Computer-aided estimation for the risk of development of gastric cancer by image processing

Abstract : The aim of this study was to establish a computer-aided estimating system for determining the risk of development of gastric cancer, achieved by image processing on an ordinary endoscopic picture. Digital endoscopic pictures of the background gastric mucosa in 26 Helicobacter pylori (H. pylori) positive patients with early intestinal type gastric cancer and age-gender-matched H. pylori positive subjects without cancer were used. The pictures were processed for 15 pictorial parameters. Out of the 15 pictorial parameters, 3 parameters were found to characterize the background gastric mucosa with gastric cancer against that without. Based on the Bayes decision theory, the computer-aided estimating system has been established. Sensitivity, specificity, positive predictive value and negative predictive value of the Bayes classifier were found to be 0.64, 0.64, 0.65 and 0.63, respectively. This method may permit an effective selection of the high risk population of gastric cancer needing follow-up endoscopy.
Type de document :
Communication dans un congrès
Max Bramer. Third IFIP TC12 International Conference on Artificial Intelligence (AI) / Held as Part of World Computer Congress (WCC), Sep 2010, Brisbane, Australia. Springer, IFIP Advances in Information and Communication Technology, AICT-331, pp.197-204, 2010, Artificial Intelligence in Theory and Practice III. 〈10.1007/978-3-642-15286-3_19〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01054593
Contributeur : Hal Ifip <>
Soumis le : jeudi 7 août 2014 - 15:18:17
Dernière modification le : jeudi 23 novembre 2017 - 14:56:13
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 01:47:56

Fichier

The_second_submission_YSasaki....
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yoshihiro Sasaki, Ryukichi Hada, Tetsuro Yoshimura, Norihiro Hanabata, Tatsuya Mikami, et al.. Computer-aided estimation for the risk of development of gastric cancer by image processing. Max Bramer. Third IFIP TC12 International Conference on Artificial Intelligence (AI) / Held as Part of World Computer Congress (WCC), Sep 2010, Brisbane, Australia. Springer, IFIP Advances in Information and Communication Technology, AICT-331, pp.197-204, 2010, Artificial Intelligence in Theory and Practice III. 〈10.1007/978-3-642-15286-3_19〉. 〈hal-01054593〉

Partager

Métriques

Consultations de la notice

219

Téléchargements de fichiers

71