
HAL Id: hal-01054595
https://inria.hal.science/hal-01054595

Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Developing Intelligent Environments with OSGi and
JADE

Davide Carneiro, Paulo Novais, Ricardo Costa, José Neves

To cite this version:
Davide Carneiro, Paulo Novais, Ricardo Costa, José Neves. Developing Intelligent Environments with
OSGi and JADE. Third IFIP TC12 International Conference on Artificial Intelligence (AI) / Held as
Part of World Computer Congress (WCC), Sep 2010, Brisbane, Australia. pp.174-183, �10.1007/978-
3-642-15286-3_17�. �hal-01054595�

https://inria.hal.science/hal-01054595
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Developing Intelligent Environments with

OSGi and JADE

Davide Carneiro1, Paulo Novais1, Ricardo Costa2, José Neves1

1 Department of Informatics, University of Minho, Braga, Portugal
{dcarneiro, pjon, jneves}@di.uminho.pt

2 College of Management and Technology - Polytechnic of Porto, Felgueiras, Portugal

rfc@estgf.ipp.pt

Abstract. The development of intelligent environments poses complex

challenges, namely at the level of device heterogeneity and environment

dynamics. In fact, we still lack supporting technologies and development

approaches that can efficiently integrate different devices and technologies. In

this paper we present how a recent integration of two important technologies,

OSGi and Jade, can be used to significantly improve the development process,

making it a more dynamic, modular and configurable one. We also focus on the

main advantages that this integration provides to developers, from the Ambient

Intelligence point of view. This work results from the development of two

intelligent environments: VirtualECare, which is an intelligent environment for

the monitorization of elderly in their homes and UMCourt, a virtual

environment for dispute resolution.

Keywords: Ambient Intelligence, Online Dispute Resolution, Multi-agent

Systems, Service-Oriented Architectures, OSGi, Jade.

1 Introduction

Ambient Intelligence is a relatively new field of Artificial Intelligence. In this

paradigm, computers are seen as a proactive tool that assists us in our day to day. For

the first time, the user in placed at the center of the computer-human interaction,

which constitutes a major shift in the traditional paradigm [9]. In fact, in the past we

had to move ourselves to the vicinity of a computer in order to interact with it, using

old-fashioned interaction means. Now we are interacting with environments that are

built on numerous and distributed small computers that communicate, embedded in

our common devices.

Evidently, the development of such environments poses complex challenges,

namely because these are highly dynamic environments, include heterogeneous

devices, are very complex to model, and need to be reliable. In this paper we address

some of these challenges by bringing together two fields from computer science:

Multi-agent Systems and Service-Oriented Architectures. Multi-agent Systems

(MAS) [1] emerged from the combination of Artificial Intelligence with distributed

computational models, generating a new paradigm: distributed artificial intelligence.

From the Ambient Intelligence point of view a MAS can be defined as a group of

entities (software or hardware) which will “read” the environment they are in and take

decisions in order to achieve some common goal (like the comfort or safety of

persons in the environment) based on knowledge from every agent in the system. In to

the so-called Service Oriented Architectures [2], functionalities are provided in the

form of technology-independent services, based on three key concepts: the service

provider, the service user and the service registry.

In order to develop an intelligent environment that can incorporate insights from

these two trends, we consider in this paper two well known technologies: Jade agent

platform [3] and OSGi service platform [4]. Jade (Java Agent Development

Framework) is a software framework that significantly facilitates the development of

agent-based applications in compliance with the FIPA specifications. FIPA

(Foundation for Intelligent Physical Agents) promotes standards that aim at the

interoperability and compatibility of agents [10]. The use of OSGi (Open Services

Gateway Initiative) allows developers to build java applications on a modular basis.

The resulting modules are called bundles, which are not only competent to provide

services, but also to use services provided from other bundles. In OSGi, a bundle can

be installed, started, stopped or un-installed at run-time and without any kind of

system reboot, making OSGi-based technologies very modular and dynamic.

Each of these two technologies has already been used successfully to implement a

variety of projects in this field following two separate approaches (e.g. [11, 12, 13]).

In fact, each one has, as will be seen ahead, characteristics that can be incorporated in

intelligent environments, resulting in advantages that are noticed in all the phases of

the development, ranging from the specification and design of the system to the actual

deployment and use. Moreover, there are approaches that use these two technologies

together. [17] for example presents one for using Jade and OSGi, together with a

methodology for integration. However, a recent development in these technologies

has made this step a much simpler one: the recently released version 3.7 of Jade agent

platform, which integrates the OSGi technology. Using this integration it is now

possible to run JADE agents inside an OSGi environment, package agents code inside

separated bundles, update it by means of the bundle update feature of OSGi and give

agents access to all typical OSGi features such as registering and using OSGi

services. This constitutes an opportunity that must be exploited in order to simplify

the process of developing complex intelligent environments.

In this paper we do not present a new methodology for developing agents nor for

developing service-based applications. Instead, we present an approach that builds on

this new important development and that can make use of existing approaches for

agent and service development individually. As an example, a developer could make

use of VisualAgent [18] to easily develop the agents of the system and rely on a

Model-Driven Architecture like the one presented in [19] to implement the OSGi

services. It results in an iterative and scalable process for developing highly modular

applications targeted at virtual environments.

Specification of the Problem

Intelligent environments can be considered in many different domains, namely

domestic, medical, legal, public spaces, workplaces, among others. In this paper,

given our previous experience, we consider the development of domestic

environments for the enhancement of the comfort and security of the user, with an

emphasis on home care. In order to highlight the applicability of the presented

approach, we will also use as example the development of UMCourt, a platform-

independent virtual environment in which parties in dispute find alternatives to a

disadvantageous dispute in court. This delimitation of the problem helps to define

which devices and services can be considered.

In the case of UMCourt, as it is a virtual environment, it can be accessed from any

regular internet-enabled device. The services considered are used transparently be the

agents that represent the users and these users do not know with which services they

are interacting. They simply request tasks that are delivered to them. In the case of

VirtualECare, however, users explicitly interact with different physical devices, with

specific capabilities. These devices can be grouped into three categories or layers:

computing, communication and interface. Each of these layers has different devices

and objectives and only with a close integration of all of them the system can be built.

In the computing layer one can have a multitude of devices which have computing

capabilities and that can work independently from each other. In that sense we can

consider small and common devices such as the mobile phone, mobile computers,

watches, displays, photo machines, televisions or PDAs. In our modern homes, even

window blinds, coffee machines or refrigerators have computing and networking

capabilities. We can also consider environmental sensors such as temperature,

luminosity and humidity sensors, smoke and flood sensors.

Concerning the communication layer, the main challenge comes from the

heterogeneity of devices with communication capabilities and the different protocols

and communication means that exist. A common home setting nowadays can have

several networks, namely Ethernet, Wi-Fi, Bluetooth, power line, among others.

There is a whole infrastructure of communicating devices that need to be compatible

so that they can be integrated. The interface layer is also a very important part of the

system since the devices through which the user interacts with the system will create

the image that the user will have of the whole system. This means that this interaction

must be very user friendly. In that sense, devices such as video cameras, microphones

or touch-screens must be considered. In the opposite side we can enumerate the

devices through which the system interacts with the environment, namely the

actuators that allow controlling home appliances such as lights, heaters, air

conditioning devices, among others.

It is a fact that nowadays a multitude of interesting devices exist that can improve

our day-to-day living. However, these are very hard to integrate as each one has

different characteristics. To address this problem there are already some defined

standards but it necessary that manufacturers follow them and that all of them follow

a single one. The solution is then to find effective ways to integrate these different

devices by creating a compatibility layer that not only allows the devices to

communicate but also makes it easier to develop applications to make use of the

services provided by the devices.

2 Nature of the Architecture

Given the already mentioned characteristics of the devices that may inhabit an

intelligent environment and given the dynamic nature of the interaction paradigm (e.g.

user can interact with many eventually mobile devices, user can start or stop devices,

user can incorporate new devices), we can state that an architecture for Ambient

Intelligence should be dynamic, modular, expansible, flexible, scalable and

compatible [14,15]. In order to implement such an architecture the two previously

mentioned technologies will be considered together, joining the advantages of Service

Oriented Architectures and Multi-agent Systems in order to build a dynamic

environment that can incorporate a multitude of heterogeneous devices.

The Role of Jade. Agent-based technologies have been used for the most different

purposes. Basically, this paradigm intends to solve problems through the interaction

of simple entities called agents. Each agent has its knowledge about the world and its

objectives to accomplish, which may be individual or collective objectives. Likewise,

agents may either cooperate or compete in order to achieve their objectives [8]. One

of the most interesting research trends in this field is in argumentation theory. In

argumentation, agents debate, defend their beliefs and try to convince the other agents

into believing the same they do in order to achieve their objectives [5].

Argumentation is also suited for solving conflicts that are usual in these

environments. The most common example is a situation in which two agents have

conflicting objectives (e.g. maintaining comfort versus saving energy). Besides

argumentation, negotiation techniques [6] can and have also been considered to

address these challenges.

One important issue here is the one of communication between the agents as these

must respect a common standard that ensures that all the agents make use of the same

ontology and message syntax. In that sense, the use of FIPA-ACL standard is highly

useful. By doing so, many drawbacks concerning communication are solved and the

compatibility of the architecture with external agents that respect the defined standard

is assured, increasing the expansibility.

Given their features, agents will be used for all the high level decision making

processes. It is thus necessary to define agents or groups of agents according to their

roles in the architecture. This is, evidently, a task that is domain-dependent. An

example focused on a domestic environment is described in section 4.

The Role of OSGi. In a common AmI architecture there is a group of components that

must be connected. The objective of using an OSGi platform is to create a

compatibility layer that can interconnect all the previously mentioned devices with

software components such as databases or external service providers. The approach to

be followed will consist in hiding each of these different components behind a

different OSGi bundle. The key idea of this approach is to hide the singularities of

each device and confine them to the respective bundle. This way, depending on the

component being controlled, each bundle will be responsible for the interaction logic

and the registration and request of necessary services for the correct execution of the

component. Developers of other bundles thus do not need to know the specifications

of a given component they intend to interact with. They need only to request the

services being provided by the bundle that controls the component. In that sense,

OSGi bundles can be seen as black boxes providing services: it does not matter what

is inside the box as long as we know how to use the service.

3 Developing Intelligent Environments with OSGi and Jade

The roles of OSGi and Jade in the architecture have already been briefly depicted. We

will now detail how these two tools can be used together in order to improve the

process of developing intelligent environments. As stated before, the MAS is in

charge of the high level decision processes, relying on tools like negotiation and

argumentation to take globally optimum solutions. Additionally, OSGi is used to

build a service layer that ensures the compatibility between all the different

components of the architecture.

There are four main components in the architecture that allow a logical high level

organization and a modular style of development: Jade container (the virtual location

where the agents execute), Jade platform (may hold several Jade containers), OSGi

bundle (able to provide and to use services from other bundles) and OSGi platform.

The process of creating an intelligent environment supporting the intended features is

organized into a group of sequential and eventual iterative phases, as seen in figure 1.

Fig. 1. The three phases of the development process.

Initial Specification. The process starts with the drawing of an initial specification.

When defining this, some important factors must be considered such as the target

environment of the system, its context of application, the devices that are likely to be

used, among others. It is also important here to draw the first sketch of the

functionalities of the system in terms of high level components. When drawing this

first sketch it is usually useful to have some insights on the final architecture and the

organization of the components, so that the first high level components and their

organization do not differ significantly from the expected final version. However, as

this approach is highly modular, the first sketch of the architecture may be defined

without knowing how the final version will be: the intermediary versions can be

easily reorganized by changing functionalities (e.g. moving bundles or agents

between platforms). This significantly lifts the pressure on the development teams

that have to define the architecture of the system without having a clear picture of

how the final system will look like, solving one of the biggest challenges in the

development of complex systems [7]. Note that in this first stage there is no need to

declare which component is of which type, thus giving more freedom to make future

changes to the system.

Development. When the process reaches the development phase, the first sketch of the

architecture is implemented. This might consist in simply creating high level

components according to the initial specification and optionally creating some

services with no functionality, only to define the connections between the several

components and the way that information will be shared. Note that in this case we

define only the several OSGi platforms and the direction of the services that will be

used, configuring only high level components.

Another important task that can be performed here is to implement simulated

bundles instead of “real” ones. Let us call simulated bundle to a bundle that simulates

the services it should provide, for example, a bundle that simulates the value of the

temperature instead of reading that value from an actual sensor. This is important as it

allows developing a prototype version of the system without having all the necessary

devices, thus reducing the costs and allowing for more easily and rapidly developing

the prototype in initial stages. This means that in an eventual intermediary phase in

the process, the system might be constituted only by simulated bundles or a mixture

of simulated and real bundles. With OSGi, the whole architecture can be built out of

simulated bundles that are then gradually replaced with real ones. The only main

concern here is that the bundles that are being replaced have the same name and the

same services signature, i.e., for the remaining services they are the same, although

the reality is that they provide the same services in different ways.

Assessment. Having implemented this first prototype version, the process moves on to

the Assessment phase. In this phase, the system is tested in terms of its efficiency,

robustness, usability and scalability. In initial versions, the interest in the assessment

is to improve architecture-related parameters. Therefore, one of the important tests to

perform is to invoke all the services in order to determine if they are correctly

implemented and their signatures respected. It is also vital do evaluate the logical

organization of the architecture. This may result in operations like dividing a complex

bundle into simpler bundles, dividing an OSGi platform or Jade platform into several

ones of the same type if they hold many components, group bundles or agents that are

scattered in different platforms into one common platform, among others. In later

phases of the development process, the assessment stage may receive as input the

experience of interaction with target users. This might result in recommendations for

changes suggested by experts in several fields, final users, etc. All these changes are

then compiled and passed to a new iteration of the development stage for

implementation. This process goes on until a satisfactory architecture is achieved.

By allowing to perform such tasks, this approach allows to develop intelligent

environments by following several existing prototyping techniques, namely

Throwaway, Evolutionary and Incremental prototyping.

4 Example Settings

4.1 VirtualECare

Having described the nature of the architecture that we achieve with this approach, let

us now present an example of how the development process may occur. This example

is a simplification of what was the development process of the VirtualECare project

[15]. In this example we will assume that we have only temperature and luminosity

sensors. According to the proposed process, the first step is to define an initial

specification for the system, in terms of the high level roles and functionalities that

one intends to implement. In this case we will consider four objectives: we want to

monitor the environment in terms of environmental parameters, control the devices

present in the environment, incorporate intelligent decision mechanisms and model

the user’s preferences and needs.

In the first iteration of the development phase, we implement four bundles, each

one representing one of the functionalities enumerated before (Figure 2). We also

know that the bundle responsible for the decision mechanisms will contain agents so

this will be a Jade-OSGi bundle.

Fig. 2. Result of iteration 1 with four bundles.

This is a rather simple process, consisting in creating only the activators and

manifests for each bundle. In the first assessment phase all the bundles are started in

order to determine if they have been well defined. In this phase we also define which

agents will be necessary in order to be implemented in the next iteration. In this phase

we also decide that the Monitorization bundle should be divided into two bundles, one

for interacting with real sensors and another one for simulating parameters for which

we do not have sensors.

Fig. 3. Result of iteration 2 with five bundles and three agents.

In the second iteration, we implement the decisions that have been taken in the

previous one, arriving at an architecture as the one seen in Figure 3. Analyzing this

system, we conclude that it makes more sense that the preferences and needs are

embodied in two agents so that they also take part in the decision process. Therefore

the decision is to move the code from a bundle to two agents. While developing the

Real Sensors bundle, it was concluded that, due to the differences in the iteration

logic of each type of sensor, this bundle should be divided. The same is decided for

the Actuator bundle.

In further iterations similar operations can be performed, always without

interfering with the components already present. One possible result is the

architecture defined in Figure 4, considering a Fault Check bundle that restarts agents

that have failed and a database.

Fig. 4. A simple AmI architecture with 9 bundles, 5 agents and the external components

considered.

4.2 UMCourt

UMCourt [16] is the second project in which this approach is being successfully

applied. This project aims at the creation of an Online Dispute Resolution platform

that uses insights from the Artificial Intelligence field, namely Case-based Reasoning

(CBR), to implement a group of services intended to help parties in dispute. These

services include the estimation of the most likely outcomes of a dispute, the

generation of strategies and solutions, a negotiation environment and general tools for

legal documentation management.

Also here, the two technologies have been used with different purposes. Agents are

used here in tasks that require significant context information. Examples are the

negotiation and Case-based Reasoning modules. In these modules, FIPA-ACL

messages are used not only to model information of the legal cases but also to model

the control messages that define the negotiation protocol and the CBR process. An

example of an ACL Message is shown below.

Example of an ACL message from agent Coordinator to agent Retriever requesting the cases

similar to 1263491000923, assuming the default settings.

Sender : (agent-identifier
:name Coordinator@davide-desktop:1099/JADE
:addresses (sequence http://davide-desktop:7778/acc))

Conversation-ID : 1263492569251
Reply-To : Coordinator@davide-desktop:1099/JADE
Ontology : CBR_LABOUR
Content : RETRIEVE_SIMILAR DEFAULT 1263491000923

OSGi, however, is used differently. It is used to implement the low level tasks that

lighten the execution of the agents. Namely, bundles implement behaviors for

selecting cases according to given criteria, transparently accessing the database,

loading and indexing cases, among others. Adopting this approach has the advantage

of decreasing the complexity of the agents by removing these tasks from the scope of

the agent. At the same time, it increases code reuse as it is common that different

agents make use of some of these tasks that are, this way, encapsulated inside

bundles. Figure 5 shows a simplified view of the UMCourt architecture.

Negotiation Outcome

Jade
Container

Jade
Container

R
e
tr
ie
v
e

R
e
u
se

R
e
v
is
e

R
e
ta
in

C
o
o
rd
in
a
to
r

R
u
le
s

A
lt
e
rn
a
ti
v
e
s

O
u
tc
o
m
e
s

B
la
ck
B
o
a
rd

C
o
o
rd
in
a
to
r Selector

Database

Case Loader

Indexer

Parser

Process Validity

OSGi Environment

Fig. 5. A simplification of the UMCourt architecture.

5 Conclusions

Jade and OSGi can be used independently to create intelligent environments

following two different approaches. However, their integrated use provides a much

more powerful solution that can cut development time and requisites. Following the

highly modular approach presented here, it is possible to develop these environments

gradually, making changes as needed. Hence, it is easy to add new functionalities (in

the shape of new bundles or agents), it is easy to rearrange the existing architecture

(e.g. sub-dividing or integrating components) always without interfering with the

components already present. Functionally, Jade ensures the development of agents

and provides all the advantages of a complete messaging service, facilitating the

implementation of complex negotiation and argumentation protocols.

OSGi, in the other hand, allows effective integration of very different components,

creating a compatibility layer that exposes the functionalities of each component and

hides the unnecessary complexity. Concluding, this approach allows to develop

intelligent environments following the different prototyping techniques mentioned,

fastening the whole process. Moreover, the advantages are present during the

development phase and are reflected in the final architecture that is always ready to be

improved with a new bundle or agent.

Acknowledgments. The work described in this paper is included in TIARAC -

Telematics and Artificial Intelligence in Alternative Conflict Resolution Project

(PTDC/JUR/71354/2006), which is a research project supported by FCT (Science &

Technology Foundation), Portugal.

References

1. Wooldrige, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2002)

2. Perrey, R., Lycett, M.: Service-oriented architecture. In: Applications and the Internet

Workshops, Proceedings. vol., no., pp. 116-119, pp. 27-31 (2003)

3. Bellifemine, F., Poggi, A., Rimassa, G.: Developing Multi-agent Systems with JADE,

Springer (2008)

4. O.S. Alliance: Osgi service platform, release 3 (2003)

5. Amgoud, L., Parsons, S., Maudet, N.: Arguments, dialogue, and negotiation. In: W. Horn,

editor, Proc. 14th European Conf. on AI, pages 338--342, Berlin. IOS Press (2000)

6. Brito, L., Novais, P., Neves, J.: The logic behind negotiation: from pre-argument reasoning

to argument-based negotiation. In: PLEKHANOVA, V., ed. lit. - Intelligent agent software

engineering, pp. 137-159, London Idea Group Publishing (2003)

7. Edwards, W.K. Grinter, R.E.: At Home with Ubiquitous Computing: Seven Challenges,

Proceedings of the 3rd international conference on Ubiquitous Computing, Atlanta, Georgia,

USA: Springer-Verlag, pp. 256-272 (2001)

8. Olson, G. M., Malone, T. W., Smith, J. B. (Eds.): Coordination Theory and Collaboration

Technology. Mahwah, NJ: Erlbaum (2001)

9. Dix, A., Finley, J., Abowd, G., Beale, R.: Human-computer interaction (3nd ed.). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA (2004)

10. FIPA: FIPA ACL Message Structure Specification. Available at

http://www.fipa.org/specs/fipa00061/SC00061G.html. <accessed in January, 2010>

11. The Amigo Project: Amigo – Ambient Intelligence for the networked home environment.

Short project description (2004)

12. Haigh K., Kiff L., Myers J., Guralnik V., Krichbaum K., Phelps J., Plocher T., Toms D.:

The Independent LifeStyle Assistant: Lessons Learned. Honeywell Laboratories (2003)

13. Camarinha, L., Afsarmanesh H.: Virtual Communities and Elderly Support. In Advances in

Automation, Multimedia and Video Systems, and Modern Computer Science (2001)

14.Carneiro, D., Novais, P., Costa, R., Gomes, P., Neves, J., EMon: Embodied Monitorization,

in Ambient Intelligence European Conference - AmI 2009, Tscheligi M (et al.). (Eds.),

LNCS 5859, Springer-Verlag, ISBN 978-3-642-05407-5, pp 133-142 (2009)

15. Costa, R., Novais, P., Lima, L., Carneiro, D., Samico, D., Oliveira, J., Machado, J. and

Neves, J., VirtualECare: Intelligent Assisted Living, in Electronic Healthcare, Dasun

Weerasinghe (ed.), Springer, Series Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, pp 138-144, ISBN 978-3-642-00412-4 (2009)

16. Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., Neves, J., The Legal Precedent in

Online Dispute Resolution, in Legal Knowledge and Information Systems, ed. Guido, IOS

press, ISBN 978-1-60750-082-7, pp 47--52, (2009)

17. Spanoudakis, N., Moraitis, P., An Ambient Intelligence Application Integrating Agent and

Service-Oriented Technologies, in Research and Development in Intelligent Systems XXIV,

Proc. 27th SGAI International Conference on Innovative Techniques and Applications of

Artificial Intelligence (AI-2007), pp. 393-398, (2007)

18. De Maria, B.A., Silva, V.T., Lucena, C.J.P., Choren, R.: VisualAgent: A Software

Development Environment for Multi-Agent Systems. Proc. of the 19th Brazilian Symposiun

on Software Engeneering (SBES 2005), Tool Track, Uberlândia, MG, Brazil, 2005.

19. Model-driven Approach to Real-Time Embedded Systems development (MARTES), 2007.

URL: http://www.martes-itea.org

