Adaptation and Fatigue Model for Neuron Networks and Large Time Asymptotics in a Nonlinear Fragmentation Equation

Abstract : Motivated by a model for neural networks with adaptation and fatigue, we study a conservative fragmentation equation that describes the density probability of neurons with an elapsed time s after its last discharge.
In the linear setting, we extend an argument by Laurençot and Perthame to prove exponential decay to the steady state. This extension allows us to handle coefficients that have a large variation rather than constant coefficients. In another extension of the argument, we treat a weakly nonlinear case and prove total desynchronization in the network. For greater nonlinearities, we present a numerical study of the impact of the fragmentation term on the appearance of synchronization of neurons in the network using two "extreme" cases.
Mathematics Subject Classification (2000)2010: 35B40, 35F20, 35R09, 92B20.
Type de document :
Article dans une revue
Journal of Mathematical Neuroscience, BioMed Central, 2014, 4 (1), pp.14. 〈10.1186/2190-8567-4-14 〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01054561
Contributeur : Ed. Bmc <>
Soumis le : jeudi 7 août 2014 - 13:10:54
Dernière modification le : vendredi 31 août 2018 - 09:06:03
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 01:41:47

Fichiers

2190-8567-4-14.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Khashayar Pakdaman, Benoît Perthame, Delphine Salort. Adaptation and Fatigue Model for Neuron Networks and Large Time Asymptotics in a Nonlinear Fragmentation Equation. Journal of Mathematical Neuroscience, BioMed Central, 2014, 4 (1), pp.14. 〈10.1186/2190-8567-4-14 〉. 〈hal-01054561〉

Partager

Métriques

Consultations de la notice

711

Téléchargements de fichiers

176