J. K. Tsotsos, J. Mylopoulos, H. D. Covvey, and S. W. Zucker, A framework for visual motion understanding, IEEE PAMI-2, pp.563-573, 1980.
DOI : 10.1109/TPAMI.1980.6447704

H. Nagel, From image sequences towards conceptual descriptions, Image and Vision Computing, vol.6, issue.2, pp.59-74, 1988.
DOI : 10.1016/0262-8856(88)90001-7

B. Neumann, Description of Time-Varying Scenes, Semantic Structures, pp.167-206, 1989.

B. Georis and M. Mazière, g e Representation Formalisms to Improve Video Understanding, Proc. IEEE International Conf. on Computer Vision Systems ICVS06, p.27, 2006.
DOI : 10.1109/icvs.2006.23

B. Neumann and R. Moeller, On Scene Interpretation with Description Logics, Cognitive Vision Systems, pp.247-275, 2006.
DOI : 10.1007/11414353_15

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Rimey, Control of selective perception using bayes nets and decision theory, International Journal of Computer Vision, vol.34, issue.6, p.14627, 1993.
DOI : 10.1007/BF01421202

D. Koller and A. Pfeffer, Object-oriented Bayesian Networks, The Thirteenth Annual Conference on Uncertainty in Artificial Intelligence, pp.302-313, 1997.

L. Getoor and B. Taskar, Introduction to Statistical Relational Learning, pp.129-174, 2007.

E. Gyftodimos and P. A. Flach, Hierarchical Bayesian Networks: A Probabilistic Reasoning Model for Structured Domains, Proc. Workshop on Development of Representations, ICML, pp.23-30, 2002.

B. Neumann, Bayesian Compositional Hierarchies -A Probabilistic Structure for Scene Interpretation, 2008.

D. Mumford and S. Zhu, A Stochastic Grammar of Images, 2007.

J. Yu and J. Luo, Leveraging probabilistic season and location context models for scene understanding, Proceedings of the 2008 international conference on Content-based image and video retrieval, CIVR '08, pp.169-178, 2008.
DOI : 10.1145/1386352.1386379

R. Perko, C. Wojek, B. Schiele, and A. Leonardis, Integrating Visual Context and Object Detection within a Probabilistic Framework, Attention in Cognitive Systems: Int. Workshop on Attention in Cognitive Systems (WAPCV), p.54, 2009.
DOI : 10.1109/TPAMI.2002.1023800

L. Li, R. Socher, and L. Fei-fei, Towards Total Scene Understanding: Classification, Annotation and Segmentation in an Automatic Framework, In: Computer Vision and Pattern Recognition, 2009.

B. Lowerre, The Harpy Speech Recognition System. P h . D . t h e sis, 1976.

T. M. Mitchell, Machine Learning. The Mc-Graw-Hill, 1997.

A. Kreutzmann, K. Terzi?, and B. Neumann, Context-aware classification for incremental scene interpretation, Proceedings of the Workshop on Use of Context in Vision Processing, UCVP '09, 2009.
DOI : 10.1145/1722156.1722158

K. Terzi? and B. Neumann, D e c i s i o n T r e e s f o r P r o b a b i l i s t i c T o p -down and Bottom-up Integration etrims -e-Training for Interpreting Images of Man-made Scenes, 2009.

K. Terzi?, L. Hotz, and J. ?ochman, Interpreting Structures in Man-made Scenes; Combining Low-Level and High-Level Structure Sources, International Conference on Agents and Artificial Intelligence, 2010.

M. Jahangiri and M. Petrou, Fully Bottom-Up Blob Extraction in Building Facades, Proc. Pattern Recognition and Image Analysis (PRIA), 2008.

M. Drauschke, An Irregular Pyramid for Multi-scale Analysis of Objects and Their Parts, Workshop on Graph-based Representations (GbR'09), pp.293-303, 2009.
DOI : 10.1109/34.56205