errors { initial condition. It is well-k nown that standard numerical schemes lead
to an accumulation of numerical errors thus entailing a deterioration of the numerical solution as the global
simulation time grows larger. This phenomenon is illustrated in Figure 8 where we plot the evolution in time
of the estimation errors. Concerning the observer we seltL 20 and compare the results of both strategies.
We observe that the corresponding estimation errors clearly stabilie to a plateau { during the complete time
window and even for large total simulation time { which is a particular behavior already obtained in [8]. In
this con guration we observe that, due to the data interpolation error the on/o strategy provides a better
numerical solution than the observer using interpolated data.

4.2.2. Assessing robustness to low data availability

In our second numerical experiment, we setTt— 20, 1 and w™xe sin” x « { the rst eigenfunction
of the Laplacian operator in the domain. It should be noted that it is not a mode of the stabilized operator
driving the dynamics of the estimation error, hence there are muliple excited modes in this dynamical systems.
The corresponding results are presented in FigurelO where we can distinguish several slopes { during early
stages of the simulation { in the decay of the estimation error. These slpes correspond to the time constant of
stabilization associated with the various modes initially introduced. In the remaining part of the time window
we observe that both observers reach a plateau { which is identical totie one observed in Figures.

In a third numerical experiment, we consider in Figure 11 the con guration where less data are available
on the system by setting Tt— 200. It is striking to remark that the on/o observer clearly fullls its  task by
assimilating data only where they are available thus leading to a great €iency in the case of highly coarse
time distribution of the observations. On the opposite, the other obsever oscillates around a plateau due to
large interpolation errors. To underline the impact of interpolation error, we have eventually change the type
of interpolation by using a cubic interpolation of the data. The resulting sampling is presented in Figure9.
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Figure 14. Numerical results with h 23, t  h, t2 1 20, 1land
w’"se sin” se. The data are perturbed with noise as described in §8) with M 2,
~ F oM ~1.1, and ™ K. KqeM ~A1'io"\10'ioo
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We understand that when the cubic reconstruction is better than the linear { here at the end of the time
window { then the nal estimation error is lower. However at the beginning of the time window, we see that
the cubic interpolation error is larger than with a simple linear interpolation which is of dramatic consequence
on the estimation error. This also proves that without any idea on the madel generating the data, a simple
interpolation scheme is su cient.

Moreover, we are interested in the case where the ratieTt— is also set to 200 by decreasing the simulation
time-step and using the same sampling period as in Figurd2. This case is representative of the nal goal in
a numerical procedure, namely for a given con guration we hope to incrase the precision by diminishing the
model discretization steps. In that case, the results are almost ectly similar to the one presented in Figure 10,
namely the observer fed with interpolated data is less e cient dueto large interpolation error { which is identical
to the one introduced in Figure 10since it only depends on the sampling period as emphasized in Proptisin 3.7.

4.2.3. Assessing robustness to data noise and large initial condition esrs

In the following experiments we propose to illustrate the robustress of the proposed time-scheme when the
magnitude of initial error increases. In Figure 12, we propose to increase thé. 2-magnitude of the perturbation
by setting w”se sin” s« with 10? and a sampling ratio Tt— 20. This results in an increase of the potential
high frequencies that are initially introduced in the estimation error dynamics. When looking at the snapshots,
we see that the on/o observer su ers from high frequency oscillations hat do not appear in the observer with
the time interpolation scheme. We see here the main advantage of usingnte interpolation. Namely, since the
dissipation brought by the observation operator is present at every timesteps, it bene ts from a remarkable
robustness to initial errors. This feature of both observers can be poted out more clearly when increasing the
H-magnitude of the perturbation by setting w"se sin"10s « with 1. The obtained results are presented
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in Figure 13 where we observe that the intermittent observer fails to fully sabilize the initially introduced high
frequencies in comparison with the observer using interpolated dat.

Finally, our last numerical assessment is dedicated to illustrate he impact of additive noise in the data.
Taking into account the space regularity restriction that we have imposed on our measurements, for the analysis
we assume the data take the following form

M
Xt WX teS, Q Fisin"Kj x S ; t>70;2 o; (58)
i1

where M is a given integer,” Fj*M, are random variables following a normal distribution with zero mean and
standard variations of ~ [ +M, whereas™K;*M, are random variables following a normal distribution of mean

and standard variations of ™ K; KeeM In other words, we randomly add to the data some controlled space
high frequencies. The higher the maximum space high frequenadyl is, the closer we are from a space and time
white noise which limit, when the discretization steps goes to 0, mains very speci c to study [4]. One typical
realization of this random experiment is presented in Figurel4. We can observe that both observers loose in
e ciency. The on/o observer has the particularity to present correc tion shocks, which can be explained by the
fact that its larger gain directly ampli es the weight of the noise in the estimation error dynamical system, as
presented at the end of SectiorB.1. As the gain decreases, we observe that these shocks vanish, howetrer sta-

bilization properties of the estimation error naturally diminish. Th is phenomenon is also presented in Figur&4.
4.2.4. Conclusions from numerical assessment

Sampling

period on/ol

switch

Observer using
interpolated data

Data noise &
Initial errors

Figure 15. lllustration of the di erent regimes where both observers are more lkely to be e cient.

From the various numerical experiments that we have carried out, we an derive general comments on the
estimation procedure and also on the particular observers that we haveroposed. First of all, in each presented
case it is always preferable to use the available data. Secondly, we camt expect a precision improvement
better that the time-discretization step of the data, since any procedure designed to Il the gap between two
data steps would only create some noise in the estimation procedure. ddcerning the di erences between the
intermittent observer and the observer using interpolated data, these numerical experiments, oriented thanks to
the previously presenteda priori estimates, enabled to characterize the regimes where both strategieshould be
used. As a matter of fact, the on/o switch has shown an incredible robushess to large data time steps compared
to the second observer which e ciency, in that case, is deterioratel by a signi cant amount of interpolation
error. However, in the case of high initial errors or high data noise, it apars to be more e cient to interpolate
the data, since the subsequently obtained dynamical system will bae t from a stabilizing operator at each time
step. This trade-o is summarized in Figure 15.
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5. Conclusion

In t work we have addressed the issue of designing an observer for walike systems that is robust when the
data have a coarse distribution in time. To circumvent the data-samging di culty we have proposed an on/o
strategy that Iters the observation only at the times when they are available. This strategy was theoretically
and numerically analyzed and compared to the case when the data are recdnscted using an interpolation
scheme.

The conclusions are twofold. First we have seen that the interpolatiorremains valid in the case of reasonable
repartition (in time) of the data and with potentially high levels of noi se. This e ciency directly comes from
the presence, at each time step, of the stabilized operator. Secondlin the case of poor data availability the
on/o switch appears to be quite robust since no interpolation error { oth erwise entering as a source term in
the estimation error dynamical system { is introduced.

The authors would like to deeply thanks Dr. Dominique Chapelle for very useful comments on this work and the
reviewers for their careful reading which help us improve the theoretical background of this work.

Appendix A. Exponential stability result for the on/off switch.

We recall that we consider that there exists a constant ratio betweenthe available data and the time dis-
cretization step T N t. The general case can be deduced directly as soon as the ratio betwee two
measurements and the time discretization step is bounded with rgsect to time. For the sake of clarity, we then
denote by € g™ X for n CO and OBk BN 1. We thus consider the following dynamical system

n CO; OBkBN 1

q: @:k 1 @n;k Aég;n;k 1 @:k.;

t = 2

.|. k1 k1 . . 59
: % CAZE T W THFHE™ Y ncOo;  O0BKBN 1 (59)

where

L ik
ki 0; otherwise

. 1 K 2 . .
We denote £k > [gﬁ“'k[ the energy associated to the state of system50). First of all, we prove the
following energy identity.

Proposition A.1. Let n; Bn, be two positive integers and leD Bk;; ko BN 1 be two other integers. If t
is small enough, then the quantity€* satis es the following energy inequality

ns ) k2;n2 B (PHIP) B
ket @ HEZ v, g7 tj Q t 2za 7 BEMR (60)

i niokgs0 i kang i king
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k1 k
Proof. Taking the inner product in X of the rst line in ( 59) with % and the inner product of the
k1 k1
second line in 69) with % we obtain
¢ ko1 K
@t@ 0; n AQ; 0BkBN 1
:|: k1 ko1 )
j @‘t@” t?'\g;n;k 1 gn;k 1;A2@n;k 1, k,NTlAg;n;k 1 g;n;k 1;H¢Hg;n;k 1.; nAO: OBKBN 1

U §n 1,0 §n;N . @n 1;0 @n;N .
If kx N 1, the second relation in the above system reads as

@ﬂ;k 1 @n:k 1

2
t A k1 U Aok 1.A2 k 1.:
t CIAGE T gk g

Or, in this case, € * g% 1 t | A2g" ! hence, we obtain

@n;k 1 @n;k 1 ] 2 t I2 . 2
AT e [A T (61)
If k N 1, then the same relation becomes

Q’I 1,0 Q’I 1,0

t t?ZAQ 104 EYH@ 1,0\2 %A@“ L0~ A2 FHeg 1O

Or, in this case, € ¥ & ¥ t ~ A2 H *H+g" %° hence, we obtain

1;0 1;0
eren t 4 LA 7 g LoV %2‘1 A2 HFHeg HOZ:

B ., A" Y07  yHg" 1oy %tZYAzgf‘ Loy % 2\HTH g 1OV
t .
-2 Ya2g! OyyiHg! Loy

B . A" Y07  wHg" 1oy %tZYAzgf‘ Loy % 2\HTH g 1OV
t 1 . t .
- N e - "YHIHE 1Oy

Choosing now" 2 and using the boundedness of the operatoH the above inequality becomes

1;0 10
@t@ns LA N7 W BV tT‘Z[Az»zi“* U DKEeYHE WY (62)

t

2

Combining (61) and (62) from ki;n; to ky;n, and taking t B Kiz we obtain (60), with Ky«
H#

WiYL"Z Xe

In what follows we prove the following result.
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Theorem A.2. If . 0, then for every AO there existsT AO and kr. AO such that, for everyT AT ,
the solution £ of system (59) satis es

k. Z°°ZB t Q MK, £0>c_ g

n T>0T

whereC. 1 spari’ j such thatS;SB —+ and” ;e is an orthonormal basis formed by the eigenfunctions of
the operator A corresponding to the eigenvalues j-.

Proof. Here we want to verify that the conditions of Theorem 3.1 in [L2] are ful lled. We introduce
1 - 1 -
Ank 1s % St AZ Lot St AZ

the transition operator such that

@;k ! An;k 13@*:
This transition operator is associated with a conservative system and here existsh = R;Re (
smooth strictly increasing function, with R >70;2 | i.e.

B S@; andforevery @R; inf"HhS e; SPB ¢ AO:
Moreover, ™ 1 and if, " i; j* are the eigenvalues and the corresponding eigenvectors &f, i.e. (A
i j j) we have
Ank 1 ] expij ¢ te jwith j ith” j o te:
In fact, we have the following lemma.
Lemma A.3. The function h is de ned by h™ « 2arctan” 5.

Proof of Lemma. We seek for .  such that

1 it
2 - .

—— expi j ¢ te:

1ig

Hence by introducing the complex 1 i7‘ j» we look for

“ . 2 R 2 ~j t
- exp i ¢t g e Satan .

We now introduce the conservative transition operator

1 . 1 . N
An 130 <% EtAzl%b St AZ

such that

@n 10 An l&;ogn;o;
which is the transition operator from one time-step where observationsre available to the other. By introducing
this time hy ( Nh™§e, we have

n . 1 .
An1s0 j explioj 1 Te jwith 7 i t—ThN j Te:
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Therefore, hy is also a smooth strictly increasing function satisfyingL 1. Hence, the hypotheses of

Theorem 3.1 in [L7] are satis ed for the transition operator A, i1g.0., Which implies that for every A0 there
exist T A0 and k¥ AO such that, for every T AT , the solution £ of system (59) satis es

1;0 ;02
kﬁng;OzZBT Q ]H%]; &LOo>c.

n T>0,T

Recalling that T = N t, there existsky. AO such that

k. K7 B t Q ML, £%>c. -

n T>0;T

The main result of this appendix is the following theorem.

Theorem A.4. There exist two positive constants o and ¢ such that the energy associated to syster(b9)
satis es
£k B (& %exp” ok te; n CO; 0Bk @N:
Before we start the proof of TheoremA.4, we state the following lemma.

Lemma A5. If 0and , t 2, then there exist a timeT A0 and a positive constantcr such that the
solution € of (59) satis es

) ni ] nika W2t niky 2
YUY B2t Q WHE'Y 2t . Q@ [AC™[ - Q@ ot Z[A[; (63)
no n;k 0;0 2 n;k 0;0

wheren; T~ T andk; T-~t niN.

Since our problem di ers to the one considered in13] only in the low frequency part and this part is handled
by Theorem A.2, the proof of the LemmaA.5 is identical to the one of Lemma 2.4 in [L3] and it is omitted here.

Proof of Theorem A.4. We follow the ideas in [L3]. Therefore, we write the solution € of (59) as the sum of
the solution z™¥ of system (9) with 0 and w™¥ | the solution of the following system:

¢ ik 1 n;k _whk 1 nk
w t WooagY . W .. nco OBKBN 1
Wn,k 1 Wn;k 1 pnk 1 .
; I k1. .
LT AW kv 1 HFHE™ % nco;  0BkBN 1 64)
Wn 1:0 WnN : Wn 1:0 Wn;N : n CO
a wo% 0

Applying Lemma A5 to z"k g% w™ with 2% g%° we obtain

) ) ni . niky " 2 t niky « 2u

crYPY¥ B2 2t Q HE"’Y 2t . QQ [AGY] - t ZIAZY
n 0 nk 0,0 nk 0,0

niki 2 t niki “

! N1 . . €L 2
22t Q HW"¥ 2t , Q@ [AW™[ — Q0 t Z[A%W™[ : (65)
no nk 00 2 oo ¢
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We want now to bound the terms in w in the above inequality by some terms in&. In order to do this, we
multiply the rst relation in ( 64) by 3*w™ ' w™ e and by w™ ' w™ ! the second. We obtain

¢ Wn;k 1Y an;kY:

L 66
'1; an;k 1Y2 “Nn;k qu t AWn;k 1 Wn;k l;Azwn;k 1, t KN 1 AWn;k 1 Wn;k l;HiH@n;k 1.: ( )
If kx N 1, the second relation in the above system reads as in Propositiod.7
nk 1 nk 1 nk 102 220 ok 12
YWY vt e AW CIAZWY (67)

2
Ifk N 1, we get
an 1;0Y2 an 1;OY2 . t ZAWn 1;022 t AHWn 1;0;H@n 1;0.
t AWn 1;0. A2Wn 1;0 H ngf] 1;0.
vt
with here
Wn 1;0 t At AZWn 1;0 H iH@ 1;0. Wn 1;0:
Therefore, we obtain
YW T2 Y B0 2t zaw” Y07 2 t tHw" MO HE W0t 2y, A%w" 10 H FHg 1OV
BYW' 1O 2, t zaw" ¥°7 2 t “Hw" O Hg" 1O
t 2t2YA2Wn 1§Oy2 t 2 2“_| iH@ 1:0% 2t 2t YAZWFI 1§kY\F{ iH@ 1;OY
BW" ¥ 2, t zaw" 7 2 t “Hw" YO Hg" MO

t 2 2ya2w" OVt 2 2yt B0 ¢ 2 1 ogpzyn vog 2 YHIHE OV

not

Choosing" 2 in the above Young inequality, we nally obtain
t 2 2 ) 2 . )
(68)

YW O 2t zaw” 7 2 t “Hw" O Hg MO

leading { sinceH is bounded { to

. . t 22 K 1.2 .
W' 102 2.t zAaw" 107 AW 1" Byw™ ¥

t HwW" Y0¥ t "1 t K Z2:YHE Y0¥

where K i : is the norm of the operator H*. Combining the above inequality and (67) for n;k from 0;0 to
ni; Ky , for t small enough, there exists a constant ¢ such that

niky niky

niky ) ni . L 2 w2
Q YW™Y 2t Q HW™¥ 2t . QO [AW™[ — QO t Z[A%w"]
nk 0,0 n o nk 00 2 nk 00

nl . .
Bc t Q YW"°¥ YHE"OV.:
n 0
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Following the same steps as in13] { with Gronwall's inequality { we get that there exists a constant c®such
that

nika ) ni ) nika L2t nika o2
Q WY 2t QWw"¥ 2t ., QQ [AW™[ — Q@ t Z[AW"]
n;k 0;0 n o0 n;k 0;0 2 n;k 0;0
ni .
Bc®Q YHE" ¥
n o
which, applying (65), gives the existence of a positive constant®*3uch that
0 ni 0 nika K 2 t niki ) - 2
CPRIOVB t Q HEY t . QQ [AE[ - QQ t F[A%Y[;
n 0 nk 0,0 nk 0,0
where we recall that | t 2. The last inequality, combined with the energy inequality (60), gives nally the

existence of a constantc®®*0; 1+ such that
YK B ROV

which allows us to conclude the proof as in13].
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