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1. Introduction

The discipline of data assimilation historically appeared in the context of meteorology and oceanography
{ see for example the surveys [5,28] { but has also reached new �elds of research for instance in life sciences [9].
The two main ingredients in a data assimilation formulation are the model and the data. On the one hand,
the model regroups physical information on the system under consideration encapsulated in a mathematical
dynamical system { mostly based on (nonlinear) evolution partial di�erential equations in the data assimilation
community { and allows after discretization to simulate various con�gur ations of interest. However, the model
contains a various range of potential errors, for example: on the operator driving the dynamical system, on the
boundary conditions or on the initial conditions. On the other hand, the data bring complementary and valuable
information on the studied system but they are often partial { in space and time { and are likely to be corrupted
by the noise inherent to any measurement process. Data assimilationaims at providing a reconstruction of the
(observed) real trajectory by coupling the information contained in the model and in the data, hence �ltering
their respective uncertainties.

To reach this goal several strategies have been considered which couldbe classi�ed into two main families.
The two approaches can be considered in a stochastic or deterministic formalism but we will focus here on
the deterministic one. On the one hand, the variational approach popularized by the 4D-Var method [22],
consists, in essence, in minimizing a { usually least square based{ cost function integrating during a period
of time a compromise between (1) somea priori on the model and initial conditions and (2) the observation
discrepancy between the actual measurements and the synthetic data produced by the model. This cost function
is minimized under the constraint of the model dynamics with, in most cases, the help of a descent algorithm
involving successive iterations of the model and the dynamics of theso-called adjoint variable. On the other
hand, there is the family of �ltering methods, where the discrepancy between the simulated system and the
data at hand acts in time as a controlled correction of the dynamics of the simulated system to adjust its
trajectory to the pursued trajectory. The resulting system is often called an observer of the exact trajectory
in the deterministic context { more often referred to as an estimator in the stochastic context. The evolution
satis�ed by this observer is written in a general form of a dynamical system with a feedback law based on
the discrepancy between the model and the data. The most popular observer is the Kalman �lter formulated
by equivalence with an optimal criterion minimization for �nite dime nsional systems or in�nite dimensional
systems [4, 20], hence applicable to any system. However it ultimately leads to operators which are after
discretization numerically intractable. As an alternative for this \cu rse of dimensionality", numerous strategies
have been proposed for example the Ensemble Kalman Filter [15] or Reduced Order Kalman-like �lters [34].
In the speci�c context of the conservative wave-like equation, however, several works [7, 23, 27, 31] have rather
proposed simpli�ed but e�ective feedback laws directly based on the physical properties of the system at hand
which stabilize at a certain rate { potentially sub-optimal { any errors . This idea follows the path proposed by
Luenberger's work [25] for �nite dimensional systems and is popularized for PDEs with the nudgingappellation
as initiated in [1,19] { a complete historical perspective can be found in [21].

In general, these observers are de�ned in an abstract continuous-timeframework assuming that the model
and the data are available at any time. This clearly represents the asymptotic of any real con�guration where in
general the data are time-sampled. Eventually the model should be considered with its time-discretization which
has no reason to be dependent of the time-sampling of the data. Therefore, we must analyze the impact of the
data discretization in the observer de�nition. In particular, we are concerned by coarse data in time with respect
to the model discretization and we will speci�cally focus in this work on the speci�c but fundamental case where
the data have a constant time-sampling which is much larger than the model time-step. As an illustration, we
can cite the case of image sequences assimilation for cardiovascular systems { describede.g. in [6] { where the
time-sampling of the data is of one or two orders of magnitude larger than themodel time-step discretization.
Facing this situation, we can think of two alternatives. The �rst one { considered for example in [27] { consists in
interpolating the data in time in order to regenerate a time-continuous sequence which can then be compatible
with any time discretization of the model. This approach is very attractive from an abstract standpoint, and,
therefore, can be directly analyzed in the light of the literature about the time-discretization of time-continuous
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observer { typically in our case following the works [2,12,13,16,30]. However it is at the price of an additional
time-interpolation error perturbing the observer dynamics as any other measurement noise. This perturbation
has the consistency of the data sampling period. Moreover, the resulting observer is non-causal and, therefore,
can not integrate the data in real-time. A second approach { often used in practice without even mentioning
it { is to compute the discrepancy only when the data are available. This intermittent correction is potentially
error free but may induce correction shocks which limit the stabilization of the error between the observer
trajectory and the pursued trajectory. We mention that the stabili ty of some dissipative partial di�erential
evolution equations with intermittent damping was recently studi ed in [17].

In this paper, we address the issue of analyzing a data assimilation procedure where an intermittent feedback
law is de�ned and compared to a procedure where a time interpolation of the data is considered. The comparison
is carried out both theoretically { since convergence estimates are provided in both cases { and numerically
{ using a simple one-dimensional wave equation model. Indeed, we restrict our analysis to the speci�c case of
a wave-like system and the Luenberger associated observer proposed in [27]. However, this work is intended to
illustrate how the data time-sampling inuences the de�nition of any data assimilation sequential strategy.

The outline of the paper is as follows. In Section2 we introduce the observer methodology in the case of
wave-like systems and we propose two types of time discretization presented in a general form. In Section3
we provide convergence estimates of both observers. Section4 and Section4.2 are then devoted to numerical
illustrations where (1) we analyze the spectra of the stabilized operators appearing in the dynamical systems
satis�ed by the estimation error in order to provide an optimal gain for bot h observers and (2) we provide time
simulations which illustrate the robustness of the two strategies in mainly two di�erent contexts: a �rst one
with low data noise but high sampling period, and a second one with reasonable sampling period but noisy
data.

2. Discrete-time observer design

2.1. Nudging for wave-like systems

We consider in this work a general class of second order hyperbolic systems in bounded domain characteristic
of wave equations or elasticity systems. These models typically correspond to simpli�ed situations of those
encountered in the cardiac modeling context, where a heart mechanical model is registered on coarse data
obtained from a sequence of few medical images [6]. Formally, we introduce a Hilbert space H endowed with
the inner product ˆ�; �• and we denote byY � Ythe associated norm. Then, we de�ne a self adjoint operator
A0 � DˆA0• � H , positive-de�nite with compact resolvent and we consider the general class of systems

¢̈
¨̈̈
¦
¨̈̈
¤̈

•wˆ t• � A0wˆt• � 0;

wˆ0• � w0 � � 0; _wˆ0• � w1 � � 1;

(1)

where _x denotes the time derivative of any variable x, ˆ � 0; � 1• represent some potential errors on the initial
conditions and ˆw0; w1• are some knowna priori . We point out that ( 1) represents a conservative system and,
therefore, any errors on the initial conditions are conserved in time.Denoting by

xˆ t• � Œ
wˆt•
_wˆ t•

‘ >X � Dˆ A
1
2
0 • � H ;

we can rewrite (1) as a �rst-order system

¢̈
¨̈
¦
¨̈̈
¤

_xˆ t• � Ax ˆ t• ; t A0

xˆ0• � x0 � �;
(2)
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where x0 � ‰w0 w1Ž
—
, � � ‰� 0 � 1Ž

—
and A � DˆA• � X is de�ned by

Dˆ A• � Dˆ A0• � Dˆ A
1
2
0 • ; A � Œ

0 1
� A0 0

‘ :

On this system we consider a particular target systemxY associated with a speci�c unknown� Y. Moreover, we
assume that some measurementsz { also called observations { are available and de�ned by

zˆ t• � Hx Yˆ t• ; t A0; (3)

where H >LˆX ; Z• is the so-calledobservation operatorand Z is the Hilbert space associated with the obser-
vations endowed with its norm Y � YZ . For the sake of simplicity, we restrict ourselves to bounded observation
operators but a more general class of admissible observation operators can alsobe considered [35]. The obser-
vation operator can be applied to any solution of (2) and we assume that the pairˆA; H • is exactly observable
in a time Tobs A0, i.e. there exists a constantCobs A0 such that every solution of (2) satis�es

S
Tobs

0
YHx ˆt•Y2

Z dt CCobsYxˆ0•Y2
X ; xˆ0• >X : (4)

In order to bene�t from the available data zˆ t• and considering only the availablea priori x0 that we have
on the initial condition, we consider the Luenberger observerÂxˆ t• [7] { see also similar formulations in [13,31]
{ estimating xYˆ t• from the dynamics

¢̈
¨̈
¦
¨̈̈
¤

_Âxˆ t• � AÂxˆ t• � H ‡ ˆzˆ t• � H Âxˆ t•• ; t A0

Âxˆ0• � x0;
(5)

where H ‡ > LˆZ ; X • is the adjoint of the observation operator and  A 0 is a gain parameter. We justify the
use of this observer by noticing that the estimation error Çxˆ t• � xYˆ t• � Âxˆ t• satis�es the { damped { dynamics

¢̈
¨̈
¦
¨̈̈
¤

_Çxˆ t• � ‰A � H ‡H ŽÇxˆt•; t A0

Çxˆ0• � � Y:
(6)

Provided that H satis�es (4) it is well known { see e.g. [24] { that the error is exponentially stable, namely
there exist two constants M A0 and � A0 such that

YÇxˆ t•YX BM exp̂ � �t •YÇxˆ0•YX ; t A0: (7)

Remark 2.1. In the �ltering strategy described by ( 5) we see that the initial dynamics (2) is modi�ed by a
feedback law where the so-calledgain operator is, here, simply given byG � H ‡ . In comparison, in the context
of Kalman �ltering [ 4,32], the gain is given byG � Pˆ t•H ‡ , wherePˆ t• >LˆX ; X • satis�es the Riccati equation

_P � AP � P A‡ � P H ‡HP; P ˆ0• � P0;

in the mild sense.

Remark 2.2. We may distinguish in the wave-like equation context two classes ofobservation operators. The
one corresponding to velocity observations, namelyH � ‰0 H0Ž, and the one corresponding to the direct
observation of the �eld, i.e. H � ‰H0 0Ž. It should be noted that in the context of poor time resolution of the
data the two cases are indeed two independent situations since thedata cannot be di�erentiated with respect to
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time without dramatically amplifying the measurement noise. We point out that the exponential convergence
of these two classes of observers have been demonstrated. The �rst one is standard see [10,18,26]. The second
one is less classical since the adjointH ‡ induces a modi�cation of the identity between the time-derivati on of
the �eld and the velocity. This observer can therefore only be considered as a virtual system and has been
demonstrated to converge in [7, 8]. Ultimately the exponential convergence of both observer systems requires
the geometric control conditions to be satis�ed { see [3] for the wave equation and [11] for the elasticity system.

2.2. Discrete-time observer

In the �rst section, we have introduced an abstract observer whichassumes that the data at hand are available
at any time. However in practice, they are time-sampled and we want to study the inuence of their discretization
in the de�nition of the observer. In this respect, we decide to directly introduce the time-discretization avoiding
the technicalities induced by potential Dirac distributions associated with the data time-sampling. However,
we should consider an observer time-discretization which conserves at the time-discrete level { and uniformly
with respect to the time-discretization { the stability propert ies of the estimation error. Unfortunately, when
discretizing in time systems such as (6) spurious high-frequency modes may arise provoking the loss of the
uniform decay rate of the error { seee.g.[13,36,37]. These modes cannot be captured by the localized observation
operator, thus leading to a loss of uniform observability. In other words, a direct discretization of the observer
(5) for example using conservative mid-point rule

Âxn � 1 � Âxn

�t
� AŠ

Âxn � 1 � Âxn

2
• � H ‡Œ

zn � 1 � zn

2
� H Š

Âxn � 1 � Âxn

2
•‘ (8)

may not satisfy at the discrete-level a time-discrete counterpart of the observation inequality (4) of the form

N obs

Q
n � 0

YHx ˆn�t •Y2
Z CCobs ŒYw0Y2

Dˆ A
1
2
0 •

� Yw1Y2‘ : (9)

Note that in ( 8) we still avoid to consider the time sampling of the data and denote by

zn � Hx Yˆn�t • ; (10)

a discrete (in time) observation potentially available at any model time-step.
To circumvent the loss of observability at a time-discrete level,authors in [13] propose two main options. The

�rst possibility is to impose a (restrictive) CFL condition that d iscards these undesired high frequency modes.
The second option consists in adding an arti�cial viscous term consistent with the order of the numerical scheme
and responsible for the dissipation of the spurious modes { see also [30,33] for a similar proposition. Note that it
is also possible to de�ne speci�c compatible spaces and discretizations { with, for example a mixed formulation
for the space discretization { that o�er uniform stabilization properti es, see, for example [2] or [14] and reference
therein. However, these discretizations are less usual and thus more intricate to use in practical applications.
Among the various possibilities detailed in [13], we retain for instance the discretization

¢̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¦
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¤̈

Âxn � 1
� � Âxn

�

�t
� AŠ

Âxn � 1
� � Âxn

�

2
• ; n A0

Âxn � 1
� � Âxn � 1

�

�t
�  n � 1H ‡Šzn � 1 � H Âxn � 1

� • � ��t A2Âxn � 1
� ; n A0

Âx0
� �

’

”
w0

w1

“

•
;

(11)



6 TITLE WILL BE SET BY THE PUBLISHER

where some numerical viscosity is introduced with the speci�c viscous operator (suggested by [13])

A2 � Œ
� A0 0

0 � A0
‘ ; (12)

and ��t controls the amount of this numerical viscosity. In order to respect the order of consistency of this time
scheme { and as advised in [13] { we ought to set ��t � Oˆ �t 2• . This time discretization can be understood as
a prediction-correction scheme where the dynamics of the model leading to Âxn

� is then corrected by computing
a model-data interaction to produce Âxn

� .
Once the time discretization of the observer is chosen, we can go back to our considerations on the data time-

sampling. Here, we should �rst point out that the observation inequality (9) can be expected to be obtained
from its continuous counterpart (4) only with a time discretization step small enough so that there are several
time steps included in the characteristic time associated with the smallest frequency of the system. Otherwise,
we could imagine a degenerate situation where the measurements are considered at the exact same frequency
than a system mode making it unobservable, see also [17] about the observability of intermittent stabilized
systems. This condition on the data sampling will be assumed to be satis�ed in the rest of the article. We
de�ne ˆ j r • r >N ` N as a strictly increasing sequence of natural numbers so that the available measurements are

zr � zˆ j r �t • ; r >N: (13)

We then consider two strategies to introduce these time-sampleddata in (11). The �rst one is to consider the
data only when they are available, hence in essence n � 0 when the data zn is not available. The second one
consists in interpolating the data to generate an approximatedzn for all n. We summarize these two strategies
by

¢̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨
¦
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈
¤

Âxn � 1
� � Âxn

�

�t
� AŠ

Âxn � 1
� � Âxn

�

2
• ; n A0

Âxn � 1
� � Âxn � 1

�

�t
� � n � 1H ‡ ‰dn � 1 � H Âxn � 1

� Ž� ��t A2Âxn � 1
� ; n A0

Âx0
� � Œ

w0

w1
‘ � Âx0;

(14)

whereˆ � n •n >N and ˆdn •n >N will be referred to as the switching coe�cients and the interpolated data respectively.
For the �rst idea { named on/o� switch and where the correction term only appears when measurements are
available { we have

� n � œ
1
0

dn � œ
zr

0
if §r >N � n � j r

otherwise:
(15)

The second choice where we interpolate in time the data reads, in theparticular case of linear interpolation,

� n � 1 ¦ n; dn �
n � j r

j r � 1 � j r
zr � 1 � ‹ 1 �

n � j r

j r � 1 � j r
• zr j r Bn Bj r � 1: (16)

Then in the next sections, we propose to study the convergence of thetime-discrete observer given by (14)-(15)
{ see Theorem3.2 { and given by (14)-(16) { see Theorem3.6.

Remark 2.3. There is also an exact counterpart at the time-discrete level of the popular Kalman observer
mentioned in Remark 2.1. The resulting time-discrete observer for the system (2)-(3) { called Kalman-Bucy
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estimator [20] { is also based on a prediction-correction paradigm reading

(Prediction)
¢̈
¨
¦
¨̈
¤

Âxn � 1
� � An � 1Sn Âxn

� ;
Pn � 1

� � An � 1Sn Pn
� A‡

n � 1Sn ;
(17)

(Correction)
¢̈
¨
¦
¨̈
¤

Âxn � 1
� � Âxn � 1

� � �t Pn � 1
� H ‡‰zn � 1 � H Âxn � 1

� Ž;
Pn � 1

� � ˆˆ Pn � 1
� • � 1 � H ‡H • � 1;

(18)

where we denoted byAn � 1Sn the state transition operator corresponding to a stable and consistent discretization
of the dynamical system (2) for instance in the case of a mid-point discretization

An � 1Sn � ‰1 �
�t
2

AŽ
� 1

‰1 �
�t
2

AŽ:

One can prove { seee.g. [29] { that the time-discrete observer derives from seeking the minimum value of the
functional

J ˆÇx0• �
1
2

YÇx0Y2
P � 1

0
�

1
2

n

Q
k � 1

Yzk � Hx k Y2
Z �t ; (19)

with xk subject to xk � AkSk � 1xk � 1 and x0 � x0 � Çx0. Hence, an on/o� version of the Kalman-Bucy observer
corresponds to the minimum of the adequately adjusted functional

J ˆÇx0• �
1
2

YÇx0Y2
P � 1

0
�

1
2

cn

Q
r � 1

Yzr � Hx j r Y2
Z ˆ j r � 1 � j r • �t ; (20)

with

cn � card˜ j; 1 B j Bn; � j � 1• : (21)

We expect that the proof that we will present for the nudging observer can be directly adapted to the Kalman
approach, hence justifying in the general context of sequential data assimilation methods the choice of inter-
polating or intermittently �ltering the under-sampled data or cont inuously �ltering a reconstructed data by
interpolation.

3. Convergence estimate for the estimation error

3.1. Convergence estimate for the on/o� switch

Let us de�ne the corrected estimation error by

Çxn
� � xYˆn�t • � Âxn

� ; (22)

and the corresponding predicted estimation error by

Çxn
� � xYˆn�t • � Âxn

� ; (23)

where xY is the exact solution of (2) and Âxn
� and Âxn

� satisfy (14)-(15). We start by giving the dynamical system
satis�ed by this estimation error in the following proposition.
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Proposition 3.1. Assuming that x0 > DˆA2
0• � Dˆ A

3
2
0 • , the estimation errors de�ned by (22) and (23) satisfy

the following discrete dynamical system

¢̈
¨̈̈
¨̈̈
¨̈̈
¨
¦
¨̈̈
¨̈̈
¨̈̈
¨̈
¤

Çxn � 1
� � Çxn

�

�t
� AŠ

Çxn � 1
� � Çxn

�

2
• � "n � 1;

Çxn � 1
� � Çxn � 1

�

�t
� � � n � 1H ‡H Çxn � 1

� � ��t A2Çxn � 1
� � "n � 1

� ;

Çx0
� � x0 � Âx0;

(24)

where the consistency terms are

RRRRRRRRRRRRRRRRRRRR

"n � 1 �
�t 2

2
A3‰

1
3

xYˆ tn • �
1
2

xYˆ rn •Ž; with tn ; rn >�n�t; ˆn � 1•�t � ;

"n � 1
� � � ��t A2xYˆˆ n � 1•�t • :

(25)

Proof. Starting from the de�nition of the predicted estimation error and from the correction phase of the
observer (14) we obtain

Çxn � 1
� � xYˆˆ n � 1•�t • � Âxn � 1

� � � n � 1�t H ‡ˆdn � 1 � H Âxn � 1
� • � ��t �t A2Âxn � 1

�

� ˆ1 � � n � 1�t H ‡H •Çxn � 1
� � ��t � tA 2Âxn � 1

�

� ˆ1 � � n � 1�t H ‡H � ��t �t A2•Çxn � 1
� � �t "n � 1

� ;

which is exactly the second equation in (24). Secondly, to obtain the remaining equation it su�ces to notice
that

Çxn � 1
� � Çxn

�

�t
�

xYˆˆ n � 1•�t • � xYˆn�t •
�t

�
Âxn � 1

� � Âxn
�

�t
:

Hence, using a �rst-order �nite di�erence approximation of _xYˆˆ n � 1•�t • , from the above equality { assuming
enough regularity on the initial condition { we can assure that there exist a time t n and a time rn >�n�t; ˆn �
1•�t � such that

Çxn � 1
� � Çxn

�

�t
�

_xYˆˆ n � 1•�t • � _xYˆn�t •
2

�
Âxn � 1

� � Âxn
�

�t
�

�t 2

2
‰

1
3

...
x Yˆ tn • �

1
2

...
x ˆ rn •Ž:

Therefore, from (2) and the �rst equation of ( 14) we conclude the proof. �

From this �rst result we can now give the convergence estimate for theon/o� observer in the speci�c but
fundamental case where the data have a constant time-sampling whichis much larger than the model time-step.

Theorem 3.2. Let A be a skew-adjoint operator with compact resolvent andH >LˆX ; Z • be a bounded linear
observation operator such that the observability inequality(4) holds. Assume that there exists a strictly positive
integer N such that

cn C�n; n A0:( j r � rN �t ; n >N; (26)

where ˆ j r • r >N is the sequence appearing in(13). Then, for every x0 > DˆA2
0• � D ˆA

3
2
0 • there exist positive

constants M 0; � 0ˆN •, C1 and C2, independent of �t >ˆ0; 1• and n, such that Çxn
� solution of (24) satis�es

YÇxn
� YX BM 0 exp̂ � � 0cn �t •YÇx0YX �

�t
1 � exp̂ � � 0� �t •

‰�t 2C1 � ��t C2Ž; (27)
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where cn is given by (21), and, using (26) is equal to 
n
N

� , and � �
cn

n
.

Proof. From the system (24) we can explicitly compute Çxn � 1
� function of Çxn

� , "n � 1 and "n � 1
� by the following

relation
Çxn � 1

� � Pn � 1Q Çxn
� � �t ‰Pn � 1"n � 1 � R n � 1"n � 1

� Ž; (28)

where Pn ; Q; R n >LˆX • are given by

RRRRRRRRRRRRRRRRRRRRRRRRRR

Pn � ‰1 � � n  �t H ‡H � �t ��t A2Ž
� 1

‹ 1 �
�t
2

A•
� 1

;

Q � 1 �
�t
2

A;

R n � ‰1 � � n  �t H ‡H � �t ��t A2Ž
� 1

:

Note that since both semigroups generated by operatorŝ��t A2 � H ‡H • and A respectively are semigroups of
contraction we have that Pn and R n are well de�ned and YPn YLˆX • B 1 and YR n YLˆX • B 1. Hence, using this
notation we can write (24) as follows

Çxn
� �

’

”

n

M
j � 1

Pj Q
“

•
Çx0

� � �t
n � 1

Q
i � 0

’

”

i

M
j � 1

Pj Q
“

•
‰Pn � i "

n � i � R n � i "
n � i
� Ž: (29)

Remark that if � n � 0 then Pn Q is the operator driving the system

¢̈
¨̈̈
¨̈̈
¨̈̈
¨
¦
¨̈̈
¨̈̈
¨̈̈
¨̈
¤

Çxn � 1
� � Çxn

�

�t
� AŠ

Çxn � 1
� � Çxn

�

2
• ;

Çxn � 1
� � Çxn � 1

�

�t
� ��t A2Çxn � 1

� ;

Çx0
� � x0 � Âx0;

(30)

The product of non-commutative operators, involving or not the feedback, interferes with a direct use of the
exponential results obtained in [13]. However, the proof made in [13], where observations are available at
each time step can be directly adapted { using also [12] { with a similar decomposition between low and high
frequencies. The low frequencies can still be controlled by our intermittent feedback as soon as the frequency
cut-o� is chosen with respect to the maximum data sampling time-step. Then, the resulting high frequencies
are handled by the numerical viscosity which acts at every time-step �t. We refer to Appendix A for a complete
proof of the existence of the two positive constantsM 0 and � 0, with � 0 depending onN , such that

XXXXXXXXXXX

n

M
j � 1

ˆPj Q•
XXXXXXXXXXXLˆX •

BM 0 exp̂ � � 0cn �t • ; n >N: (31)

Combining (29), (31) and the fact that YPn YLˆX • B1 and YR n YLˆX • B1, we obtain the following estimate

YÇxn
� YX BM 0 exp̂ � � 0cn �t •YÇx0

� YX � �t
n � 1

Q
i � 0

exp̂ � � 0ci �t •‰Y"n � i YX � Y"n � i
� YX Ž

BM 0 exp̂ � � 0cn �t •YÇx0
� YX �

�t
1 � exp̂ � � 0� �t •

max
1Bi Bn

‰Y" i YX � Y" i
� YX Ž:
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Finally, from ( 25) combined with the conservation of the energy associated with (2), we obtain the �nal esti-
mate (27) of Theorem 3.2 with

C1 �
5
12

YA3x0YX and C2 � YA2x0YX : (32)

�

The estimate (27) gives the convergence (in the energy norm) of the time semi-discrete observer (14) to the
solution of the continuous system (2) when n � ª and �t � 0. Moreover, this estimate provides an explicit
dependence between the error and the ratio� associated with the sampling frequency. Considering (26) to be
satis�ed the data time-sampling is a constant equal to �T � N �t, and

� �
�t
�T

:

Therefore if �T is large with respect to �t, then � is close to zero , the �rst term of the estimate (27) right-
hand side cn tends to 0, and the second term isOˆ �T ˆ �t 2 � ��t •• . Therefore the overall asymptotic estimate
reads

YÇxn
� YX � O‰M 0 � �T ˆ �t �

��t

�t
•Ž:

From this asymptotic estimate, we see in the estimate (27) that the numerical viscosity coe�cient appears as
a consistency term, which is consistent with the fact that this arti�cial term is in fact a perturbation of the
standard and consistent discretization of (2). For this reason we clearly understand why the viscosity coe�cient
should be kept ��t � Oˆ �t 2• . Furthermore, the term M 0 indicates that the initial condition error can not be
stabilized. Moreover even ifM 0 � 0 we see that the data time-sampling �T control the error estimate. If �T is
typically of the same order of magnitude as the global simulation timeT, we retrieve the standard numerical error
estimate which deteriorates with the simulation time. We point out t hat when � � 1 we retrieve the estimate
in [8] which �rst exhibit the gain o�ered by data assimilation strategies in numerical analysis estimates. More
precisely, in this particular case, authors in [8] have shown that the numerical error between the exact solution
and the numerical solution is bounded and independent of the total simulation time. The input of data in the
observer dynamics balances the accumulation of numerical errors. When� x 1, this remark is still valid but the
time-sampling of the data also governed the estimation. We provide in Section 4.2 a numerical illustration of
this phenomenon.

The result obtained in Theorem 3.2 can be extended to take into account potential data noise. For instance,
let us consider the case of additive noise so that (10) becomes

zn � Hx Yˆn�t • � � ˆn�t • ; (33)

where � is a time dependent function belonging toZ . In the case of the intermittent observer, the second
equation of System (24) reads

Çxn � 1
� � Çxn � 1

�

�t
� � � n � 1H ‡H Çxn � 1

� � ��t A2Çxn � 1
� � "n � 1

� � � n � 1H ‡ � ˆˆ n � 1•�t • : (34)

The data noise directly enters as a source term in the estimation error dynamical system, hence the demonstra-
tion proposed in Theorem3.2 directly applies, entailing the following estimate

YÇxn
� YX BM 0 exp̂ � � 0cn �t •YÇx0YX �

�t
1 � exp̂ � � 0� �t •

‰�t 2C1 � ��t C2 � C 3 max
1Bi Bn S� i � 1

Y� ˆ i �t •YZ Ž; (35)

where C1 and C2 are as in Theorem3.2 and C3 is given by

C3 � YH ‡YLˆZ ;X • : (36)
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Remark 3.3. Theorem 3.2 can be extended to obtain error estimates for a fully discrete observer, combining
(14) with Galerkin method. The idea is to adapt the proof of Theorem 3.2 using the method described in [8].

Remark 3.4. We believe that Theorem 3.2 could be extended in order to tackle non-constant time-sampling
rates, in particular as soon as the ratio between two measurements and the time discretization step is bounded
with respect to time. In any case we should carefully investigate what it is the \good" distribution of the
samples such that all the system frequencies are stabilized.

3.2. Convergence estimate using interpolated observations

Similarly to what we have proposed for the on/o� strategy we analyze the time-discrete observer that assim-
ilates interpolated data { i.e. System (14)-(16). For the sake of clarity we will use the same notation for the
estimation error, namely

Çxn
� � xYˆn�t • � Âxn

� (37)

for the corrected estimation error and
Çxn

� � xYˆn�t • � Âxn
� (38)

for the predicted estimation error.

Proposition 3.5. Assuming that x0 > Dˆ A2
0• � Dˆ A

3
2
0 • then the estimation error de�ned by (37) and (38)

satis�es the following discrete dynamical system

¢̈
¨̈̈
¨̈̈
¨̈̈
¨
¦
¨̈̈
¨̈̈
¨̈̈
¨̈
¤

Çxn � 1
� � Çxn

�

�t
� AŠ

Çxn � 1
� � Çxn

�

2
• � "n � 1;

Çxn � 1
� � Çxn � 1

�

�t
� � H ‡H Çxn � 1

� � ��t A2Çxn � 1
� � "n � 1

� � H ‡"n � 1
d ;

Çx0
� � x0 � Âx0;

(39)

where "n � 1 and "n � 1
� are given by (25) and "d is the interpolation error, namely

"n � 1
d � Hx Yˆˆ n � 1•�t • � dn � 1: (40)

Proof. From the de�nition of the predicted estimation error and from the corre ction phase of the observer (14)
we obtain

Çxn � 1
� � xYˆˆ n � 1•�t • � Âxn � 1

� � �t H ‡ˆdn � 1 � H Âxn � 1
� • � ��t �t A2Âxn � 1

�

� ˆ1 � �t H ‡H •Çxn � 1
� � ��t �t A2Âxn � 1

� � �t H ‡ˆdn � 1 � Hx Yˆˆ n � 1•�t ••

� ˆ1 � �t H ‡H � ��t �t A2•Çxn � 1
� � �t "n � 1

� � �t H ‡"n � 1
d :

What remains of the proof follows the demonstration of Proposition3.1. �

We can now give the convergence estimate in the case of interpolated dataand, as a �rst step, we do not
make assumptions on the type of interpolation scheme.

Theorem 3.6. Making the same assumptions onA, H and x0 than Theorem 3.2 and denoting by

S"dS� max
1Bi Bn

Y" i
dYZ ;

we can state that there exist positive constantsM 0; � 0, C1, C2 and C3, independent of �t >ˆ0; 1• and n, such
that,

YÇxn
� YX BM 0 exp̂ � � 0n�t •YÇx0YX �

�t
1 � exp̂ � � 0�t •

‰�t 2C1 � ��t C2 � C 3S"dSŽ: (41)
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Proof. From the discrete dynamical system (39) satis�ed by the estimation error we can extract the explicit
relation

Çxn � 1
� � UVWÇxn

� � �t ‰UV"n � 1 � U "n � 1
� � H ‡"n � 1

d Ž; (42)

where U; V; W >LˆX • are given by

RRRRRRRRRRRRRRRRRRRRRRRRRR

U � ‰1 � �t ��t A2 �  �t H ‡H Ž
� 1

;

V � ‹ 1 �
�t
2

A•
� 1

;

W � 1 �
�t
2

A:

Following the same arguments as for Theorem3.2

YÇxn
� YX BM 0 exp̂ � � 0n�t •YÇx0

� YX �
�t

1 � exp̂ � � 0�t •
‹ max

1Bi Bn
Y" i YX � max

1Bi Bn
Y" i

� YX � C 3 max
1Bi Bn

Y" i
dYZ • : (43)

Hence we obtain the desired results withC1 and C2 expressed in (32) and C3 given by (36). �

Note that estimate (41) directly follows intuition since, as we could imagine, when only few data are available
the interpolation error naturally increases hence the right-hand side of (41) grows larger. Moreover, the gain
appears as a coe�cient on this part of the upper-bound which clearly implies that the interpolation error enters
in the observer dynamical system as some additive noise on the data. To �nally illustrate this phenomenon we
propose to give ana priori bound of the interpolation error in the case of linearly interpolated data.

Proposition 3.7. If we associate the sampling timê t r • r >N ` N to the sampling time stepsˆ j r • r >N ` N, by
t r � j r �t and if we denote by

�T max � max
r C0

˜ t r � 1 � t r • ;

then there exists a constantC4 depending only on the observation operatorH and the initial condition x0 such
that

S"dS B C4 �T 2
max : (44)

Proof. To simplify the presentation we �rst focus our attention on the inte rval � t0; t1� . To start with we remark
that di in (16) can be written as

di � H ‹
i �t � t0

t1 � t0
xYˆ t1• �

t1 � i �t
t1 � t0

xYˆ t0•• : (45)

Furthermore, there exists r 0 >� t0; i �t � and r 1 >� i �t ; t1� such that

RRRRRRRRRRRRRRRRRR

xYˆ t0• � xYˆ i �t � t0 � i �t • � xYˆ i �t • � ˆ t0 � i �t • _xYˆ i �t • �
ˆ t0 � i �t •2

2
•xYˆ r 0• ;

xYˆ t1• � xYˆ i �t � t1 � i �t • � xYˆ i �t • � ˆ t1 � i �t • _xYˆ i �t • �
ˆ t1 � i �t •2

2
•xYˆ r 1• :

Therefore, replacingxYˆ t0• and xYˆ t1• in (45) we obtain

di � H ŒxYˆ i �t • �
ˆ t1 � i �t •ˆ t0 � i �t • � ˆ i �t � t0•ˆ t1 � i �t •

t1 � t0
_xYˆ i �t •

ˆ t1 � i �t •ˆ t0 � i �t •2

2ˆ t1 � t0•
•xYˆ r 0• �

ˆ i �t � t0•ˆ t1 � i �t •2

2ˆ t1 � t0•
•xYˆ r 1•‘
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hence

di � Hx Yˆ i �t • � H Œ
ˆt1 � i �t •ˆ t0 � i �t •2

2ˆ t1 � t0•
•xYˆ r 0• �

ˆ i �t � t0•ˆ t1 � i �t •2

2ˆ t1 � t0•
•xYˆ r 1•‘ :

Using now the conservation of the energy associated with (2) this leads to

Y" i
dYZ BYH YLˆX ;Z•

ˆ i �t � t0•2ˆ t1 � i �t • � ˆ i �t � t0•ˆ t1 � i �t •2

2ˆ t1 � t0•
YA2x0YX

and therefore

Y" i
dYZ BYH YLˆX ;Z•

ˆ t1 � t0•2

8
YA2x0YX : (46)

We conclude the demonstration by giving the expression of the constant, namely

C4 �
1
8

YH YLˆX ;Z• YA2x0YX :

�

As previously presented for the intermittent observer, the convergence estimate in Theorem3.6 can be
extended to take into account data noise of the form of (33). In this case, the second equation of the dynamical
system (39) veri�ed by the estimation error of the observer using interpolated data becomes

Çxn � 1
� � Çxn � 1

�

�t
� � H ‡H Çxn � 1

� � ��t A2Çxn � 1
� � "n � 1

� � H ‡"n � 1
d;� ; (47)

where
"n � 1

d;� � ˆ1 � I• Hx Yˆˆ n � 1•�t • � I � ˆˆ n � 1•�t • � "n � 1
d � I � ˆˆ n � 1•�t • : (48)

In the previous equation we denoted byI the interpolation operator which, in the case of linear interpolation, is
given by (16) and by "n � 1

d the interpolation error of the observations without noise, as presentedin Theorem 3.6.
In a general case, assuming thatI > LˆZ ; Z• is a bounded linear operator, the proof of Theorem3.6 remains
valid, so that the estimate (41) reads

YÇxn
� YX BM 0 exp̂ � � 0n�t •YÇx0YX

�
�t

1 � exp̂ � � 0�t •
Š�t 2C1 � ��t C2 � C 3S"dS� C 3YI YLˆZ ;Z• max

1Bi Bn
Y� ˆ i �t •YZ • : (49)

In the light of Theorem 3.2 and Theorem3.6 we understand that choosing a strategy { interpolated or on/o�
{ relies on a compromise between stability and consistency. On the one hand, the observer with intermittent
correction phases bear an exact consistency with respect to the data, however corrections shocks may occur
thus leading to potential instabilities. On the other hand, the observer fed with interpolated data admits a
correction phase at each model time-step { hence its greater stability { but arti�cially induces noise in the
observer dynamical system due to data interpolation error.

4. Numerical illustrations

We proceed in this section with the illustration of our theoretical results on a simple 1D wave model. Our
objective is to show how the two strategies can o�er two di�erent alt ernatives depending on the data sampling.
Namely, the on/o� time discretization is a consistent formulation with r espect to the data sampling whereas
the interpolated strategy ensures a stability at every time-step. We will proceed with two classes of numerical
results. First we will present a spectrum analysis to numerically demonstrate the stability properties of the
proposed feedback laws. This will in particular help us to �x the optimal gains of each method with respect
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to the other. Secondly, we will present time evolution of the estimation errors for various sources of initial
uncertainties in order to show the impact of the data time-sampling in practical data assimilation procedures.

The example of the one-dimensional wave equation reads

¢̈
¨̈̈
¨
¦
¨̈̈
¨̈
¤

•wˆx; t • � wxx ˆx; t • � 0; ˆx; t • >ˆ0; 1• � ˆ 0; ª•
wx ˆ0; t• � wx ˆ1; t• � 0; t >ˆ0; ª•
wˆx; 0• � w0ˆx• � � 0ˆx•; x >ˆ0; 1•
_wˆx; 0• � w1ˆx• � � 1ˆx•; x >ˆ0; 1•:

(50)

In this setting we have
RRRRRRRRRRRRRRRRR

H � L 2ˆ0; 1•;

Dˆ A0• � ™w >H 1ˆ0; 1• Twxx >L 2ˆ0; 1•ž ;

A0w � � wxx ; w >Dˆ A0• :

It is easy to see that this particular case �ts exactly in the abstract framework described in Section2. Concerning
the observations, we follow the example presented in [8] and we assume that

zˆ t• � wˆ�; t•S! 0 ; t >ˆ0; ª •; (51)

with ! 0 � � 0:3; 0:7� ` ˆ0; 1• an open and non-empty interval. Hence, the observation space reads

Z � H 1ˆ ! 0• : (52)

Following [7] we endowZ with the inner-product

¦ ' 1; ' 2 >H 1ˆ ! 0• ˆ ' 1; ' 2•Z � ˆExt ! 0 ˆ ' 1• ; Ext ! 0 ˆ ' 2•• H 1 ˆ 0;1• ; (53)

where the extension operatoru � Ext ! 0 ˆ ' • >H 1ˆ0; 1• is de�ned for all ' >H 1ˆ ! 0• as the solution of

¢̈
¨̈
¦
¨̈̈
¤

� uxx � 0; x >ˆ0; 1•ƒ! 0

u � '; x >! 0

ux ˆ0• � ux ˆ1• � 0:

For the inner-products ˆ�; �•Z and ˆ�; �•H 1 ˆ 0;1• , one can prove [7] that the adjoint of the observation operator is

H ‡
0 �

RRRRRRRRRRR

Z � H 1ˆ0; 1•

' ( Ext ! 0 ˆ ' • ;

and therefore the observer, decomposed intoÂx � ‰Âw ÂvŽ
—
, reads

¢̈
¨̈̈
¨̈̈
¨̈̈
¦
¨̈̈
¨̈̈
¨̈̈
¤̈

_Âw � Âv �  Ext ! 0 ˆz � ÂwS! 0 • ;
_Âv � Âwxx ;
Âwx Sx � 0 � Âwx Sx � 1 � 0;
ÂwSt � 0 � w0;
ÂvSt � 0 � w1:
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Figure 1. Evolution with respect to the viscous coe�cient � h of the spectrum of the
operator driving the continuous-time dynamical system for a �xed value of the gain  � 5 and
a space step ofh � 1

200 . In (black j ) the operator without numerical viscosity, and in (gray
Å) with numerical viscosity.

4.1. Spectral analysis

As the Luenberger �lter aims at stabilizing the estimation error system it is natural to assess the quality of
the gain �lter by evaluating its damping impact on the otherwise conservative system. Following [25], this can
be done after full discretization by observing the evolution of the poles of the stabilized operator in both cases,
namely using time interpolation or the on/o� switch.

To start with, the most natural spectrum to analyze is certainly the spectrum associated with the time-
continuous observer formulation, namely with only its spatial discretization. Then, the numerical results can
be compared to the existing literature in particular with [ 8, 27]. This case is the asymptotic limit of the time
discretization and should be considered as our ultimate goal when we expect to produce the most accurate
simulations. We will then see the impact of the time discretization in a second set of results. Note that we
must proceed with caution here since the on/o� time discretization is in essence a time-discrete strategy where
we have to compose di�erent operators over the sampling period.
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4.1.1. Spectral analysis of the continuous-time observer

Firstly, we comment the loss of uniform stability after discretizat ion and our choice of an added numerical
viscosity to circumvent this limitation. In fact, after spatial dis cretization, the estimation error dynamical
system (6) reads

_Çxh ˆ t• � ‰Ah � H ‡
h Hh ŽÇxh ˆ t• ; (54)

whereAh and Hh are consistent discretization { w.r.t a space steph { of the model and the observation operator.
In practice, for our numerical experiments we have chosen a reasonable space discretization ofh � 1

200 . Even
though the observability inequality ( 4) is satis�ed at a continuous level, this discretization procedurealready
produces { similarly to what we have mentioned in the case of time discretization { some spurious modes
inducing the loss of the exponential stability of (54) { see [13]. To circumvent this di�culty we have introduced
some arti�cial viscosity for the time discretization which should also take into account the spatial discretization.
When �t � 0 we obtain the time-continuous error dynamics studied in [13], namely

_Çxh ˆ t• � ‰Ah � H ‡
h Hh � � h A2

h ŽÇxh ˆ t• : (55)

Therefore, we start our numerical investigations with Figure 1 where we plot the evolution of the spectrum of
the operator driving the dynamical system (55) w.r.t. various values of the arti�cial viscosity coe�cient. These
spectra are compared with the spectrum of the operator without numerical viscosity. By these examples we
illustrate { in the particular case of the spatial discretization of 1D wave equation using �rst order �nite element
method { the creation of spurious high-frequencies that cannot be stabilized by the feedback operatorH ‡

h Hh .
Hence, stabilizing the complete frequency range is then performedby decomposing the tasks. The feedback
operator manages the low frequencies whereas the high frequencies arecontrolled by the numerical viscosity.
It should be noted, however, that since this arti�cial viscosity corresponds to a perturbation of the standard
discretization of the problem it should be kept as low as possible. In practice the choice of the coe�cient � h

can be done with ana priori knowledge (or estimation) of the frequencies appearing in the speci�c problem of
interest. However, in the rest of our following investigation we will keep a numerical viscosity strong enough to
produce unclouded �gures.

Secondly, we discuss the well known overdamping e�ect which constraints the optimal choice of the gain. We
plot in Figure 2 the spectra for various values of the gain parameter { in (black j ) the operator without
numerical viscosity and in (gray Å) the operator with numerical viscosity. We �x in these examples � h � h2.
As the gain increases, the frequencies, after being shifted towards the left half plane, start to go back to the
imaginary axis. This is particularly critical for the low frequencies. This e�ect is crucial when choosing an
adequate value of the gain with an order of magnitude of

 �
º

2! 0

with ! 0 the lower frequency of the system, see [27]. This indicates that, �rst, even in the unrealistic case of an
outstanding data-to-noise ratio, the gain cannot be chosen \as large as possible".In other words, after some
particular value of the gain the ability of the observer to stabilize these low frequency modes looses its e�ciency.
Hence, the choice of the gain is a compromise between the di�erent rangeof frequencies we aim at stabilizing.
In our work we opt for a sort of \mean" strategy by choosing  such that a maximum of frequencies are shifted
signi�cantly to the left half plane without compromising too much th e low frequencies which are more present
in the potential errors in practice. As an example in Figure 2 we choose � 9.

4.1.2. Spectral analysis of the discrete-time observers

Once we have understood the behaviour of the time-continuous observer and chosen a target optimal gain
we can now proceed to the numerical study of our di�erent choices of time-discretization. Firstly, we evaluate
the relation between the optimal gain found in the time-continuous framework and the sampling period. In
this purpose, we need to de�ne the twotransition operators driving the homogeneous equivalent of system (39)
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Figure 2. Evolution with respect to the gain  of the spectrum of the operator driving the
continuous-time dynamical system with h � 1

200 and � h � h2. In (black j ) the operator
without numerical viscosity, with numerical viscosity in (gray Å).
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Figure 3. Comparison between the spectra of the continuous-time operator (in(black j ) )
and the time-discrete observer using interpolated data (in(black [ ) ) with time overkill. The

discretization parameters areh � 1
200 , �t � h2 and � � h2.

either with numerical viscosity or not, namely

RRRRRRRRRRRRRRRRR

A 
n � 1Sn � ‰1 �  �t Hh

‡Hh Ž
� 1

‰1 �
1
2

�t Ah Ž
� 1

‰1 �
1
2

�t Ah Ž;

A �
n � 1Sn � ‰1 � �t �A 2

h �  �t Hh
‡Hh Ž

� 1
‰1 �

1
2

�t Ah Ž
� 1

‰1 �
1
2

�t Ah Ž;

where, if Çxn
� is the solution of the system (39) with " � " � � "d � 0, then

Çxn � 1
� � A �

n � 1Sn Çxn
� ;

and, if ��t � 0 in (39), then

Çxn � 1
� � A 

n � 1Sn Çxn
� :

Note that in the de�nition of A �
n � 1Sn , the parameter � aims at adjusting the amount of numerical viscosity

in order to discard spurious modes arising from the time discretization but also the space discretization {
see Section4.1.1. Combining the necessary restrictions arising from both time and space discretization, we
understand that we need to choose here the global viscosity coe�cient as

� � Oˆmax˜ �t 2; h2•• :

We now link the eigenvalues� and � � of the discrete-time observer to the one corresponding to the continuous-
time observer. Therefore, let us denote by� an eigenvalue of the operatorAh � H ‡

h Hh to be compared with
� . If we initialize the discrete-time and continuous-time systemwith the corresponding eigenvectorsv� and u�

then (from the explicit form of the dynamics) we obtain that, at a given t ime n�t

W
v� ˆn�t • � v� exp̂ �n �t •

un
� � � u� � n ;
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hence seekingv� ˆn�t • � un
� � induces � �

lnˆ � •
�t

. To numerically validate these arguments we plot in Figure3

the values
logˆ � •

�t
(gray Å) and

logˆ � � •
�t

(black [ ) :

In order to be able to compare with the time-continous spectrum we set �t � h2 { this con�guration can be
understood as anoverkill in time { and we observe a perfect match between the two plots. In Figure4 we
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Figure 4. Comparison between the spectra of the continuous-time operator (in(black j ) )
and the time-discrete observer using interpolated data (in(black [ ) ) with h � 1

200 , �t � h
and � � �t 2.

represent a con�guration where �t � h. Here the spectrum di�ers from the time-continuous analysis. We see
that additional spurious high frequencies are not controlled by the stabilization operator. This justi�es even
more the use of numerical viscosity which allows to keep the gain chosen in the time-continuous setting. But
ultimately, the choice of the gain made with respect to the time-continuous case is very robust to all time-step
discretizations.

We can now move to the analysis of the on/o� discrete operator in order to determine the associated optimal
gain. In this perspective it is convenient to seek for the time-continuous limit, therefore we consider a time
overkill situation by setting �t � h2. Then, to �x the ideas, we consider the case where �T � 5�t, namely

¦ r >N ˆ j r � 1 � j r • � 5:

We introduce the transition operators from time tn to tn � 5 as

RRRRRRRRRRRRRRRRRRRRRRRRRRR

B 
n � 5Sn � Š‰1 �

1
2

�t Ah Ž
� 1

‰1 �
1
2

�t Ah Ž•
4
Š‰1 �  �t Hh

‡Hh Ž
� 1

‰1 �
1
2

�t Ah Ž
� 1

‰1 �
1
2

�t Ah Ž• ;

B �
n � 5Sn � Š‰1 � �t �A 2

h Ž
� 1

‰1 �
1
2

�t Ah Ž
� 1

‰1 �
1
2

�t Ah Ž•
4

Š‰1 � �t �A 2
h �  �t Hh

‡Hh Ž
� 1

‰1 �
1
2

�t Ah Ž
� 1

‰1 �
1
2

�t Ah Ž• ;

and we denote by Ç� and Ç� � the corresponding eigenvalues. These operators should be compared to their
equivalent transition operators from time tn to tn � 5 in the interpolated case, namely the simple composition

A 
n � 5Sn � ‰A 

n � 1Sn Ž
5

and A �
n � 5Sn � ‰A �

n � 1Sn Ž
5
;
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with corresponding eigenvaluesÇ� and Ç� � . Then, in Figure 5 we show

logˆ Ç� •
�T

(gray Å) and
logˆ Ç� � •

�T
(black � ) ;

compared with Ç� and Ç� � in the time overkill con�guration. We set the gain value for the on/o� obser ver
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Figure 5. Comparison between the time-discrete on/o� observer (in (black � ) ) and the
time-discrete observer using interpolated data (in(black [ ) ) to illustrate the relation
between the optimal gains in a time overkill context. The complete set of discretization

parameters is as follows:h � 1
200 , �t � h2, � � h2 and �T � 5�t.

�ve times larger than in the interpolated case and we observe a perfectmatch. Consequently these numerical
arguments con�rm the intuition that, in order to obtain similar damping rates between the two strategies, the
gain value  switch for the on/o� switch needs to be �ve times larger than the gain value  int. for the interpolation
strategy. In a general context we can infer the empirical law

 switch

 int.
�

�T
�t

(56)

and we point out that we do not face any overdamping phenomena which couldhave limited the increase of the
gain in the on/o� switch which is an important contribution of our numerical investigations.

Once the optimal gain of each observer is carefully chosen, we can assess their stabilization properties. We
can now analyze a more intricate case where �t� h. We continue to �x the ratio �T � 5�t and the spectra of
both observers are presented in Figure6. We observe that additionally to the peculiar form of the spectra more
spurious high frequencies appear, validating once again the use of numerical viscosity. Moreover, concerning
the on/o� observer, we remark some high frequencies that are less stabilized. This can be interpreted as an
illustration of the fact that this observer may su�er from a decreased stability on some modes { corresponding
to these high frequencies. At last in Figure7 we set �t � h2 and �T � 5h. This situation is relevant with
practical cases where the time-step of the numerical algorithm is much lower than the sampling time-step of the
data but more importantly that it is, in essence, meant to reach small values whereas the sampling rate is �xed.
The conclusion stated previously remains valid since we still observe a slight deterioration of the damping of
some high frequency modes for the on/o� estimator.

To conclude with this section we can say that the time-continuous spectrum analysis remains a very useful
tool to �x the optimal gain. It is obvious for the time-interpolated con�gu ration but in fact it is also the case
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Figure 6. Comparison between the time-discrete on/o� observer (in (black � ) ) and the
time-discrete observer using interpolated data (in(black [ ) ) with h � 1

200 , �t � h, � � �t 2

and �T � 5�t.

with the on/o� switch. The only modi�cation with the on/o� switch con�gur ation is that we have to multiply
the gain found during the time-continuous spectrum analysis by the ratio of the data time-step over the model
time-step. The stability property is preserved globally and we do not face any overdamping phenomena by
increasing the value of the gain in this case.
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Figure 7. Comparison between the time-discrete on/o� observer (in (black � ) ) and the
time-discrete observer using interpolated data (in(black [ ) ) with h � 1

200 , �t � h2, � � h2

and �T � 5h.
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4.2. Assessing robustness from numerical examples

We propose in this section to assess the e�ectiveness of the two observers usingsynthetic data. More precisely,
we consider the functions

w0ˆs• � 16s2ˆ1 � s•2; w1ˆs• � œ
3s � 4s3 if s >ˆ0; 0:5•;
4s3 � 12s2 � 9s if s >ˆ0:5; 1•;

(57)

that we use to initiate a direct model of the form of (50). The solution of this direct model can be computed
analytically

wˆx; t • � Q
k

º
2‰ak coŝ �kt • � bk sinˆ �kt •Žsinˆ �kx •;

with

ak �
2
º

2ˆ � 2 � 12•ˆ coŝ �k • � 1•
� 5k5

and bk �
48

º
2 sin̂ �k

2 •

� 4k4

from which we extract our synthetic observations. Then we simulate the observer where we arti�cially introduce
some errors by setting

Âx0 � Œ
w0 � ��w

w1
‘ ;

where �w is a given perturbation of the initial condition (in displacement) and � is a scalar value representing
the perturbation amplitude. Hence, the estimation error dynamical system is initialized with

Çx0 � � Œ
�w
0

‘ :

In our numerical simulation, we set  int. � 9, the optimal value discussed in Section4 and  switch is obtained
from the ratio ( 56).
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Figure 8. Estimation error with h � 1
200 , �t � h, � � �t 2, �T

�t � 20 and � � 0.
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Figure 9. Illustration of the impact of time interpolation.

4.2.1. Improving standard numerical convergence using observers

First, we propose to consider the case where� � 0, namely we initiate the numerical algorithm with the
exact { up to some projection errors { initial condition. It is well-k nown that standard numerical schemes lead
to an accumulation of numerical errors thus entailing a deterioration of the numerical solution as the global
simulation time grows larger. This phenomenon is illustrated in Figure 8 where we plot the evolution in time
of the estimation errors. Concerning the observer we set�T�t � 20 and compare the results of both strategies.
We observe that the corresponding estimation errors clearly stabilize to a plateau { during the complete time
window and even for large total simulation time { which is a particular behavior already obtained in [8]. In
this con�guration we observe that, due to the data interpolation error the on/o� strategy provides a better
numerical solution than the observer using interpolated data.

4.2.2. Assessing robustness to low data availability

In our second numerical experiment, we set�T�t � 20, � � 1 and �w ˆx• � sinˆ �x • { the �rst eigenfunction
of the Laplacian operator in the domain. It should be noted that it is not a mode of the stabilized operator
driving the dynamics of the estimation error, hence there are multiple excited modes in this dynamical systems.
The corresponding results are presented in Figure10 where we can distinguish several slopes { during early
stages of the simulation { in the decay of the estimation error. These slopes correspond to the time constant of
stabilization associated with the various modes initially introduced. In the remaining part of the time window
we observe that both observers reach a plateau { which is identical to the one observed in Figure8.

In a third numerical experiment, we consider in Figure 11 the con�guration where less data are available
on the system by setting �T

�t � 200. It is striking to remark that the on/o� observer clearly ful�lls its task by
assimilating data only where they are available thus leading to a great e�ciency in the case of highly coarse
time distribution of the observations. On the opposite, the other observer oscillates around a plateau due to
large interpolation errors. To underline the impact of interpolation error, we have eventually change the type
of interpolation by using a cubic interpolation of the data. The resulting sampling is presented in Figure9.
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Figure 10. Numerical results with h � 1
200 , �t � h, � � �t 2, �T

�t � 20, � � 1 and �' ˆs• � sinˆ �s •.
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�t � 20, � � 1 and �' ˆs• � sinˆ10�s •.
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Figure 14. Numerical results with h � 1
200 , �t � h, � � �t 2, �T

�t � 20, � � 1 and
�w ˆs• � sinˆ �s •. The data are perturbed with noise as described in (58) with M � 2,

˜ � F
i • M

i � 1 � ˜ 1
20 ; 1

20 • and ˜ˆ � K
i ; � K

i •• M
i � 1 � ˜ˆ 1; 1

10 • ; ˆ10; 1
10 •• .

We understand that when the cubic reconstruction is better than the linear { here at the end of the time
window { then the �nal estimation error is lower. However at the beginning of the time window, we see that
the cubic interpolation error is larger than with a simple linear interpolation which is of dramatic consequence
on the estimation error. This also proves that without any idea on the model generating the data, a simple
interpolation scheme is su�cient.

Moreover, we are interested in the case where the ratio�T�t is also set to 200 by decreasing the simulation
time-step and using the same sampling period as in Figure12. This case is representative of the �nal goal in
a numerical procedure, namely for a given con�guration we hope to increase the precision by diminishing the
model discretization steps. In that case, the results are almost exactly similar to the one presented in Figure10,
namely the observer fed with interpolated data is less e�cient dueto large interpolation error { which is identical
to the one introduced in Figure 10since it only depends on the sampling period as emphasized in Proposition 3.7.

4.2.3. Assessing robustness to data noise and large initial condition errors

In the following experiments we propose to illustrate the robustness of the proposed time-scheme when the
magnitude of initial error increases. In Figure12, we propose to increase theL 2-magnitude of the perturbation
by setting �w ˆs• � sinˆ �s • with � � 102 and a sampling ratio �T

�t � 20. This results in an increase of the potential
high frequencies that are initially introduced in the estimation error dynamics. When looking at the snapshots,
we see that the on/o� observer su�ers from high frequency oscillations that do not appear in the observer with
the time interpolation scheme. We see here the main advantage of using time interpolation. Namely, since the
dissipation brought by the observation operator is present at every timesteps, it bene�ts from a remarkable
robustness to initial errors. This feature of both observers can be pointed out more clearly when increasing the
H 1-magnitude of the perturbation by setting �w ˆs• � sinˆ10�s • with � � 1. The obtained results are presented
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in Figure 13 where we observe that the intermittent observer fails to fully stabilize the initially introduced high
frequencies in comparison with the observer using interpolated data.

Finally, our last numerical assessment is dedicated to illustrate the impact of additive noise in the data.
Taking into account the space regularity restriction that we have imposed on our measurements, for the analysis
we assume the data take the following form

zˆx; t • � wˆx; t •S! 0 �
M

Q
i � 1

Fi sinˆK i �x •S! 0 ; t >ˆ0; ª •; (58)

where M is a given integer, ˜ Fi • M
i � 1 are random variables following a normal distribution with zero mean and

standard variations of ˜ � F
i • M

i � 1, whereas˜ K i • M
i � 1 are random variables following a normal distribution of mean

and standard variations of ˜ˆ � K
i ; � K

i •• M
i � 1. In other words, we randomly add to the data some controlled space

high frequencies. The higher the maximum space high frequencyM is, the closer we are from a space and time
white noise which limit, when the discretization steps goes to 0, remains very speci�c to study [4]. One typical
realization of this random experiment is presented in Figure14. We can observe that both observers loose in
e�ciency. The on/o� observer has the particularity to present correc tion shocks, which can be explained by the
fact that its larger gain directly ampli�es the weight of the noise in the estimation error dynamical system, as
presented at the end of Section3.1. As the gain decreases, we observe that these shocks vanish, howeverthe sta-
bilization properties of the estimation error naturally diminish. Th is phenomenon is also presented in Figure14.

4.2.4. Conclusions from numerical assessment

Sampling
period

On/O!
switch

Observer using
interpolated data

Data noise &
Initial errors

Figure 15. Illustration of the di�erent regimes where both observers are more likely to be e�cient.

From the various numerical experiments that we have carried out, we can derive general comments on the
estimation procedure and also on the particular observers that we haveproposed. First of all, in each presented
case it is always preferable to use the available data. Secondly, we cannot expect a precision improvement
better that the time-discretization step of the data, since any procedure designed to �ll the gap between two
data steps would only create some noise in the estimation procedure. Concerning the di�erences between the
intermittent observer and the observer using interpolated data, these numerical experiments, oriented thanks to
the previously presenteda priori estimates, enabled to characterize the regimes where both strategies should be
used. As a matter of fact, the on/o� switch has shown an incredible robustness to large data time steps compared
to the second observer which e�ciency, in that case, is deteriorated by a signi�cant amount of interpolation
error. However, in the case of high initial errors or high data noise, it appears to be more e�cient to interpolate
the data, since the subsequently obtained dynamical system will bene�t from a stabilizing operator at each time
step. This trade-o� is summarized in Figure 15.
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5. Conclusion

In t work we have addressed the issue of designing an observer for wave-like systems that is robust when the
data have a coarse distribution in time. To circumvent the data-sampling di�culty we have proposed an on/o�
strategy that �lters the observation only at the times when they are avai lable. This strategy was theoretically
and numerically analyzed and compared to the case when the data are reconstructed using an interpolation
scheme.

The conclusions are twofold. First we have seen that the interpolationremains valid in the case of reasonable
repartition (in time) of the data and with potentially high levels of noi se. This e�ciency directly comes from
the presence, at each time step, of the stabilized operator. Secondly, in the case of poor data availability the
on/o� switch appears to be quite robust since no interpolation error { oth erwise entering as a source term in
the estimation error dynamical system { is introduced.

The authors would like to deeply thanks Dr. Dominique Chapelle for very useful comments on this work and the
reviewers for their careful reading which help us improve the theoret ical background of this work.

Appendix A. Exponential stability result for the on/off switch.

We recall that we consider that there exists a constant ratio betweenthe available data and the time dis-
cretization step � T � N �t. The general case can be deduced directly as soon as the ratio between two
measurements and the time discretization step is bounded with respect to time. For the sake of clarity, we then
denote by Çxn;k � ÇxnN � k for n C0 and 0Bk BN � 1. We thus consider the following dynamical system

¢̈
¨̈̈
¨̈̈
¨̈̈
¨̈
¦
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¤

Çxn;k � 1
� � Çxn;k

�

�t
� AŠ

Çxn;k � 1
� � Çxn;k

�

2
• ; n C0; 0 Bk BN � 1

Çxn;k � 1
� � Çxn;k � 1

�

�t
� ��t A2Çxn;k � 1

� � � k;N � 1H ‡H Çxn;k � 1
� ; n C0; 0 Bk BN � 1

Çxn � 1;0
� � Çxn;N

� ; Çxn � 1;0
� � Çxn;N

� ;

(59)

where

� k;j � œ
1; if k � j
0; otherwise:

We denote ÇE n;k �
1
2

[ Çxn;k
� [

2
the energy associated to the state of system (59). First of all, we prove the

following energy identity.

Proposition A.1. Let n1 B n2 be two positive integers and let0 B k1; k2 B N � 1 be two other integers. If �t
is small enough, then the quantityÇE n;k satis�es the following energy inequality

ÇE n 2 ;k 2 �  � t
n 2

Q
j � n 1 � � k 1 ; 0

ZH Çx j; 0
� Z

2
� �t ��t

� k2 ;n 2 �

QQ
� i;j � � � k1 ;n 1 �

ZAÇx j;i
� Z

2
�

�t
4

� k2 ;n 2 �

QQ
� i;j � � � k1 ;n 1 �

�t � 2
�t ZA2Çx j;i

� Z
2

B ÇE n 1 ;k 1 : (60)
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Proof. Taking the inner product in X of the �rst line in ( 59) with
Çxn;k � 1

� � Çxn;k
�

2
and the inner product of the

second line in (59) with
Çxn;k � 1

� � Çxn;k � 1
�

2
, we obtain

¢̈
¨̈̈
¨̈̈
¨̈̈
¨̈
¦
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¤

ÇE n;k � 1
� � ÇE n;k

�

�t
� 0; n A0; 0 Bk BN � 1

ÇE n;k � 1
� � ÇE n;k � 1

�

�t
�

��t

2
ˆÇxn;k � 1

� � Çxn;k � 1
� ; A2Çxn;k � 1

� • �
� k;N � 1

2
ˆÇxn;k � 1

� � Çxn;k � 1
� ; H ‡H Çxn;k � 1

� • ; n A0; 0 Bk BN � 1

ÇE n � 1;0
� � ÇE n;N

� ; ÇE n � 1;0
� � ÇE n;N

� :

If k x N � 1, the second relation in the above system reads as

ÇE n;k � 1
� � ÇE n;k � 1

�

�t
� �

��t

2
[ AÇxn;k � 1

� [
2

�
��t

2
ˆÇxn;k � 1

� ; A2Çxn;k � 1
� • :

Or, in this case, Çxn;k � 1
� � Çxn;k � 1

� � �t ��t A2Çxn;k � 1
� , hence, we obtain

ÇE n;k � 1
� � ÇE n;k � 1

�

�t
� � ��t [ AÇxn;k � 1

� [
2

�
�t � 2

�t

2
[ A2Çxn;k � 1

� [
2

: (61)

If k � N � 1, then the same relation becomes

ÇE n � 1;0
� � ÇE n � 1;0

�

�t
� �

��t

2
ZAÇxn � 1;0

� Z
2

�

2

YH Çxn � 1;0
� Y2 �

1
2

ˆÇxn � 1;0
� ; ˆ ��t A2 � H ‡H •Çxn � 1;0

� • :

Or, in this case, Çxn � 1;0
� � Çxn � 1;0

� � �t ˆ ��t A2 � H ‡H •Çxn � 1;0
� , hence, we obtain

ÇE n � 1;0
� � ÇE n � 1;0

�

�t
� � ��t ZAÇxn � 1;0

� Z
2

�  YH Çxn � 1;0
� Y2 �

�t
2

Ẑ ��t A2 � H ‡H •Çxn � 1;0
� Z

2
:

B � ��t ZAÇxn � 1;0
� Z

2
�  YH Çxn � 1;0

� Y2 �
�t
2

� 2
�t YA2Çxn � 1;0

� Y�
�t
2

 2YH ‡H Çxn � 1;0
� Y2

�
�t
2

2��t  YA2Çxn � 10
� YYH ‡H Çxn � 1;0

� Y

B� ��t ZAÇxn � 1;0
� Z

2
�  YH Çxn � 1;0

� Y2 �
�t
2

� 2
�t YA2Çxn � 1;0

� Y�
�t
2

 2YH ‡H Çxn � 1;0
� Y2

�
�t
2


1
"

� 2
�t YAÇxn � 1;0

� Y2 �
�t
2

" YH ‡H Çxn � 1;0
� Y2:

Choosing now" � 2 and using the boundedness of the operatorH the above inequality becomes

ÇE n � 1;0
� � ÇE n � 1;0

�

�t
B � ��t ZAÇxn � 1;0

� Z
2

�  YH Çxn � 1;0
� Y2 �

�t � 2
�t

4
[ A2Çxn;k � 1

� [
2

�  ‹ 1 �
�t
2

K 2
H ‡ • YH Çxn � 1;0

� Y2 (62)

Combining (61) and (62) from �k1; n1� to � k2; n2� and taking �t B
2

K 2
H ‡

, we obtain (60), with K H ‡ �

YH ‡YLˆZ ;X • . �

In what follows we prove the following result.
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Theorem A.2. If  � ��t � 0, then for every � A 0 there existsT� A 0 and kT;� A 0 such that, for everyT A T� ,
the solution Çx � of system (59) satis�es

kT;� ZÇx0;0
� Z

2
B� t Q

n � T >�0;T �

ZH Çxn; 0
� Z

2
; Çx0;0

� >C� ~� T ;

where C� ~� T � spañ � j such that S� j SB �
� T • and ˆ � j • is an orthonormal basis formed by the eigenfunctions of

the operator A corresponding to the eigenvalueŝ� j • .

Proof. Here we want to verify that the conditions of Theorem 3.1 in [12] are ful�lled. We introduce

An;k � 1Sk � ‰1 �
1
2

�t AŽ
� 1

‰1 �
1
2

�t AŽ;

the transition operator such that
Çxn;k � 1

� � An;k � 1Sk Çxn;k
� :

This transition operator is associated with a conservative system and there exists h � ˆ � R; R• ( � � �; � � a
smooth strictly increasing function, with R >ˆ0; ª � , i.e.

Shˆ � •S@�; and for every � @R; inf ˜ShœS�̂ •; S� SB� • A0:

Moreover, hˆ � •
� � 1 and if, ˆ � j ; � j • are the eigenvalues and the corresponding eigenvectors ofA, i.e. (A� j �

i� j � j ), we have

An;k � 1Sk � j � exp̂ i� j; � t � t• � j with � j; � t �
1

� t
hˆ � j � t• :

In fact, we have the following lemma.

Lemma A.3. The function h is de�ned by hˆ � • � 2 arctanˆ �
2 • .

Proof of Lemma. We seek for� j; � t such that

1 � i � t
2 � j

1 � i � t
2 � j

� exp̂ i� j; � t � t• :

Hence by introducing the complex� � 1 � i � t
2 � j , we look for

�
�

� exp̂ � i� j; � t � t• � � j; � t �
2

� t
argˆ � • �

2
� t

atanˆ
� j � t

2
•:

�

We now introduce the conservative transition operator

An � 1Sn; 0 � ‹ ‰1 �
1
2

�t AŽ
� 1

‰1 �
1
2

�t AŽ•
N

;

such that
Çxn � 1;0

� � An � 1Sn; 0Çxn; 0
� ;

which is the transition operator from one time-step where observationsare available to the other. By introducing
this time hN � � ( Nhˆ �

N • , we have

An � 1Sn; 0� j � exp̂ i� j; � T � T•� j with � j; � T � � j; � t
1

� T
hN ˆ � j � T•:
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Therefore, hN is also a smooth strictly increasing function satisfying hN ˆ � •
� � 1. Hence, the hypotheses of

Theorem 3.1 in [12] are satis�ed for the transition operator An � 1Sn; 0, which implies that for every � A 0 there
exist T� A0 and kœ

T;� A0 such that, for every T AT� , the solution Çx of system (59) satis�es

kœ
T;� ZÇx0;0

� Z
2

B� T Q
n � T >�0;T �

] H
Çxn � 1;0

� � Çxn; 0
�

2
]

2

; Çx0;0
� > C� ~� T :

Recalling that � T = N � t, there exists kT;� A0 such that

kT;� ZÇx0;0
� Z

2
B� t Q

n � T >�0;T �

ZH Çxn; 0
� Z

2
; Çx0;0

� > C� ~� T :

�

The main result of this appendix is the following theorem.

Theorem A.4. There exist two positive constants� 0 and � 0 such that the energy associated to system(59)
satis�es

ÇE n;k B� 0
ÇE n; 0 exp̂ � � 0k� t• ; n C0; 0 Bk @N:

Before we start the proof of TheoremA.4, we state the following lemma.

Lemma A.5. If  � 0 and ��t � �t 2, then there exist a time T A 0 and a positive constantcT such that the
solution Çx of (59) satis�es

cT YÇx0;0
� Y2 B2�t

n 1

Q
n � 0

YH Çxn; 0
� Y2 � 2�t ��t

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

[ AÇxn;k
� [

2
�

�t
2

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

�t � 2
�t [ A2Çxn;k

� [
2

; (63)

where n1 � 
 T~� T � and k1 � 
 T~�t � � n1N .

Since our problem di�ers to the one considered in [13] only in the low frequency part and this part is handled
by Theorem A.2, the proof of the LemmaA.5 is identical to the one of Lemma 2.4 in [13] and it is omitted here.

Proof of Theorem A.4. We follow the ideas in [13]. Therefore, we write the solution Çxn;k of (59) as the sum of
the solution zn;k of system (59) with  � 0 and wn;k , the solution of the following system:

¢̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨
¦
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈
¤

wn;k � 1
� � wn;k

�

�t
� AŠ

wn;k � 1
� � wn;k

�

2
• ; n C0; 0 Bk BN � 1

wn;k � 1
� � wn;k � 1

�

�t
� ��t A2wn;k � 1

� � � k;N � 1H ‡H Çxn;k � 1
� ; n C0; 0 Bk BN � 1

wn � 1;0
� � wn;N

� ; wn � 1;0
� � wn;N

� ; n C0

w0;0 � 0:

(64)

Applying Lemma A.5 to zn;k � Çxn;k
� � wn;k

� with z0;0 � Çx0;0
� , we obtain

cT YÇx0;0
� Y2 B 2

’

”
2�t

n 1

Q
n � 0

YH Çxn; 0
� Y2 � 2�t ��t

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

[ AÇxn;k
� [

2
�

�t
2

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

�t � 2
�t [ A2Çxn;k

� [
2“

•

2
’

”
2�t

n 1

Q
n � 0

YHw n; 0
� Y2 � 2�t ��t

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

[ Awn;k
� [

2
�

�t
2

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

�t � 2
�t [ A2wn;k

� [
2“

•
: (65)
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We want now to bound the terms in w in the above inequality by some terms inÇx. In order to do this, we
multiply the �rst relation in ( 64) by 1

2 ˆwn;k � 1
� � wn;k

� • and by wn;k � 1
� � wn;k � 1

� the second. We obtain

¢̈
¨̈
¦
¨̈̈
¤

Ywn;k � 1
� Y� Ywn;k

� Y;

Ywn;k � 1
� Y2 � Ywn;k � 1

� Y2 � �t ��t ˆwn;k � 1
� � wn;k � 1

� ; A2wn;k � 1
� • � �t � k;N � 1 ˆwn;k � 1

� � wn;k � 1
� ; H ‡H Çxn;k � 1

� • :
(66)

If k x N � 1, the second relation in the above system reads as in Proposition3.7

Ywn;k � 1
� Y2 � Ywn;k � 1

� Y2 � ��t �t [ Awn;k � 1
� [

2
�

�t 2� 2
�t

2
[ A2wn;k � 1

� [
2

: (67)

If k � N � 1, we get

Ywn � 1;0
� Y2 � Ywn � 1;0

� Y2 � ��t �t ZAwn � 1;0
� Z

2
�  �t ˆHw n � 1;0

� ; H Çxn � 1;0
� •

� �t ˆwn � 1;0
� ; ��t A2wn � 1;0

� � H ‡H Çxn � 1;0
� •

with here
wn � 1;0

� � �t ˆ ��t A2wn � 1;0
� � H ‡H Çxn � 1;0

� • � wn � 1;0
� :

Therefore, we obtain

Ywn � 1;0
� Y2 � Ywn � 1;0

� Y2 � 2��t �t ZAwn � 1;0
� Z

2
� 2 �t ˆHw n � 1;0

� ; H Çxn � 1;0
� • � �t 2Y��t A2wn � 1;0

� � H ‡H Çxn � 1;0
� Y2

BYwn � 1;0
� Y2 � 2��t �t ZAwn � 1;0

� Z
2

� 2 �t ˆHw n � 1;0
� ; H Çxn � 1;0

� •

� �t 2� 2
�t YA2wn � 1;0

� Y2 � �t 2 2YH ‡H Çxn � 1;0
� Y2 � 2�t 2��t  YA2wn � 1;k

� YYH ‡H Çxn � 1;0
� Y

BYwn � 1;0
� Y2 � 2��t �t ZAwn � 1;0

� Z
2

� 2 �t ˆHw n � 1;0
� ; H Çxn � 1;0

� •

� �t 2� 2
�t YA2wn � 1;0

� Y2 � �t 2 2YH ‡H Çxn � 1;0
� Y2 � �t 2

1
"

� 2
�t YA2wn � 1;0

� Y2 � �t 2" YH ‡H Çxn � 1;0
� Y2:

Choosing" � 2 in the above Young inequality, we �nally obtain

Ywn � 1;0
� Y2 � 2��t �t ZAwn � 1;0

� Z
2
� 2 �t ˆHw n � 1;0

� ; H Çxn � 1;0
� • �

�t 2� 2
�t

2
[ A2wn;k � 1

� [
2

BYwn � 1;0
� Y2 � �t 2 2YH ‡H Çxn � 1;0Y2;

(68)
leading { since H is bounded { to

Ywn � 1;0
� Y2 � 2��t �t ZAwn � 1;0

� Z
2

�
�t 2� 2

�t

2
[ A2wn;k � 1

� [
2

BYwn;N
� Y2

�  �t YHw n � 1;0
� Y2 � �t  ˆ1 � �t K 2

H ‡ •YH Çxn � 1;0
� Y2;

where K H ‡ is the norm of the operator H ‡ . Combining the above inequality and (67) for � n; k� from �0; 0� to
� n1; k1� , for �t small enough, there exists a constant c such that

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

Ywn;k
� Y2 � 2 �t

n 1

Q
n � 0

YHw n; 0
� Y2 � 2�t ��t

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

[ Awn;k
� [

2
�

�t
2

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

�t � 2
�t [ A2wn;k

� [
2

Bc �t
n 1

Q
n � 0

ˆYwn; 0
� Y2 � YH Çxn; 0

� Y2• :
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Following the same steps as in [13] { with Gronwall's inequality { we get that there exists a constant cœsuch
that

� n 1 ;k 1 �

Q
� n;k � � � 0;0�

Ywn;k Y2 � 2 �t
n 1

Q
n � 0

YHw n; 0
� Y2 � 2�t ��t

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

[ Awn;k
� [

2
�

�t
2

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

�t � 2
�t [ A2wn;k

� [
2

Bcœ
n 1

Q
n � 0

YH Çxn; 0
� Y2;

which, applying (65), gives the existence of a positive constantcœœsuch that

cœœYÇx0;0
� Y2 B �t

n 1

Q
n � 0

YH Çxn; 0
� Y2 � �t ��t

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

[ AÇxn;k
� [

2
�

�t
4

� n 1 ;k 1 �

QQ
� n;k � � � 0;0�

�t � 2
�t [ A2Çxn;k

� [
2

;

where we recall that ��t � �t 2. The last inequality, combined with the energy inequality (60), gives �nally the
existence of a constantcœœœ>ˆ0; 1• such that

YÇxn 1 ;k 1
� Y2 BcœœœYÇx0;0

� Y2

which allows us to conclude the proof as in [13].
�
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